Добірка наукової літератури з теми "Metamorphic reaction"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Metamorphic reaction".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Metamorphic reaction"

1

Degeling, H., S. Eggins, and D. J. Ellis. "Zr budgets for metamorphic reactions, and the formation of zircon from garnet breakdown." Mineralogical Magazine 65, no. 6 (December 2001): 749–58. http://dx.doi.org/10.1180/0026461016560006.

Повний текст джерела
Анотація:
AbstractThe construction of zirconium (Zr) budgets for metamorphic reactions in high-grade rocks provides new insight into zircon growth during metamorphism. In this study we target reactions involving garnet, as they enable zircon growth to be related to known pressure and temperature conditions. Two reactions involving the breakdown of Zr-bearing garnet from Rogaland, SW Norway have been investigated in detail, showing contrasting behaviour of Zr, with zircon formation being subject to the solubility of Zr in product phases. In the decompression reaction garnet + sillimanite + quartz → cordierite, Zr released during garnet breakdown cannot be incorporated into the cordierite structure, resulting in zircon nucleation and growth. In contrast, for the reaction garnet + biotite + sillimanite + quartz → osumilite + orthopyroxene + spinel + magnetite, no new zircon growth takes place, despite the garnet involved containing more than double the Zr concentration of the former reaction. In the latter case, all the Zr released by garnet breakdown can be detected in the product phases osumilite and orthopyroxene, thereby preventing growth of new metamorphic zircon. This study highlights the potential for high resolution geochronology in metamorphic rocks by relating zircon growth to specific metamorphic reactions.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ridley, John. "Modelling of the relations between reaction enthalpy and the buffering of reaction progress in metamorphism." Mineralogical Magazine 50, no. 357 (September 1986): 375–84. http://dx.doi.org/10.1180/minmag.1986.050.357.03.

Повний текст джерела
Анотація:
AbstractA proportion of the heat added to a body of rock during prograde metamorphism will be absorbed in the chemical work of metamorphic recrystallization. When and where heat is so absorbed will affect the exact thermal histories of the rocks, and hence the metamorphic textures. This paper reports the results of modelling of the inter-relations between reaction progress and thermal histories in a rock column. The results suggest that volumes of rock undergoing reaction at any moment act as heat sinks and absorb heat from the surrounding rock, that reaction generally takes place close to the temperature at which nucleation took place, and that steady heating of a rock pile can give rise to a reaction history in which spurts of reaction are separated by ‘quiet’, non-reactive intervals.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Urueña, Cindy L., Charlotte Möller, and Anders Plan. "Metamorphic titanite–zircon pseudomorphs after igneous zirconolite." European Journal of Mineralogy 35, no. 5 (September 19, 2023): 773–88. http://dx.doi.org/10.5194/ejm-35-773-2023.

Повний текст джерела
Анотація:
Abstract. The formation of metamorphic zircon after baddeleyite is a well-known reaction that can be used to date the metamorphism of igneous silica-undersaturated rocks. By contrast, metamorphic minerals formed after igneous zirconolite have rarely been reported. In this paper, we document metamorphic titanite + zircon pseudomorphs formed from the metamorphic breakdown of igneous zirconolite in syenodiorite and syenite, in the southeastern Sveconorwegian Province, Sweden. Water-rich fluid influx during tectonometamorphism in epidote–amphibolite-facies metamorphic conditions caused the release of silica during a metamorphic reaction involving igneous feldspar and pyroxene and the simultaneous breakdown of igneous Zr-bearing phases. Typical titanite + zircon intergrowths are elongated or platy titanite crystals speckled with tiny inclusions of zircon. Most intergrowths are smaller than 15 µm; some are subrounded in shape. Locally, bead-like grains of titanite and zircon are intergrown with silicate minerals. The precursor igneous zirconolite was found preserved only in a sample of near-pristine igneous syenodiorite, as remnant grains of mainly < 2 µm in size. Two somewhat larger crystals, 8 and 12 µm, allowed semiquantitative confirmation using microprobe analysis. Analogous with zircon pseudomorphs after baddeleyite, titanite + zircon pseudomorphs after zirconolite potentially offer dating of the metamorphic reaction, although the small size of the crystals makes dating with today's techniques challenging. The scarcity of reports of zirconolite and pseudomorphs reflects that they are either rare or possibly overlooked.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Tettelaar, Tanya, and Aphrodite Indares. "Granulite-facies regional and contact metamorphism of the Tasiuyak paragneiss, northern Labrador: textural evolution and interpretation." Canadian Journal of Earth Sciences 44, no. 10 (October 1, 2007): 1413–37. http://dx.doi.org/10.1139/e07-029.

Повний текст джерела
Анотація:
The Tasiuyak paragneiss at the western margin of the Nain Plutonic Suite has been subjected to two granulite-facies metamorphic events: (i) regional metamorphism during the Paleoproterozoic Torngat orogeny, and (ii) contact metamorphism due to emplacement of the Mesoproterozoic Nain Plutonic Suite. Regional metamorphism led to partial melting of pelitic rocks and the development of a locally well-preserved sequence of prograde and retrograde textures. These textures are partly controlled by bulk composition and formed in the pressure–temperature (P–T) field of the continuous reaction: biotite + sillimanite + plagioclase + quartz = garnet + K-feldspar + melt, along a hairpin P–T path with peak conditions of ~8–10 kbar (0.8–1.0 GPa) and up to 870 °C in the NaKFMASH (Na2O–K2O–FeO–MgO–Al2O3–SiO2–H2O) system. These textures controlled the development of the contact metamorphic assemblages. Contact metamorphism of the pelitic rocks between the Tessiarsuyungoakh intrusion and the Makhavinekh Lake pluton led to growth of orthopyroxene-cordierite symplectite after garnet–biotite, and cordierite–spinel symplectite after garnet–sillimanite. These phase associations attest to reactions in specific microtextural settings, some of which produced a second generation of partial melt. Maximum temperatures were above ~750 °C and pressures were lower than those of the regional metamorphism. The aureole around the Makhavinekh Lake pluton is ~4 km wide and shows a progressive development of the contact metamorphic assemblages toward the pluton. In contrast, the contact metamorphic overprint is incipient around the Tessiarsuyungoakh intrusion, which developed a ~20 m wide contact aureole and is most prominent in screens of paragneiss within that intrusion.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Xiao, Ling-Ling, and Min-Hua Chen. "Metamorphic Age Comparison and Its Implications between the Zuoquan and Zanhuang Complexes in the Central North China Craton, Based on LA-ICP-MS Zircon U–Pb Dating." Minerals 9, no. 12 (December 13, 2019): 780. http://dx.doi.org/10.3390/min9120780.

Повний текст джерела
Анотація:
The Trans-North China Orogen (TNCO) is well-known as an early Precambrian orogenic belt in the North China Craton (NCC). Three meaningful groups of metamorphic ages have been reported in the metamorphic complexes throughout the TNCO, including c. 1.85 Ga, c. 1.95 Ga, and c. 2.5 Ga. The spatial distributions and relationships of these ages provide notable insight into the formation timing and tectonic evolution of the NCC basement. The Zuoquan and Zanhuang complexes are exposed in the south–central TNCO and are adjacent to the Eastern Block. In order to place new constraints on the timing of two phases of metamorphism that occurred in the complexes, combined U–Pb and rare earth element analyses were performed on zircons from different types of metamorphic rocks. Uranium–Pb zircon dating in this study shows that two groups of metamorphic ages of 1.88–1.85 Ga and 2.48–2.46 Ga were commonly recorded by metamorphic rocks in the Zanhuang and Zuoquan complexes, respectively. Our previous geochronological studies showed that metamorphic ages of c. 2.51 Ga and c. 1.90 Ga were locally recorded in the Zanhuang and Zuoquan complexes, respectively. These data indicate that metamorphic rocks in the two complexes underwent at least two phases of metamorphism, i.e., 2.51–2.46 Ga (Phase I) and 1.90–1.85 Ga (Phase II). In combination with previous studies regarding reaction microstructures, metamorphic pressure–temperature paths, and geochronology, the Phase II metamorphic ages are interpreted to be linked to the collision between the Western and Eastern Blocks along the TNCO between 1.97 Ga and 1.80 Ga, whereas the Phase I metamorphic ages, as a result of an earlier and extensive tectono-thermal event that occurred in the Eastern and Western Blocks of the NCC, were related to underplating of mantle-derived magma. It is inferred that the rocks with c. 2.51–2.46 Ga metamorphic ages in the two complexes formed in the Eastern Block and underwent regional metamorphism during that period, and then were tectonically involved in the TNCO and experienced c. 1.90–1.85 Ga metamorphism. Metamorphic peaks occurred at different crustal levels in the orogen, resulting in distinct metamorphic ages and peak conditions preserved by metamorphic rocks in the two complexes.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Dutta, Upama, Ayan Kumar Sarkar, Sadhana M. Chatterjee, Anirban Manna, Alip Roy, and Subhrajyoti Das. "Petrological implications of element redistribution during metamorphism: insights from meta-granite of the South Delhi Fold Belt, Rajasthan, India." Geological Magazine 159, no. 5 (February 23, 2022): 735–60. http://dx.doi.org/10.1017/s0016756821001345.

Повний текст джерела
Анотація:
AbstractMeta-granites of the South Delhi Fold Belt, northwestern India, contain spectacular reaction textures formed during the metamorphic replacement of primary minerals. Textural relationships imply that amphibole was replaced sequentially in two stages. Epidote + titanite + quartz symplectite formed syn-tectonically on amphibole grain boundaries/fractures, followed by post-deformational growth of euhedral garnet overprinting amphibole grains. Besides occurring as symplectite grown during deformation, titanite in this rock also developed as a post-tectonic corona around magnetite. Parent magnetite contains exsolutions of ilmenite and/or ultrafine lamellae of Ti-rich oxide (Ti-oxd). Textures involving coronal titanite suggest their formation through a magnetite + ilmenite(/Ti-oxd) + plagioclase → titanite reaction. Compositional attributes and the calculation of the gain versus loss of components during the reaction suggest that the Mn2+ for garnet (XSpss = 0.23–0.29) that grew replacing amphibole was supplied by ilmenite (Mn2+ is 0.118–0.128 apfu) as it disintegrated to form coronal titanite. The redistribution of components between the metamorphic reaction sites connects the texturally unrelated domains and suggests that these zones were in chemical equilibrium during metamorphism. We estimated the P–T conditions of metamorphism for these post-tectonic assemblages as ∼650–700 °C from pseudosection modelling and conventional thermometry. Zircon data from this study suggest that the granitic rock crystallized at 988.8 ± 8.8 Ma. We propose that the metamorphic phases replaced the primary minerals during the mid Neoproterozoic tectonic activity reported from this terrane. The syn-tectonic symplectitic assemblage formed as the temperature increased during prograde metamorphism, and the post-tectonic minerals developed at peak conditions following the cessation of deformation.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

McElhinney, Tara R., Tim J. Dempster, and Peter Chung. "The influence of microscale lithological layering and fluid availability on the metamorphic development of garnet and zircon: insights into dissolution–reprecipitation processes." Mineralogical Magazine 86, no. 1 (December 13, 2021): 9–26. http://dx.doi.org/10.1180/mgm.2021.97.

Повний текст джерела
Анотація:
AbstractThe response of garnet and zircon to prograde amphibolite-facies metamorphism in late Proterozoic mica schists from the Scottish Highlands has been investigated. Spatial analysis of zircon populations using scanning electron microscopy was undertaken in Dalradian Schists that have undergone a sequence of prograde garnet growth and localised breakdown reactions involving coupled dissolution–reprecipitation. Fluid availability and matrix permeability strongly control this metamorphic response and different generations of garnet contain radically different populations of metamorphic micro-zircon and associated changes in the detrital zircon population. Micro-zircon abundance increases during garnet growth, whereas that of detrital zircon decreases. The mineralogy of the matrix influences zircon abundance in porphyroblast phases, where garnet overgrows a micaceous matrix zircon-rich garnet forms and where it overgrows a quartzofeldspathic matrix the result is zircon-poor garnet. Following garnet growth, micro-zircon abundance decreases at each stage of the prograde reaction history, with sillimanite-zone schists containing the lowest abundance, suggesting micro-zircons are texturally less stable at staurolite- and sillimanite-grade metamorphism. Micro-zircons are distributed evenly across host minerals in the matrix, with the exception of retrograde chlorite where micro-zircons are absent due to fluids removing Zr before new zircon can precipitate. There is an overall decrease in the mode of zircon at each stage of the reaction history, indicating that zircon is a highly reactive phase during amphibolite-facies metamorphism and is very sensitive to individual prograde and retrograde reactions.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Lazzarotto, Manuele, David R. M. Pattison, Simon Gagné, and Paul G. Starr. "Metamorphic and structural evolution of the Flin Flon – Athapapuskow Lake area, west-central Manitoba." Canadian Journal of Earth Sciences 57, no. 11 (November 2020): 1269–88. http://dx.doi.org/10.1139/cjes-2019-0136.

Повний текст джерела
Анотація:
The Flin Flon – Athapapuskow Lake area, situated in the Flin Flon Greenstone Belt, Manitoba, consists of ocean-floor and island-arc assemblages, deformed and metamorphosed during the Trans-Hudson Orogeny (∼1.86–1.69 Ga). A new map of metamorphic mineral assemblages and isograds has been compiled that reveals a largely coherent regional metamorphic sequence increasing in metamorphic grade from prehnite–pumpellyite to amphibolite facies. Regional metamorphism postdates most of the deformation within the area, with the exception of the reactivation of major block-bounding faults. The regional prograde sequence has been subdivided into 10 metamorphic zones, separated by 9 isograds, that describe the transition from prehnite–pumpellyite to greenschist to amphibolite facies. The formation of contact metamorphic aureoles, pre-dating regional metamorphism, record conditions up to amphibolite facies. Equilibrium phase diagrams for the island-arc (low-Mg) and ocean-floor (high-Mg) assemblages were calculated and allow for the evaluation of the modelling techniques and determination of pressure–temperature conditions. Discrepancies between the modelling predictions and natural observations occur due to (1) limitations in the thermodynamic models for some of the complex minerals (e.g., amphibole); and (2) metastable persistence of some minerals to higher grade due to sluggish reaction kinetics. Notwithstanding these discrepancies, the modelling suggests that metamorphosed mafic rocks in the Flin Flon – Athapapuskow Lake area reached about 430–480 °C and 3.0–4.5 kbar. Peak metamorphic conditions within contact aureoles that preceded regional metamorphism did not exceed 500 °C (at a pressure between 2.7 and 4.4 kbar). The metamorphic field gradient records a transition from 250–300 °C/1.5–2.3 kbar to 430–480 °C/3–4.5 kbar (100–150 °C/kbar), defining a geothermal gradient of approximately 25–31 °C/km.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Mitchell, J. N. "A Scanning Electron Microscopic study of hematite inclusions in cordierite porphyroblasts." Proceedings, annual meeting, Electron Microscopy Society of America 44 (August 1986): 680–981. http://dx.doi.org/10.1017/s0424820100144796.

Повний текст джерела
Анотація:
Porphyroblasts are monocrystalline to polycrystalline mineral grains in metamorphic rocks that are distinctly larger than the matrix grain surrounding them. Their presence reflects the metamorphic release and rapid diffusion of their chemical components, with subsequent crystallization at limited nucleation sites. Small inclusions of other minerals are often present in porphyroblasts, especially in members of the garnet group, staurolite, and cordierite. Various hypotheses may be suggested to explain such inclusions: (1) they are relics of earlier grains, either of the protolith or of a stage of metamorphism prior to porphyroblast growth; (2) they are reaction residues of the mineral grains that decomposed to form the porphyroblasts; or (3) they are decomposition products produced from the porphyroblasts by secondary or retrograde metamorphism.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Powell, W. G., D. M. Carmichael, and C. J. Hodgson. "Conditions and timing of metamorphism in the southern Abitibi greenstone belt, Quebec." Canadian Journal of Earth Sciences 32, no. 6 (June 1, 1995): 787–805. http://dx.doi.org/10.1139/e95-067.

Повний текст джерела
Анотація:
Regional metamorphism, ranging in grade from the subgreenschist-facies to the greenschist–amphibolite-facies transition, affects all Archean supracrustal rocks (>2677 Ma) in the Rouyn–Noranda area. Contact metamorphic minerals associated with the posttectonic Preissac–Lacorne batholith (2643 Ma) show no evidence of a regional retrograde event. Accordingly, the age of regional metamorphism can be bracketed between 2677 and 2643 Ma. Three reaction isograds were mapped in subgreenschist-facies metabasites, dividing the low-grade rocks into three metamorphic zones: the pumpellyite–actinolite zone, the prehnite–pumpellyite zone, and the prehnite–epidote zone. In addition, the pumpellyite–actinolite–epidote–quartz bathograd, corresponding to a pressure of approximately 200 MPa, occurs on both sides of the Porcupine–Destor fault. Low-pressure regional metamorphism is also indicated both by the occurrence of an actinolite–oligoclase zone, and the persistence of pre-regional-metamorphic andalusite. The coincidence of andalusite and the actinolite-oligoclase zone indicates that pressure was <330 MPa at the greenschist-amphibolite transition. The geothermal gradient during metamorphism was approximately 30 °C/km. Regionally, isograds dip shallowly to the north and trend subparallel to lithological and structural trends. Metamorphic minerals in metabasites define tectonic fabrics only near major fault zones and in zones of CO2 metasomatism. In biotite zone metasedimentary rocks the schistosity is defined by mica and amphibole. These textures indicate that metamorphism and fabric development were coeval. However, the actinolite–epidote isograd cuts the Porcupine–Destor fault, indicating that regional metamorphism postdates movement along this fault. The strong fabrics associated with the Porcupine–Destor and Larder Lake–Cadillac faults must have developed through a process dominated by flattening strain.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Metamorphic reaction"

1

Corona, Juan Carlos. "An experimental investigation of the reaction glaucophane + 2 quartz = 2 albite + talc /." Diss., Online access via UMI:, 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kleine, Barbara I. "How do metamorphic fluids move through rocks? : An investigation of timescales, infiltration mechanisms and mineralogical controls." Doctoral thesis, Stockholms universitet, Institutionen för geologiska vetenskaper, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-115172.

Повний текст джерела
Анотація:
This thesis aims to provide a better understanding of the role of mountain building in the carbon cycle. The amount of CO2 released into the atmosphere due to metamorphic processes is largely unknown. To constrain the quantity of CO2 released, fluid-driven reactions in metamorphic rocks can be studied by tracking fluid-rock interactions along ancient fluid flow pathways. The thesis is divided into two parts: 1) modeling of fluid flow rates and durations within shear zones and fractures during greenschist- and blueschist-facies metamorphism and 2) the assessment of possible mechanisms of fluid infiltration into rocks during greenschist- to epidote-amphibolite-facies metamorphism and controlling chemical and mineralogical factors of reaction front propagation. On the island Syros, Greece, fluid-rock interaction was examined along a shear zone and within brittle fractures to calculate fluid flux rates, flow velocities and durations. Petrological, geochemical and thermodynamic evidence show that the flux of CO2-bearing fluids along the shear zone was 100-2000 times larger than the fluid flux in the surrounding rocks. The time-averaged fluid flow velocity and flow duration along brittle fractures was calculated by using a governing equation for one-dimensional transport (advection and diffusion) and field-based parameterization. This study shows that fluid flow along fractures on Syros was rapid and short lived. Mechanisms and controlling factors of fluid infiltration were studied in greenschist- to epidote-amphibolite-facies metabasalts in SW Scotland. Fluid infiltration into metabasaltic sills was unassisted by deformation and occurred along grain boundaries of hydrous minerals (e.g. amphibole) while other minerals (e.g. quartz) prevent fluid infiltration. Petrological, mineralogical and chemical studies of the sills show that the availability of reactant minerals and mechanical factors, e.g. volume change in epidote, are primary controls of reaction front propagation.

At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: Manuscript. Paper 3: Manuscript. Paper 4: Manuscript.

 

Стилі APA, Harvard, Vancouver, ISO та ін.
3

Mansard, Nicolas. "The role of metamorphic reactions for strain localization in the middle and lower crust : Insights from field observations and deformation experiments." Thesis, Orléans, 2019. http://www.theses.fr/2019ORLE3103.

Повний текст джерела
Анотація:
Les zones de cisaillement résultent de la localisation de la déformation dans les roches de la croûte et du manteau supérieur au cours de la déformation de la lithosphère. En accommodant une importante quantité de déformation, ces zones de cisaillement exercent un contrôle direct sur la rhéologie et la dynamique de la lithosphère. En s’appuyant sur des observations de terrain et des expériences de déformation, cette étude aspire à élargir les connaissances actuelles sur la rhéologie et le développement des zones de cisaillement. Dans cette étude, nous mettons en évidence que le comportement rhéologique des matériaux polyphasés est extrêmement sensible à la composition minéralogique, dans la mesure où de faibles variations chimiques peuvent initier la localisation de la déformation – même à faible contrainte de cisaillement – et induire de larges différences de résistance. Nos résultats exposent également la capacité dont fait preuve la déformation pour faciliter les réactions minérales, la nucléation, la formation de mélange de phases à grains fins et, inversement, comment une telle évolution des microstructures aboutit à la localisation de la déformation et à l’affaiblissement des matériaux. La composition des phases minérales, dans la mesure où elles régissent la réactivité, participe grandement à l’initiation de l’affaiblissement et à l’évolution à long terme de la résistance des zones de cisaillement. Globalement, notre étude atteste que la rhéologie des roches ne peut se résumer au comportement rhéologique des matériaux monophasés. Afin de recourir à l’utilisation de modèles rhéologiques pour prédire la résistance de la lithosphère, il semble nécessaire de prendre en compte à la fois la complexité des structures régionales (comme les zones de cisaillement) et la nature complète des roches qui les composent, notamment la rhéologie des matériaux polyphasés en présence — ou non — de la rétroaction entre la déformation et les réactions
Shear zones arise from strain localization into rocks of the crust and uppermost mantle during deformation of the lithosphere. By accommodating a large amount of strain, these shear zones have a direct control on rheology and dynamics of the lithosphere. Based on field observations and deformation experiments, this study aims at extending the current knowledge about the rheological behavior and the development of shear zones. In this study, we highlight that the rheological behavior of polyphase materials is extremely sensitive to their mineralogical composition and that small chemical variations can initiate strain localization – even at small shear strain - and induce large differences in resistance. Our results also show the ability of deformation to enhance mineral reactions, nucleation, the development of fine-grained mixed zones and, conversely, how such an evolution in microstructures eventually results in strain localization and weakening of polyphase aggregates. Phase compositions, in as much they control the reactivity, play a first-order role on both the initiation of weakening but also on the long-term evolution and strength of shear zones. Overall, our study illustrates that the rheology of rocks cannot be summarized as being controlled by monophase materials. In order to further use the rheological models as a predictive tool for lithospheric rheology, it seems essential to take into account both the complexity of regional structures (such as shear zone areas) and the complete nature of rocks that compose them, including the rheology of polyphase material in presence—or in absence—of feedback between deformation and reactions
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Cui, Xiaojun. "Numerical modeling of reactive fluid flow in the Notch Peak contact metamorphic aureole, Utah /." free to MU campus, to others for purchase, 2002. http://wwwlib.umi.com/cr/mo/fullcit?p3060092.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Worden, R. H. "Transmission electron microscopy of metamorphic reactions." Thesis, University of Manchester, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.234381.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Sonnet, Manon. "Signature géophysique du panneau plongeant alpin : analogues de terrain et modèles directs." Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS595.

Повний текст джерела
Анотація:
Des images géophysiques récentes dans les Alpes montrent une signature sismique particulière du sommet du panneau plongeant crustal à 40 km de profondeur. Une augmentation de vitesse brutale des ondes S est corrélée à une forte probabilité de présence de contraste d’interface dans la tomographie et à une conversion négative dans les données « stackée » des fonctions-récepteur. Le but de cette thèse est d’évaluer si des changements de minéralogie et de texture de la croûte continentale inférieure peuvent expliquer cette signature sismique. Pour cela, nous avons calculé les variations de vitesses sismiques « bulk », générées par les changements minéralogiques durant l’enfouissement de roches représentatives de la croûte inférieure européenne le long de profils pression-température typiques de zone de convergence. Nous avons étudié l’évolution de l’anisotropie des mêmes roches à l’échelle macroscopique en fonction de la pression et la température, à partir de mesures directes. Ces mesures ont été comparées aux calculs d’anisotropie couramment effectués à partir de cartographies d’orientations cristallographiques à l’échelle de la lame mince. Le but ultime de ces exercices est de comprendre quelles propriétés contrôlent les vitesses sismiques effectives des roches à l’échelle kilométrique. Nous avons finalement tenté de déceler, à cette dernière échelle, l’anisotropie des roches dans les données de fonctions-récepteur à partir de leur décomposition harmonique. Nous montrons que la transformation des roches du faciès des amphibolites à celui des granulites de haute pression permet d’expliquer l’augmentation de vitesse du modèle tomographique et que ce front est décalé d’une dizaine de kilomètre le long du panneau plongeant en comparaison des prédictions thermodynamiques. A travers une modélisation thermocinétique de zone de convergence, nous évaluons le profil thermique du panneau plongeant lors du passage de la subduction à la collision et expliquons ce décalage par des effets cinétiques. Les mesures directes comparées aux calculs d’anisotropie indiquent que la différence attendue entre anisotropie intrinsèque et effective est plus importante dans les roches du faciès des amphibolites, où litage et CPO se renforcent, que dans celles du faciès des granulites où l’anisotropie résulte surtout de l’anisotropie intrinsèque. A l’échelle kilométrique, la transformation amphibolite vers granulite est susceptible de s’accompagner d’une diminution de l’anisotropie, en plus d’une augmentation de vitesse. A travers la décomposition harmonique, nous montrons que la baisse de visibilité du réflecteur associé au Moho, aux stations à l’aplomb du panneau plongeant, se fait au profit de la mise en évidence d’une direction rapide intra- panneau plongeant et orientée perpendiculairement à son pendage. Puisque cette transformation est visible tant dans les données de fonctions- récepteur que dans les modèles de tomographie, nous en déduisons que l’épaisseur du front de réaction est de l’ordre du kilomètre
Recent geophysical images in the Alps show a distinctive seismic signature of the top of the crustal dipping panel at 40 km depth. A sharp increase in S-wave velocity is correlated with a high probability of interface contrast in tomography and negative conversion in stacked receiver- function data. The aim of this thesis is to assess if changes in the mineralogy and textural properties of the lower continental crust can explain this seismic signature. To this end, we calculated bulk seismic velocity variations, generated by mineralogical changes during burial of rocks representative of the European lower crust along pressure- temperature profiles typical of convergence zones. We studied the evolution of the macroscopic anisotropy of the same rocks as a function of pressure and temperature, using direct measurements. These measurements are compared with anisotropy calculations commonly performed from thin- section crystallographic orientation maps. The ultimate aim of these exercises is to understand which properties control the effective seismic velocities of rocks at kilometer scale. Finally, we have attempted to detect the anisotropy of rocks at this latter scale in receiver-function data from their harmonic decomposition. We show that the transformation of rocks from amphibolite to high-pressure granulite facies explains the increase in velocity of the tomographic model, and that this front is shifted by around ten kilometers along the slab, compared with thermodynamic predictions. Using thermokinetic modelling of convergence zones, we evaluate the thermal profile of the dipping panel during the transition from subduction to collision, and explain this offset by kinetic effects. Direct measurements compared with anisotropy calculations indicate that the expected difference between intrinsic and effective anisotropy is greater in amphibolite facies rocks, where layering and CPO are enhanced, than in granulite facies rocks, where anisotropy results mainly from intrinsic anisotropy. At kilometer scale, amphibolite-to-granulite transformation is likely to be accompanied by a decrease in anisotropy in addition to an increase in velocity. Through harmonic decomposition, we show that the reduced visibility of the Moho, at stations above the dipping panel, is to the benefit of highlighting a fast intra-slab direction oriented perpendicular to its dip. Since this transformation is visible both in the receiver-function data and in the tomography models, we deduce that the thickness of the reaction front is of the order of a kilometer
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Marchildon, Marie-France Nathalie. "Petrologic studies of process interactions in metamorphic systems, deformation and metamorphism in the Selkirk Allochthon orogenic wedge : and feedback mechanisms during reactive fluid flow." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape4/PQDD_0018/NQ48658.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Doyle, John Andrew. "Experimental study of the effect of H2O-CO2-NaCl fluid immiscibility on the reaction calcite + quartz + rutile = sphene + CO2 at 2 KBAR." Thesis, Virginia Polytechnic Institute and State University, 1989. http://hdl.handle.net/10919/53208.

Повний текст джерела
Анотація:
The minimum T-XCO₂ location of the reaction boundary calcite + quartz + rutile = sphene + CO₂ has been experimentally determined in H₂0-CO₂-NaCl fluids at 2 kbar. Extent and direction of reaction were monitored by the CO₂ weight change method using natural materials. All bulk compositions contain 23 wt. % NaCI, relative to NaCl-H₂0. Synthetic fluid inclusions trapped at the T-XCO₂ conditions of several points along the curve suggest unmixing of the fluid phase, as evidenced by coexisting CO₂ vapor-rich and aqueous, halite-bearing inclusions. Results from 450-520 °C are listed below.
Master of Science
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Lamadrid, De Aguinaco Hector M. "Geochemistry of fluid-rock processes." Diss., Virginia Tech, 2016. http://hdl.handle.net/10919/71350.

Повний текст джерела
Анотація:
When these fluids interact with the surrounding rocks, small aliquots of these fluids are trapped as imperfections in the crystal lattice and fractures of minerals. These microscopic features are called fluid and melt inclusions, and are one of the best tools available to probe, measure and determine the chemical and physical properties of crustal fluids. In the present study we examine new developments into our understanding of fluid-rock interactions using fluid and melt inclusion as tools to provide insights into the evolution of the Earth's crust from the deep continental crust to the surface. Chapter II "Raman spectroscopic characterization of H2O in CO2-rich fluid inclusions in granulite facies metamorphic rocks", is a brief review of the current understanding of granulite rocks and their formation, and a new development into our ability to characterize the composition of the fluids trapped as fluid inclusions in minerals in granulite facies rocks. Chapter III "Reassessment of the Raman CO2 densimeter", details new developments in the use of the Raman spectroscopy to characterize the density of CO2. In this chapter we describe briefly the Raman effect of CO2 and the density dependence of the Fermi diad using different Raman instruments, laser sources and gratings to understand the differences in the published data. Chapter IV "Serpentinization reaction rates measured in olivine micro-batch reactors" describes new insights into the serpentinization process by using olivine micro-reactors. The micro-reactor technique is a new experimental development that allows researchers to monitor the fluid chemistry as well as the mineral composition changes inside synthetic fluid inclusion.
Ph. D.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Pollard, Brittney Maryah. "Reactivation of fractures as discrete shear zones from fluid enhanced reaction softening, Harquahala metamorphic core complex, west-central Arizona." Thesis, 2014. http://hdl.handle.net/2152/25744.

Повний текст джерела
Анотація:
Discrete (mm- to m-scale) mylonitic shear zones in the northeastern Harquahala metamorphic core complex, Arizona, show evidence of fluid-mineral interactions catalyzing deformation and metamorphism. Many contain a deformed central epidote vein with adjacent bleached haloes and flanking paired shear zones that indicate significant fluid-rock interaction during deformation. An integration of structural and geochemical methods was employed to understand timing, metamorphic conditions, and physiochemical processes responsible for producing the discrete shear zones. Field and microstructural evidence suggest the zones initiated on antecedent fractures. Electron backscatter diffraction (EBSD) analyses show a significant coaxial contribution to the shear, and quartz deformation predominately by prism slip, along with some rhomb slip, suggesting amphibolite-facies conditions during shearing. Fourier Transform Infrared spectroscopy analyses of quartz reveal higher water contents within shear zones than within country rocks, indicating fluid infiltration synchronous with shearing. Stable isotope analyses of quartz and feldspar from mylonites are consistent with an igneous or metamorphic fluid origin. Microstructural observations suggest that the zone morphology with epidote veins, bleached haloes, and flanking discrete paired shear zones was developed predominantly from reaction softening mechanisms. The increase in deformation from bleached rock to flanking shear zones is marked by progressive modal increases in biotite and myrmekite, and modal decreases in K-feldspar, and locally epidote and titanite. Myrmekitic textures recrystallized readily and resulted in progressively greater grain size reduction of feldspar, which aided in the progressive alignment and linkage of the biotite grains, which together concentrated the deformation in bands. Volume reduction resulting from some of the metamorphic reactions may have led to a positive feedback cycle among fluid infiltration, metamorphism and deformation. U-Pb isotope analyses of syn-metamorphic titanite yield an age of ~70 Ma, suggesting the shear zones formed during cooling of the Late Cretaceous (75.5±1.3 Ma) Brown’s Canyon pluton, consistent with their top-to-the-southwest sense of shear, rather than during top-to-the-northeast directed Miocene metamorphic core complex exhumation. Petrography, EBSD analyses, and U-Pb dating of titanite from other (non-discrete) mylonites in the area imply most formed synchronously with the discrete shear zone mylonites. Only rare, scattered mylonites show features consistent with metamorphic core complex exhumation.
text
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Metamorphic reaction"

2

Thompson, Alan Bruce, and David C. Rubie, eds. Metamorphic Reactions. New York, NY: Springer New York, 1985. http://dx.doi.org/10.1007/978-1-4612-5066-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Fyfe, W. S. Metamorphic reactions and metamorphic facies. Ann Arbor, MI: University Microfilms International, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

1947-, Thompson Alan Bruce, Rubie David C, and Bayly M. Brian 1929-, eds. Metamorphic reactions: Kinetics, textures, and deformation. New York: Springer-Verlag, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

(Editor), P. J. Treloar, and P. O'Brien (Editor), eds. What Drives Metamorphism and Metamorphic Reactions (Geological Society Special Publication). Geological Society Publishing House, 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Alan Bruce Thompson Cees van Dam. Metamorphic Reactions: Kinetics, Textures, and Deformation. Springer, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Brodie, K. H., B. Bayly, D. C. Rubie, and A. B. Thompson. Metamorphic Reactions: Kinetics, Textures, and Deformation. Springer, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Vernon, R. H. Metamorphic Processes: Reactions and Microstructure Development. Springer London, Limited, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Thompson, Alan Bruce. Metamorphic Reactions: Kinetics, Textures and Deformation (Advances in Physical Geochemistry, Vol 4). Springer, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Metamorphic reaction"

1

Ridley, J. "The Effect of Reaction Enthalpy on the Progress of a Metamorphic Reaction." In Metamorphic Reactions, 80–97. New York, NY: Springer New York, 1985. http://dx.doi.org/10.1007/978-1-4612-5066-1_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ferry, J. M. "Reaction Progress: A Monitor of Fluid—Rock Interaction during Metamorphic and Hydrothermal Events." In Advances in Physical Geochemistry, 60–88. New York, NY: Springer New York, 1986. http://dx.doi.org/10.1007/978-1-4612-4896-5_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Carpenter, M. A., and A. Putnis. "Cation Order and Disorder during Crystal Growth: Some Implications for Natural Mineral Assemblages." In Metamorphic Reactions, 1–26. New York, NY: Springer New York, 1985. http://dx.doi.org/10.1007/978-1-4612-5066-1_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Wintsch, R. P. "The Possible Effects of Deformation on Chemical Processes in Metamorphic Fault Zones." In Metamorphic Reactions, 251–68. New York, NY: Springer New York, 1985. http://dx.doi.org/10.1007/978-1-4612-5066-1_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Bayly, B. "Deformation with Simultaneous Chemical Change: The Thermodynamic Basis." In Metamorphic Reactions, 269–77. New York, NY: Springer New York, 1985. http://dx.doi.org/10.1007/978-1-4612-5066-1_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Rubie, D. C., and A. B. Thompson. "Kinetics of Metamorphic Reactions at Elevated Temperatures and Pressures: An Appraisal of Available Experimental Data." In Metamorphic Reactions, 27–79. New York, NY: Springer New York, 1985. http://dx.doi.org/10.1007/978-1-4612-5066-1_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Smith, B. K. "The Influence of Defect Crystallography on Some Properties of Orthosilicates." In Metamorphic Reactions, 98–117. New York, NY: Springer New York, 1985. http://dx.doi.org/10.1007/978-1-4612-5066-1_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Tracy, R. J., and E. L. McLellan. "A Natural Example of the Kinetic Controls of Compositional and Textural Equilibration." In Metamorphic Reactions, 118–37. New York, NY: Springer New York, 1985. http://dx.doi.org/10.1007/978-1-4612-5066-1_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Brodie, K. H., and E. H. Rutter. "On the Relationship between Deformation and Metamorphism, with Special Reference to the Behavior of Basic Rocks." In Metamorphic Reactions, 138–79. New York, NY: Springer New York, 1985. http://dx.doi.org/10.1007/978-1-4612-5066-1_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Knipe, R. J., and R. P. Wintsch. "Heterogeneous Deformation, Foliation Development, and Metamorphic Processes in a Polyphase Mylonite." In Metamorphic Reactions, 180–210. New York, NY: Springer New York, 1985. http://dx.doi.org/10.1007/978-1-4612-5066-1_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Metamorphic reaction"

1

Hoisch, Thomas D., Suzanne D. Craddock, and Eric D. Kelly. "EXCESS GARNET GROWTH IN METAMORPHIC ROCKS DRIVEN BY REACTION AFFINITY ASSOCIATED WITH OVERSTEPPED REACTIONS." In GSA Annual Meeting in Seattle, Washington, USA - 2017. Geological Society of America, 2017. http://dx.doi.org/10.1130/abs/2017am-300296.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Konrad-Schmolke, Matthias. "How Well do We Know Reaction Pathways in Metamorphic Rocks?" In Goldschmidt2020. Geochemical Society, 2020. http://dx.doi.org/10.46427/gold2020.1353.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Foster, C. T. "EQUILIBRIUM....OR NOT? CLUES FROM REACTION MECHANISMS IN METAMORPHIC ROCKS." In GSA Annual Meeting in Denver, Colorado, USA - 2016. Geological Society of America, 2016. http://dx.doi.org/10.1130/abs/2016am-282558.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Banerjee, Meenakshi, Upama Dutta, Vedanta Adak, and Raima Ghosh. "PARAMETERS CHARACTERIZING INFLUENCE ON PRODUCT COMPOSITION IN METAMORPHIC REACTION: AN APPROACH USING CHEMICAL POTENTIAL DIAGRAM." In GSA Connects 2022 meeting in Denver, Colorado. Geological Society of America, 2022. http://dx.doi.org/10.1130/abs/2022am-383835.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Franke, Mees, Bastian Joachim-Mrosko, Roland Stalder, and Burkhard Schmidt. "Metamorphic reaction kinetics at "dry" and "wet" conditions in the binary MgO-SiO2 system." In Goldschmidt2022. France: European Association of Geochemistry, 2022. http://dx.doi.org/10.46427/gold2022.10913.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

van der Wijk, Volkert, Ketao Zhang, and Jian S. Dai. "Force Balance of a Spatial Metamorphic 6R Closed-Chain Linkage With Specific Kinematic Conditions." In ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/detc2016-60068.

Повний текст джерела
Анотація:
For deployable, reconfigurable, and metamorphic linkages force balance is an important property to bear the static and dynamic forces caused by the mass of each element, either due to gravity or due to inertia when moving. Force balance refers to ‘shaking force balance’ meaning that for all motion of the linkage, no dynamic reaction forces are exerted to its base and to the surroundings preventing base vibrations. This typically is an important feature in high-speed and high-precision robotic manipulation tasks. Force balance also refers to ‘static balancing with solely mass’. Since the center of mass of a force balanced linkage is stationary for all motion, a force balanced linkage is also statically balanced which means that the linkage is not affected by gravity and remains stationary in any pose without the need of actuators or brakes. This property is important for the design of, among others, large moving structures such as mobile platforms and deployable structures used in architecture. In this paper the force balance of a spatial metamorphic plano-spherical 6R closed linkage with plane symmetry is investigated. It is shown that because of its specific kinematic conditions — being pantograph relations in the projected plane — advantageous balance solutions can be found for each of the four reconfiguration modes. For specific geometric conditions on the link design also solutions are found where the links balance one another without the need of any countermass. It is also shown how an advantageous compromise force balance solution for multiple modes is found. For this purpose an approximate force balance solution was investigated. The results are compared with the general force balance solutions of a general spatial 6R closed linkage, which are also shown and explained. All balance solutions are illustrated to have realistic interpretations.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Barré, G., E. Thomassot, P. Cartigny, R. Michels, L. Truche, P. Strzerzynski, S. Guillot, C. Lorgeoux та N. Assayag. "How Multiple Sulfur Isotopes (δ33S, δ34S, δ36S) Help Unravel the Context of Thermochemical Sulfate Reaction during Metamorphic Events: Application to Subducted Evaporites from the French Alps". У First EAGE/IFPEN Conference on Sulfur Risk Management in Exploration and Production. Netherlands: EAGE Publications BV, 2018. http://dx.doi.org/10.3997/2214-4609.201802767.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Helman, Daniel. "Microtectonics and Electricity: Diffusion Rate Variabilities in Metamorphic Reactions." In Goldschmidt2022. France: European Association of Geochemistry, 2022. http://dx.doi.org/10.46427/gold2022.8554.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Fagan, T. J., and Y. Endo. "FROM METAMORPHISM IN NEW ENGLAND TO RED-OX REACTIONS IN THE SOLAR NEBULA: A LONG AND WINDING ROAD THROUGH REACTION SPACE." In 53rd Annual GSA Northeastern Section Meeting - 2018. Geological Society of America, 2018. http://dx.doi.org/10.1130/abs/2018ne-310833.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Barbato, Allison Kay, Barbara L. Dutrow, and Darrell J. Henry. "CATHODOLUMINESCENCE AND TRACE ELEMENT CHEMISTRY OF SILLIMANITE: EVIDENCE FOR MULTIPLE METAMORPHIC REACTIONS." In GSA Annual Meeting in Seattle, Washington, USA - 2017. Geological Society of America, 2017. http://dx.doi.org/10.1130/abs/2017am-299153.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Metamorphic reaction"

1

Papike, J. J., and C. K. Shearer. Cores from the Salton Sea scientific drilling program: Metamorphic reaction progress as a function of chemical and thermal environment: Final report. Office of Scientific and Technical Information (OSTI), May 1987. http://dx.doi.org/10.2172/6562428.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії