Зміст
Добірка наукової літератури з теми "Métaux de transition non nobles"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Métaux de transition non nobles".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Métaux de transition non nobles"
VARENNES, E., D. BLANC, A. AZAÏS, L. GUERET, C. LAGARRIGUE, and J. M. CHOUBERT. "Opportunités de récupération des métaux en station d’épuration." Techniques Sciences Méthodes 9, no. 9 (September 20, 2021): 85–100. http://dx.doi.org/10.36904/tsm/202109085.
Повний текст джерелаJégourel, Yves. "Ressources minérales critiques : enjeux environnementaux, industriels et géopolitiques." Questions internationales 117, no. 1 (March 14, 2023): 46–55. http://dx.doi.org/10.3917/quin.117.0046.
Повний текст джерелаTimofeev, D. V. "Крестьянские прошения в России первой четверти XIX века: реакция власти в поисках решения крепостного вопроса". Вестник гуманитарного образования, № 3(23) (9 грудня 2021): 9–15. http://dx.doi.org/10.25730/vsu.2070.21.030.
Повний текст джерелаДисертації з теми "Métaux de transition non nobles"
Drault, Fabien. "Développement de catalyseurs à base de métaux de transition non nobles en remplacement du platine pour des réactions d'hydrogénation." Thesis, Poitiers, 2018. http://www.theses.fr/2018POIT2292/document.
Повний текст джерелаThe use of noble metals in heterogeneous catalysis is limited by the scarcity of these metals, their cost and the supply difficulties due to the monopole of only two countries on the world market. The aim of this work consisted to study the association of platinum and cobalt in order to substitute partly Pt with Co while preserving the catalytic performances of the noble metal in hydrogenation. Various syntheses of 1%Pt- 5%Co supported bimetallic catalysts have been achieved and their performances have been compared with those of monometallic catalysts as well as (Pt + Co) mechanical mixtures for two hydrogenation’s reactions of industrial interest: the hydrogenation of acetonitrile and that of furfural. The physicochemical characterizations carried out (TEM, XPS …) and the model reactions (dehydrogenation of cyclohexane, hydrogenolysis of methylcyclopentane) studied have pointed out several results: - the presence of Pt increases the reducibility of Co for co-impregnated catalysts and mechanical mixtures leading to an enhancement of the catalytic performances in hydrogenation of acetonitrile or furfural; - the colloidal preparation favors the formation of PtCo alloy particles with a homogeneous composition, which are not very active for the reactions studied; - the redox route synthesis can accurately deposit Pt in contact with Co creating an improvement of the catalytic performances by a synergistic effect. Thus, in the hydrogenation of acetonitrile, the same activity was obtained by using a Pt-Co catalyst containing five times less noble metal’s content than the 1% Pt catalysts
Ben, Miled Marwan. "Synthèse in situ de nanoparticules métalliques dans une matrice céramique dérivées de polymères précéramiques pour l'électrolyse de l'eau en milieu alcalin." Electronic Thesis or Diss., Limoges, 2024. http://www.theses.fr/2024LIMO0083.
Повний текст джерелаGlobal warming caused by human activity and the use of fossil fuels, urges the need to find new sources of carbon free energy. Dihydrogen (H2) more known as “hydrogen” is rapidly emerging as a technically viable and benign energy vector according to its ability to produce a higher density of combustion than fossil fuels and to produce only water as a waste product when used in a fuel cell. Moreover, its use generates no noise pollution, unlike the combustion engines currently in use. Nevertheless, it requires a very high degree of purity in order to avoid pollution of the catalytic materials contained in the cells. Nowadays, nearly 95% of the hydrogen produced is obtained by catalytic reforming of methane, and therefore requires purification processes that are often complex and costly. One way of avoiding these purification steps would be to produce hydrogen directly by electrolysis of water more known as water splitting. This process consists of separating a molecule of water under the action of an electric current (produced in a renewable way) to produce hydrogen and dioxygen (O2) at the electrodes of an electrolyser. Unfortunately, this reaction has kinetic limitations due to a very complex Oxygen Evolution Reaction (OER) mechanism, including several electrons and several reaction intermediates. The emergence of new anion exchange membrane technologies has paved the way for the use of electrolysis in alkaline media, thus allowing the use of non-noble transition metals as catalysts, which are less expensive than the metals traditionally used (Ir and Ru). Within this context, this PhD thesis has explored the synthesis of catalytic materials to reduce the energy and kinetic barriers of OER. In order to propose materials that are performant, stable over time and resistant to the aggressive environments imposed by the electrolysis of water in an alkaline medium, the polymer-derived ceramics (PDC) route has been selected as a synthesis method of choice. The interest of this method is to implement organosilicon polymers (here a polysilazane) serving as a molecular platform for the growth of non-noble metals via the use of metal complexes such as chlorides and acetylacetonates of nickel (Ni), iron (Fe) or cobalt (Co). This polymer modified by these metals serves as a precursor for the in situ formation of metal nanoparticles in a porous matrix based on the elements silicon (Si), carbon (C), oxygen (O) and nitrogen (N) allowing their accessibility and stability after heat treatment at 500 ° C under argon. This manuscript illustrated through five chapters describes works dedicated to the synthesis and characterization of Ni (chapter 3), Ni-Fe (chapter 4) and medium and high entropy alloys (chapter 5) nanoparticles which complete a state of the art (chapter 1) and a description of the materials and methods implemented during this thesis (chapter 2). The materials which have been prepared were studied at each stage of their synthesis through the implementation of complementary characterization tools before assessing their electrochemical performances; in particular by measuring the anodic overpotential during OER, in order to determine the best metal combinations. Post mortem tests were carried out to evaluate the potential of the prepared materials. Considering the simplicity of the synthesis route, and the low cost of reactants used, this work leads to a new family of materials and to several promising perspectives, not only for the development of efficient and stable catalysts for the OER but more generally for numerous applications in electrochemistry. These opportunities are now being addressed
Janisch, Daniel. "Geo-inspired pathways towards ternary non-noble metal (pre-)catalysts for water splitting and CO2 reduction." Electronic Thesis or Diss., Sorbonne université, 2023. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2023SORUS387.pdf.
Повний текст джерелаA full transition from fossil-based energy sources towards green energy production requires storage systems compensating for the intermittency of renewables. The production of green hydrogen from electrolysis of water powered by surplus electricity from solar or wind attracts a lot of attention as an abundant, clean and renewable energy vector. Beyond the electrolysis of water, surplus renewable energy can further be stored in more complex fuels or chemicals. Related to electrolysis, the electroreduction of CO2 (CO2R) yields energy-dense hydrocarbons storing also energy in chemical bonds. A lack of economic viability, however, still blocks widespread industrial use of these processes. The benchmark electrodes in water electrolysis cells are platinum group metals that are expensive and not abundantly available. Compounds of more common transition metals represent a much cheaper alternative as potential electrocatalysts for water splitting. It was shown that activity and stability in both acidic and alkaline electrolytes is enhanced most notably in binary transition metal borides (TMBs), silicides (TMSs) and carbides (TMCs). Covalent bonds between p-block elements and between these elements and the transition metals, and the resulting modifications of the metal charge density have been identified as key factors responsible for augmented catalytic activity. Nevertheless, the structure-activity relationship remains obscure and whether catalytic properties could be further boosted by a twofold combination of p-block elements with a transition metal has not been answered. Low CO2R selectivity is the current bottleneck in this process as intricate downstream product separation renders an industrial process unprofitable. Copper is the only metal electrocatalyst able to form substantial amounts of C+2 hydrocarbons. Again, p-block elements such as sulphur are reported to increase selectivity in copper sulphides to one-carbon products. Yet, the role of sulphur during CO2R remains unclear and whether a second p-block element could tune the charge state of copper to favour a single reduction pathway towards C+2 products has not been explored. To resolve these open questions, we have designed reaction pathways towards ternary compounds combining a transition metal with two p-block elements. The reaction processes are inspired by geological processes and rely on the use of molten salts as reaction media. Compared to classical solid-state synthesis, molten salts increase diffusivity of reactants and enable overall lower temperatures and reaction times. As a result, the process is prone to deliver nanostructured materials with high surface-to-volume ratio and without organic surface ligands, which is ideal for catalytic applications. In the first part of this work, the synthesis of four ternary transition metal silicoborides Ni6Si2B, Co4.75Si2B, Fe5SiB2 and Mn5SiB2 is presented, together with a detailed study of the electrocatalytic properties for alkaline water oxidation (OER). Synchrotron radiation-based in situ XRD resolves the formation mechanisms during the synthesis and sheds light on structural relationships between reaction intermediate and the final products. The second part is dedicated to the investigation of the influence of silicon, boron and carbon on molybdenum in three ternary compounds, Mo2BC, Mo4.8Si3C, Mo5SiB2, as electrocatalysts of hydrogen evolution from acidic and alkaline aqueous electrolytes. XPS and XAS point out the relationship between the oxidation state of molybdenum and the electrocatalytic activity. The assessment of two ternary copper silicosulphides Cu8SiS6 and Cu2SiS3 as catalysts for CO2R constitutes the topic of the third part of this work. The crystallisation sequence during synthesis was monitored during in situ XRD measurements and electronic configurations were assessed by XPS and XAS. Finally, in situ XAS during CO and CO2 reduction reactions shows how the materials evolve during electrocatalysis
Kumar, Kavita. "Catalyseurs sans métaux nobles pour pile à combustible régénérative." Thesis, Poitiers, 2017. http://www.theses.fr/2017POIT2284/document.
Повний текст джерелаHydrogen, as an environmentally friendly future energy vector, is a non-toxic and convenient molecule for regenerative fuel cell, which connects two different technologies: an electrolyzer for H2 production, and a fuel cell for its direct conversion to electric energy. This kind of system possesses many advantages, such as lightness, compactness and more autonomy. However, improvement of activity and durability of electrode materials free from noble metals in their composition is needed. Thereby, bifunctional catalysts composed of transition metals deposited onto graphene-based materials were synthesized. The interaction between the metal atom of the oxide and the graphene doped heteroatom in the Co3O4/NRGO catalyst was investigated physicochemically. With a low cobalt loading, the interaction between cobalt and nitrogen was characterized by cyclic voltammetry, which revealed that it was responsible for decreasing the oxide nanoparticle size, as well as increasing the material activity towards the oxygen reduction reaction (ORR). The substitution of Co by Ni in the spinel structure (NiCo2O4/RGO) obtained by solvothermal synthesis, allowed the enhancement of the electrocatalytic performances towards the ORR and OER. Moreover, this catalyst as well as another material prepared in collaborative program with a lab from Technical University of Berlin were used as cathode in preliminary studies undertaken on solid alkaline fuel cell (SAFC)
Ben, Maajouz El Mzarhrani Houssine. "Etude des catalyseurs aux métaux nobles déposés sur les zéolithes : hydrogénation sélective du butadiène." Lyon 1, 1991. http://www.theses.fr/1991LYO10201.
Повний текст джерелаFerrand, Laura. "Hydrofonctionnalisations de liaisons multiples carbone-carbone catalysées par des complexes à base de métaux non nobles." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066348/document.
Повний текст джерелаThis PhD work has focused on the development of new methodologies in catalysis based on non-noble metals: cobalt and niobium. These two metals have been used to catalyze hydrofunctionalization reactions of carbon‒carbon multiple bonds. The aim of those projects was to propose competitive catalytic systems based on non-precious metals and to promote their use compared to other rare and expensive metals. To this end, we successfully demonstrated that a well-defined cobalt complexe HCo(PMe3)4 is an efficient catalyst for regio- and stereoselective hydroboration reactions of internal alkynes, as well as diboration reactions. Also, a new catalytic system based on cationic niobium(V) has been developed and used to catalyze intramolecular hydrofunctionalization reactions leading to the synthesis of a large family of heterocycles. In order to reveal even more the potential of niobium in catalysis, we aimed to propose a chiral system able to catalyze enantioselective hydroalkoxylation of alkenes. Despite the promising results, some more efforts on the optimization of this system still need to be done
Manchon, Delphine. "Réponse optique de nano-objets uniques anisotropes : de l'or aux métaux de transition." Phd thesis, Université Claude Bernard - Lyon I, 2012. http://tel.archives-ouvertes.fr/tel-00993802.
Повний текст джерелаDulong, Jean-Luc. "Etude de la fonction diélectrique infrarouge de métaux nobles à haute température, par réflectométrie différentielle." Paris 6, 1986. http://www.theses.fr/1986PA066397.
Повний текст джерелаPollet, Michaël. "Synthèse et caractérisation de matériaux diélectriques pour la conception de condensateurs multicouches à électrodes internes en métaux non nobles." Caen, 2003. http://www.theses.fr/2003CAEN2086.
Повний текст джерелаThe CaZrO3 material was studied in order to fabricate base metal electrodes multilayer ceramic capacitors. The synthesis process using solid state reaction was optimized (time, temperature, quantity) to obtain a fine, homogeneous and reactive powder precursor. The co-sintering with base metal electrodes requiring the use of a reducing atmosphere, its effect on the reactivity and the properties of dielectric was analyzed. Many ways were explored to lower the dielectric sintering temperature: the granulometry, the stoichiometry and the effect of several doping agents and/or additions. A dielectric formulation is proposed, of thermal and physical behaviour compatible with the applications concerned. Prototypes were synthesized then optimized in a preoccupation with an industrial transposition. A statistical model was developed to analyze the dilatometric behaviour of dielectric ceramics. It makes it possible to obtain information concerning the mechanisms of sintering and to quantify their efficiency. Dielectric materials from the ternary system Ba(Mg1/3Ta2/3)O3-Ba(Zn1/3Ta2/3)O3-Ba(Zn1/3Nb2/3)O3 were synthesized and analyzed. Their thermal and dielectric behaviours are shown to be predictable, function of the proportions used, and were modelled. All these gathered information allow to consider the existence of a very extended solid solution in this complex system. The lattice dynamic of CaZrO3 based materials was studied using the FPSQ model ("Four Parameters Semi-quantum model"). The extrapolation of the dielectric properties in the microwave range is in excellent agreement with direct measurements in resonant cavity. A model is proposed to account for the dielectric properties in cation deficient materials. The effect of a weak doping is also analyzed and an interpretation is proposed for the evolution of the dielectric properties
Devita, Marie. "Mesure et dangerosité des métaux nobles pour les photodétecteurs à avalanche à photon unique." Thesis, Strasbourg, 2016. http://www.theses.fr/2016STRAD029/document.
Повний текст джерелаNoble metals (Au, Ag, Pt, Ir, Pd and Ru) are used for the fabrication of microelectronics devices or can be brought by manufacturing tools (alloy components for example). It is well known that these impurities are detrimental to the efficiency of the devices. This implies a real and present need for control of their introduction in clean rooms to diagnose as soon as possible a contamination. Yet, there are no industrial technique for their follow-up at levels about 5.109 at.cm-2 - ITRS recommendations. The relevance of these recommendations according to the electronic device (SPAD in particular) could be questioned. At first, this study consisted in developing a physicochemical technique for the analysis of noble metals on Si wafers by VPD-DC-ICPMS. Then, their dangerousness towards tools and devices was established according to their behavior in temperature and the DCR generated on SPAD devices