Зміст
Добірка наукової літератури з теми "Méthode du multiplicateur"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Méthode du multiplicateur".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Méthode du multiplicateur"
Fambeu, Ariel Herbert, and Novice Patrick Bakehe. "Interaction sociale et usages d'Internet au Cameroun." Articles 91, no. 4 (August 9, 2016): 421–60. http://dx.doi.org/10.7202/1037208ar.
Повний текст джерелаДисертації з теми "Méthode du multiplicateur"
Ait, Younes Tarik. "Calcul de la réponse dynamique de grands domaines à une excitation acoustique par une méthode de sous domaines." Compiègne, 1999. http://www.theses.fr/1999COMP1248.
Повний текст джерелаNeyrat, Mathieu. "Contribution à l’étude de G. P. R. (Ground Penetrating Radar) multicapteurs : Méthodes directes et inverses en temporel." Limoges, 2009. https://aurore.unilim.fr/theses/nxfile/default/a81b4d3c-f079-405b-88a2-1f087d9726f1/blobholder:0/2009LIMO4003.pdf.
Повний текст джерелаGround Penetrating Radars (G. P. R. ) contribute in non-destructive survey in various domains. This work deals with a study of GPR in multisensor configuration. In a first part, the fundamental laws of electromagnetism and the radar principle are presented. A numerical method for fast modeling of realistic scenes and B-scan calculation is described. This method based on the FDTD (Finite Difference Time Domain) allowed to test various configurations of multisensor radar and to show their contribution. The final section proposes two inverse methods in time domain. The reverse time method and the phase shift method are well suited to the location of objects from multisensor radar records
Averous, Fabienne. "Contribution à la prévision du bruit des moteurs d'hélicoptères par éléments finis, équations intégrales, et décomposition de domaine." Compiègne, 2001. http://www.theses.fr/2001COMP1329.
Повний текст джерелаKassem, Chiraz. "Stabilité et contrôllabilité de quelques systèmes localement couplés." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAM072.
Повний текст джерелаThis thesis is devoted to study the stabilization and exact controllability of some locally coupled systems. First, we studied the stabilization of a system of two wave equations coupled by velocities with only one localized damping and under appropriate geometric conditions. For the case involved waves propagating at the same speed, we established the exponential energy decay rate. However, the natural physical case also entails waves that do not propagate with equal speed, in such a case, we showed that our system is not uniformly stable and we established an optimal polynomial energy decay rate.Second, we investigated the exact controllability of locally coupled wave equations. The main tool is a result of A. Haraux by which the observability inequality is equivalent to the exponential stability of the system. More precisely, we provided a complete stability analysis of the system in two different Hilbert spaces and under appropriate geometric conditions. Then, using the HUM method, we proved that the system is exactly controllable. Later, we performed numerical experiments to valid our obtained theoretical results.Last, we analyzed the stability of a Bresse system with local Kelvin-Voight damping with fully Dirichlet or Dirichlet- Neumann-Neumann boundary conditions. Here we trait several cases.In the case of three local damping, according to their properties (smoothness), we established an exponential or a polynomial energy decay rate. However, when the waves are only subjected to one or two damping and under Dirichlet-Neumann-Neumann boundary conditions, we demonstrated that the Bresse system is not uniformly stable. In this case, we established a polynomial energy decay rate.In this thesis, the frequency domain approach and the multiplier technique were used
Murea, Cornel Marius. "Modélisation mathématique et numérique d'un problème tridimensionnel d'interaction entre un fluide incompressible et une structure élastique." Phd thesis, Université de Franche-Comté, 1995. http://tel.archives-ouvertes.fr/tel-00413312.
Повний текст джерелаGhadi, Fatth-Allah. "Résolution par la méthode des éléments finis des équations de Navier-Stokes en formulation (v-w)." Saint-Etienne, 1994. http://www.theses.fr/1994STET4010.
Повний текст джерелаAmdouni, Saber. "Numerical analysis of some saddle point formulation with X-FEM type approximation on cracked or fictitious domains." Thesis, Lyon, INSA, 2013. http://www.theses.fr/2013ISAL0007/document.
Повний текст джерелаThis Ph.D. thesis was done in collaboration with "La Manufacture Française des Pneumatiques Michelin". It concerns the mathematical and numerical analysis of convergence and stability of mixed or hybrid formulation of constrained optimization problem with Lagrange multiplier method in the framework of the eXtended Finite Element Method (XFEM). First we try to prove the stability of the X-FEM discretization for incompressible elastostatic problem by ensured a LBB condition. The second axis, which present the main content of the thesis, is dedicated to the use of some stabilized Lagrange multiplier methods. The particularity of these stabilized methods is that the stability of the multiplier is provided by adding supplementary terms in the weak formulation. In this context, we study the Barbosa-Hughes stabilization technique applied to the frictionless unilateral contact problem with XFEM-cut-off. Then we present a new consistent method based on local projections for the stabilization of a Dirichlet condition in the framework of extended finite element method with a fictitious domain approach. Moreover we make comparative study between the local projection stabilization and the Barbosa-Hughes stabilization. Finally we use the local projection stabilization to approximate the two-dimensional linear elastostatics unilateral contact problem with Tresca frictional in the framework of the eXtended Finite Element Method X-FEM
Agouzal, Abdellatif. "Analyse numérique de méthodes de décomposition de domaines : Méthodes de domaines fictifs avec multiplicateurs de Lagrange." Pau, 1993. http://www.theses.fr/1993PAUUA002.
Повний текст джерелаCsati, Zoltan. "Mesh-independent modelling of diffuse cracking in cohesive grain-based materials." Thesis, Ecole centrale de Nantes, 2019. http://www.theses.fr/2019ECDN0037.
Повний текст джерелаIn this thesis a flexible and general stable displacement–Lagrange multiplier mixed formulation is developed to model distributed cracking in cohesive grain-based materials in the framework of the cut finite element method. The displacement field is discretized on each grain separately, and the continuity of the displacement and traction fields across the interfaces between grains is enforced by Lagrange multipliers. The design of the discrete Lagrange multiplier space is detailed for bilinear quadrangular elements with the potential presence of multiple interfaces/discontinuities within an element. We give numerical evidence that the designed Lagrange multiplier space is stable and provide examples demonstrating the robustness of the method. Relying on the stable discretization, a cohesive zone formulation equipped with a damage constitutive model expressed in terms of the traction is used to model the propagation of multiple cracks at the interfaces between grains. To prevent the crack faces from self-penetrating during unloading, a contact condition is enforced. The solutions for the mechanical fields and the damage field are separately obtained and an explicit damage update algorithm allows using a non-iterative approach. The damage formulation couples the normal and tangential failure modes, accounts for different tension and compression behaviours and takes into account a compression-dependent fracture energy in mixed mode. The framework is applied to complex 2D problems inspired by indirect tension tests and compression tests on heterogeneous rock-like materials
Issa, Ibtissam. "Some results on the stabilization of elastic/viscoelastic transmission problems with Kelvin-Voigt or fractional Kelvin-Voigt damping." Thesis, Aix-Marseille, 2021. http://theses.univ-amu.fr.lama.univ-amu.fr/211207_ISSA_690cu840ucxbzr880kpmyt859oe_TH.pdf.
Повний текст джерелаThis thesis is devoted to study the stabilization of some locally coupled systems. First, we study the stability of a one-dimensional coupled wave equations with two interior non smooth viscous dampings where we establish exponential stability. Second, we study the stabilization of a locally coupled wave equations with only one internal viscoelastic damping of Kelvin-Voigt type. Both the damping and the coupling coefficients are non smooth. Using a spectrum approach, we prove the non-uniform stability of the system. Next, using a frequency domain approach, combined with a piecewise multiplier technique and the construction of a new multiplier satisfying some ordinary differential equations, we show that the energy of the smooth solution of the system decays polynomially. Third, we investigate the energy decay of hyperbolic systems of wave-wave, wave-Euler Bernoulli beam and beam-beam types. Indeed, the two equations are coupled through boundary connection with only one localized non smooth fractional Kelvin Voigt damping. We establish a polynomial energy decay rate. Finally, we study the stability of a multidimensional system of two wave equations coupled by velocities with only one localized non-smooth Kelvin-Voigt damping. By using a spectral analysis, we prove the non uniform stability of the system. Further, using a frequency domain approach combined with a multiplier technique, we establish some polynomial stability results by considering different geometric conditions on the coupling and the damping domains. In addition, in the absence of any geometric condition, we establish two polynomial energy decay rates of the system on a square domain