Добірка наукової літератури з теми "Metal-oxide solar cells"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Metal-oxide solar cells".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Metal-oxide solar cells"

1

Li, Shao-Sian, and Chun-Wei Chen. "Polymer–metal-oxide hybrid solar cells." Journal of Materials Chemistry A 1, no. 36 (2013): 10574. http://dx.doi.org/10.1039/c3ta11998j.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Li, Shao-Sian, Yun-Yue Lin, Wei-Fang Su, and Chun-Wei Chen. "Polymer/Metal Oxide Nanocrystals Hybrid Solar Cells." IEEE Journal of Selected Topics in Quantum Electronics 16, no. 6 (November 2010): 1635–40. http://dx.doi.org/10.1109/jstqe.2010.2040948.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Nguyen, Thanh Tai, Malkeshkumar Patel, and Joondong Kim. "All-inorganic metal oxide transparent solar cells." Solar Energy Materials and Solar Cells 217 (November 2020): 110708. http://dx.doi.org/10.1016/j.solmat.2020.110708.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sealy, Cordelia. "Metal-oxide perovskite solar cells promise stability." Materials Today 21, no. 5 (June 2018): 465. http://dx.doi.org/10.1016/j.mattod.2018.05.005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kim, Sangho, Malkeshkumar Patel, Thanh Tai Nguyen, Junsin Yi, Ching-Ping Wong, and Joondong Kim. "Si-embedded metal oxide transparent solar cells." Nano Energy 77 (November 2020): 105090. http://dx.doi.org/10.1016/j.nanoen.2020.105090.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Lee, Dong-Gun, Saemon Yoon, HyeongWoo Lee, Hyosung Choi, Jeha Kim, and Dong-Won Kang. "Semitransparent perovskite solar cells with exceptional efficiency and transmittance." Applied Physics Express 14, no. 12 (November 29, 2021): 126504. http://dx.doi.org/10.35848/1882-0786/ac3803.

Повний текст джерела
Анотація:
Abstract A general approach to developing semitransparent perovskite solar cells (ST-PSCs) is to use a transparent metal oxide to replace opaque metal electrodes. However, the performance of such solar cells, unlike that of those using evaporated metal electrodes, deteriorates due to insufficient conductivity of the metal oxide, etc. Herein, a femtosecond laser patterning method is proposed to achieve the efficiency and transparency of ST-PSCs with a typical metal electrode and facilitates the control of transmittance by varying the opening ratio. While providing average visible transmittance > 46%, a certified power conversion efficiency of 8.22% was attained, which outperformed state-of-the-art ST-PSCs reported to date.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Zhu, L., G. Shao, and J. K. Luo. "Numerical study of metal oxide heterojunction solar cells." Semiconductor Science and Technology 26, no. 8 (June 8, 2011): 085026. http://dx.doi.org/10.1088/0268-1242/26/8/085026.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Zhu, L., G. Shao, and J. K. Luo. "Numerical study of metal oxide Schottky type solar cells." Solid State Sciences 14, no. 7 (July 2012): 857–63. http://dx.doi.org/10.1016/j.solidstatesciences.2012.04.020.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Constantinou, Iordania, Nathan T. Shewmon, Chi Kin Lo, James J. Deininger, John R. Reynolds, and Franky So. "Photodegradation of Metal Oxide Interlayers in Polymer Solar Cells." Advanced Materials Interfaces 3, no. 23 (November 4, 2016): 1600741. http://dx.doi.org/10.1002/admi.201600741.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Grilli, Maria Luisa. "Metal Oxides." Metals 10, no. 6 (June 19, 2020): 820. http://dx.doi.org/10.3390/met10060820.

Повний текст джерела
Анотація:
Oxide materials in bulk and thin film form, and metal oxide nanostructures exhibit a great variety of functional properties which make them ideal for applications in solar cells, gas sensors, optoelectronic devices, passive optics, catalysis, corrosion protection, environmental protection, etc. [...]
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Metal-oxide solar cells"

1

Sun, Haiyan. "Metal oxide layer in organic solar cells." Diss., lmu, 2012. http://nbn-resolving.de/urn:nbn:de:bvb:19-147159.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Dharmadasa, Ruvini. "Studies of composite metal oxide based ETA solar cells." Thesis, Loughborough University, 2011. https://dspace.lboro.ac.uk/2134/9117.

Повний текст джерела
Анотація:
The drive to produce low cost and efficient solar cells to replace solid state silicon cells has led to the rapid growth of nanotechnology in the PV sector. The extremely thin absorber (ETA) layer solar cell is a device that relies on the use of nanostructured anodes. The very high surface area of the metal oxides enhances the efficiency of the devices by increasing light harvesting in the cell. TiO2 has been the most common material of choice in these cells. However, alternative materials such as composite electrodes ZnO/TiO2, ZnO/SnO2, ZnO/Al2O3 have been considered. These systems also have the ability to improve charge carrier separation and broaden their photoresponse region. In addition to selecting materials with the correct energetics, the morphology of the metal oxide particles plays an important role in these devices. The ability to manipulate the shape, size, and surface to volume ratio of these oxides is critical in influencing the materials chemical, electronic and optical properties. In this thesis the fabrication of composite (ZnO,SnO2) electrodes by aerosol assisted chemical vapor deposition (AACVD) was investigated. By simply varying the Zn:Sn ratio in the precursor solution, a range of (ZnO,SnO2) composite materials along with single phase ZnO and SnO2 has been fabricated. It has been found that the morphology of the deposited electrodes is highly dependent on the Zn content with electrodes with morphologies ranging from nanoplates, to nanocolumns, to highly compact structures have been deposited. The dependence of the Zn content in the deposition solution on the photoelectrochemical (PEC), optoelectronic, photon to electron conversion efficiency (APCE) and photovoltaic characterization was investigated. ETA solar cells with FTO/(ZnO,SnO2)/In2S3/PbS/PEDOT:PSS/Cgraphite/FTO structures were successfully fabricated to demonstrate the suitability of (ZnO,SnO2) anodes in these devices. This work has shown that AACVD is a useful technique for engineering the properties of semiconducting electrodes for PV applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zhu, Le. "Development of metal oxide solar cells through numerical modeling." Thesis, University of Bolton, 2012. http://ubir.bolton.ac.uk/810/.

Повний текст джерела
Анотація:
Photovoltaic (PV) devices become increasingly important due to the foreseeable energy crisis, limitation in natural fossil fuel resources and associated green-house effect caused by carbon consumption. At present, silicon-based solar cells dominate the photovoltaic market owing to the well-established microelectronics industry which provides high quality Si-materials and reliable fabrication processes. However ever increased demand for photovoltaic devices with better energy conversion efficiency at low cost drives researchers round the world to search for cheaper materials, low-cost processing, and thinner or more efficient device structures. Therefore, new materials and structures are desired to improve the performance/price ratio to make it more competitive to traditional energy. Metal Oxide (MO) semiconductors are one group of the new low cost materials with great potential for PV application due to their abundance and wide selections of properties. However, the development of MO solar cells is very limited so far mostly due to the poor materials and poor understanding of the materials and devices. This research conducts a systematic numerical investigation on MO thin film solar cells. Various MO semiconductors are used to explore different structures and combinations for solar cells; and the effects of material properties and structures are optimised for the best performances. For the ideal cases, it is found that a TiO2/CuO hetero-junction solar cell shows a conversion efficiency of ~16% with the CuO film thickness only 1.5μm. When a back surface field layer, such as Cu2O, is added at the back of this device, the open circuit voltage (VOC) can be improved by 70% without sacrificing short circuit current, resulting in a conversion efficiency of ~28%, increased by ~70% as compared to the two-layered structure. This is close to the theoretical maximum efficiency of silicon single junction solar cell, which requires a 200~400μm thickness film. Modelling also shows the alternative Schottky barrier type MO semiconductor solar cells can perform well. For an ideal Metal/CuO Schottky barrier solar cell, the conversion efficiency could be as high as ~17%, better than the TiO2/CuO hetero-junction solar cell. The effects of defects and interface states are then considered for more realistic cases as there exists vast amount of defects mostly due to oxygen/metal vacancies/interstitials in the films, and vast amount of interface states due to the large lattice mismatch of the two materials used. All defects and interface states in the solar cell layers, hetero-junction interfaces and metal/semiconductor contacts are found detrimental to the cells. For example, if the defect concentration in the CuO layer in TiO2/CuO structure is compatible to the acceptor concentration of 1x1016cm-3, the cell efficiency would be reduced dramatically to 7%. With defect concentration even as low as 1x1013cm-3, the significant VOC improvements in the TiO2/CuO/Cu2O would be reduced to an ignorable value. For interface states, they capture and recombine both electrons and hols passing through the hetero-junction interface, leading to deteriorated performance. The simulation shows that the interface states have a detrimental effect on the performance if its density is higher than 1012cm-2. However it was found that by increasing the difference of doping concentration in p-n junctions, the interface state effect minimized significantly. Furthermore, it is found the optical reflection at hetero-junction interface may induce a serious conversion efficiency loss, if the n-type semiconductors and p-type semiconductors have very different refractive indices. For some MO devices such as TiO2/CuO and ZnO/Cu2O, the reflection rate is around 5%, while for other material systems such as ZnO/Si, or ITO/Ge, the interfacial optical reflection may reach 10~30%, resulting in an efficiency loss by ~10%. It is also found that the interfacial reflection should be calculated through experimental data of refractive index at each photon frequency, rather than the dielectric constant. Otherwise, huge error may be introduced to the simulation results.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Katz, Jordan E. Okumura Mitchio Lewis Nathan Saul. "Metal oxide-based photoelectrochemical cells for solar energy conversion /." Diss., Pasadena, Calif. : California Institute of Technology, 2008. http://resolver.caltech.edu/CaltechETD:etd-10192007-190231.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Pachoumi, Olympia. "Metal oxide/organic interface investigations for photovoltaic devices." Thesis, University of Cambridge, 2014. https://www.repository.cam.ac.uk/handle/1810/246263.

Повний текст джерела
Анотація:
This thesis outlines investigations of metal oxide/organic interfaces in photo-voltaic devices. It focuses on device instabilities originating from the metal oxide layer surface sensitivity and it presents suggested mechanisms behind these in- stabilities. A simple sol-gel solution deposition technique for the fabrication of stable and highly performing transparent conducting mixed metal oxides (ZnMO) is presented. It is demonstrated that the use of amorphous, mixed metal oxides allows improving the performance and stability of interfacial charge extraction layers for organic solar cells. Two novel ternary metal oxides, zinc-strontrium- oxide (ZnSrO) and zinc-barium-oxide (ZnBaO), were fabricated and their use as electron extraction layers in inverted organic photovoltaics is investigated. We show that using these ternary oxides can lead to superior devices by: prevent- ing a dipole forming between the oxide and the active organic layer in a model ZnMO/P3HT:PCBM OPV as well as lead to improved surface coverage by a self assembled monolayer and promote a significantly improved charge separation efficiency in a ZnMO/P3HT hybrid device. Additionally a spectroscopic technique allowing a versatility of characterisa- tion for long-term stability investigations of organic solar cells is reported. A device instability under broadband light exposure in vacuum conditions for an inverted ZnSrO/PTB7:PC71BM OPV is observed. Direct spectroscopic evidence and electrical characterisation indicate the formation of the PC71BM radical an- ion associated with a loss in device performance. A charge transfer mechanism between a heavily doped oxide layer and the organic layers is suggested and dis- cussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Bhosale, R. K. "Engineered metal oxide and chalcogenide nanomaterials for sensitized solar cells and solar photoelectrochemical water splitting." Thesis(Ph.D.), CSIR-National Chemical Laboratory, Pune, 2015. http://dspace.ncl.res.in:8080/xmlui/handle/20.500.12252/2038.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Willis, Richard Lance. "Functional properties of nanocrystalline metal oxide films for dye sensitised solar cells." Thesis, Imperial College London, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.398946.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Rattanavoravipa, Thitima. "Studies on surface modification of nanostructured metal oxide for hybrid solar cells." Kyoto University, 2009. http://hdl.handle.net/2433/126414.

Повний текст джерела
Анотація:
Kyoto University (京都大学)
0048
新制・課程博士
博士(エネルギー科学)
甲第14965号
エネ博第208号
新制||エネ||46(附属図書館)
27403
UT51-2009-M879
京都大学大学院エネルギー科学研究科エネルギー基礎科学専攻
(主査)准教授 佐川 尚, 教授 八尾 健, 教授 萩原 理加
学位規則第4条第1項該当
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Berhe, Seare Ahferom. "Acceptor-sensitizers for Nanostructured Oxide Semiconductor in Excitonic Solar Cells." Thesis, University of North Texas, 2014. https://digital.library.unt.edu/ark:/67531/metadc699927/.

Повний текст джерела
Анотація:
Organic dyes are examined in photoelectrochemical systems wherein they engage in thermal (rather than photoexcited) electron donation into metal oxide semiconductors. These studies are intended to elucidate fundamental parameters of electron transfer in photoelectrochemical cells. Development of novel methods for the structure/property tuning of electroactive dyes and the preparation of nanostructured semiconductors have also been discovered in the course of the presented work. Acceptor sensitized polymer oxide solar cell devices were assembled and the impact of the acceptor dyes were studied. The optoelectronic tuning of boron-chelated azadipyrromethene dyes has been explored by the substitution of carbon substituents in place of fluoride atoms at boron. Stability of singlet exited state and level of reduction potential of these series of aza-BODIPY coumpounds were studied in order to employ them as electron-accepting sensitizers in solid state dye sensitized solar cells.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Haynes, Keith M. "Molecules and Materials for Excitonic Solar Cells Using P-type Metal Oxide Semiconductors." Thesis, University of North Texas, 2015. https://digital.library.unt.edu/ark:/67531/metadc804970/.

Повний текст джерела
Анотація:
This dissertation has two intersecting foci; firstly, the discovery of a new methodology for the growth of high surface area cuprous oxide (Cu2O) substrates. Secondly, the synthesis and characterization of electron-accepting molecules, and their incorporation into excitonic solar cells (XSCs) using the Cu2O substrates as electrodes. Increasing the surface area of the semiconductor creates more locations for charge transfer to occur thus increasing the overall efficiency of the device. Zinc oxide (ZnO) has been widely studied, and can be easily grown into many different films with high surface area morphologies. The ZnO films serve as sacrificial templates that allow us to electrochemically grow new semiconductors with the same high surface area morphologies but composed of a material having more desirable electronic properties. A polymer can be applied over the surface of the ZnO nanorod films before etching the ZnO with a weak acid, thereby leaving a polymer nanopore membrane. Cathodic electrodeposition of Cu2O into the membrane nanopores gives Cu2O nanorods. Electron-accepting dyes are designed with tethers that allow for direct attachment to metal oxide semiconductors. After soaking, the semiconductor is coated with a monolayer of a dye and then the coated semiconductor films were made into various dye-sensitized solar cells (DSCs). These cells were studied to determine the electron transport properties at the semiconductor/sensitizer/electrolyte interface.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Metal-oxide solar cells"

1

Oxide semiconductors for solar energy conversion: Titanium dioxide. Boca Raton: CRC Press, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Krumbein, Ulrich. Simulation of carrier generation in advanced silicon devices. Konstanz: Hartung-Gorre, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Nowotny, Janusz. Oxide Semiconductors for Solar Energy Conversion. Taylor & Francis Group, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Lira-Cantu, Monica. Future of Semiconductor Oxides in Next-Generation Solar Cells. Elsevier, 2017.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Korotcenkov, Ghenadii, and Monica Lira-Cantu. Future of Semiconductor Oxides in Next-Generation Solar Cells. Elsevier Science & Technology Books, 2017.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Nowotny, Janusz. Oxide Semiconductors for Solar Energy Conversion: Titanium Dioxide. Taylor & Francis Group, 2017.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Nowotny, Janusz. Oxide Semiconductors for Solar Energy Conversion: Titanium Dioxide. Taylor & Francis Group, 2016.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Nowotny, Janusz. Oxide Semiconductors for Solar Energy Conversion: Titanium Dioxide. Taylor & Francis Group, 2016.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Wolf, E. L. Applications of Graphene: An Overview. Springer London, Limited, 2014.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Wolf, E. L. Applications of Graphene: An Overview. Springer, 2014.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Metal-oxide solar cells"

1

Winter, Patrick M., Gregory M. Lanza, Samuel A. Wickline, Marc Madou, Chunlei Wang, Parag B. Deotare, Marko Loncar, et al. "Polymer–Metal Oxide Solar Cells." In Encyclopedia of Nanotechnology, 2174. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-90-481-9751-4_100674.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Tiwari, Badri N., Peter M. Krenz, Gergo P. Szakmany, Gary H. Bernstein, Alexei O. Orlov, and Wolfgang Porod. "Investigation of the Infrared Radiation Detection Mechanism for Antenna-Coupled Metal-(Oxide)-Metal Structures." In Rectenna Solar Cells, 189–208. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-3716-1_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Lokhande, V. C., C. H. Kim, A. C. Lokhande, Chandrakant D. Lokhande, and T. Ji. "Metal Oxides for Perovskite Solar Cells." In Chemically Deposited Nanocrystalline Metal Oxide Thin Films, 197–233. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68462-4_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

O'Malley, Kevin M., Hin-Lap Yip, and Alex K. Y. Jen. "Metal Oxide Interlayers for Polymer Solar Cells." In Organic Photovoltaics, 319–42. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527656912.ch10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Sauvage, Frédéric, Mohammad K. Nazeeruddin, and Michael Grätzel. "Metal-Oxide Nanoparticles for Dye-Sensitized Solar Cells." In Functional Metal Oxides, 339–83. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527654864.ch13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Chander, Subhash, and Surya Kant Tripathi. "Efficient Metal Oxide-Based Flexible Perovskite Solar Cells." In Smart and Flexible Energy Devices, 227–40. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003186755-13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Devi, Selvaraj, and Vairaperumal Tharmaraj. "Biosensor Devices Based on Metal Oxide Materials." In Metal, Metal-Oxides and Metal Sulfides for Batteries, Fuel Cells, Solar Cells, Photocatalysis and Health Sensors, 311–33. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63791-0_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Nkele, Agnes Chinecherem, Sabastine Ezugwu, Mutsumi Suguyima, and Fabian I. Ezema. "Structural and Electronic Properties of Metal Oxides and Their Applications in Solar Cells." In Chemically Deposited Nanocrystalline Metal Oxide Thin Films, 147–63. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68462-4_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Suresh, R., Claudio Sandoval, Eimmy Ramirez, K. Giribabu, R. V. Mangalaraja, and Jorge Yáñez. "Electrochemical Sensors Based on Metal Oxide and Sulfide Nanostructures." In Metal, Metal-Oxides and Metal Sulfides for Batteries, Fuel Cells, Solar Cells, Photocatalysis and Health Sensors, 285–309. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63791-0_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Dubey, Ashish, Jiantao Zai, Xuefeng Qian, and Qiquan Qiao. "Metal Oxide Nanocrystals and Their Properties for Application in Solar Cells." In Handbook of Nanomaterials Properties, 671–707. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-31107-9_28.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Metal-oxide solar cells"

1

Liu, Xiang, Fangzhou Liu, Qi Dong, Man Kwong Wong, Aleksandra B. Djurisic, Zhiwei Ren, Qian Shen, Annie Ng, Charles Surya, and Wai Kin Chan. "Metal-oxide based solar cells." In 2015 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC). IEEE, 2015. http://dx.doi.org/10.1109/edssc.2015.7285114.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Tao, Meng. "Metal Oxide Heterovalence Multijunctions for Third Generation Solar Cells." In Conference Record of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion. IEEE, 2006. http://dx.doi.org/10.1109/wcpec.2006.279415.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Johnson, Forrest, Sang Ho Song, Richard Liptak, Boris Chernomordik, and Stephen A. Campbell. "Sputtering of metal oxide tunnel junctions for tandem solar cells." In 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC). IEEE, 2013. http://dx.doi.org/10.1109/pvsc.2013.6744337.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Vomiero, A., G. Jimenez, C. Baratto, E. Comini, I. Concina, G. Faglia, M. Falasconi, et al. "Integration of metal oxide nanowires in dye sensitized solar cells." In 2009 34th IEEE Photovoltaic Specialists Conference (PVSC). IEEE, 2009. http://dx.doi.org/10.1109/pvsc.2009.5411260.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ore, Erenn, and Gehan Amaratunga. "Crystalline Silicon Heterojunction Solar Cells With Metal Oxide Window Layers." In 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC). IEEE, 2019. http://dx.doi.org/10.1109/pvsc40753.2019.8981326.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Olthof, Selina, Kai Brinkmann, Ting Hu, Klaus Meerholz, and Thoams Riedl. "Metal Oxide Layers in Perovskite Solar Cells: a Double-Edged Sword." In nanoGe Fall Meeting 2018. València: Fundació Scito, 2018. http://dx.doi.org/10.29363/nanoge.fallmeeting.2018.215.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Olthof, Selina, Kai Brinkmann, Ting Hu, Klaus Meerholz, and Thoams Riedl. "Metal Oxide Layers in Perovskite Solar Cells: a Double-Edged Sword." In nanoGe Fall Meeting 2018. València: Fundació Scito, 2018. http://dx.doi.org/10.29363/nanoge.nfm.2018.215.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ng, A., X. Liu, A. B. Djurišić, A. M. C. Ng, and W. K. Chan. "Effect of transition metal oxide anode interlayer in bulk heterojunction solar cells." In SPIE OPTO, edited by Ferechteh Hosseini Teherani, David C. Look, and David J. Rogers. SPIE, 2013. http://dx.doi.org/10.1117/12.2008297.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Huang, Jing-Shun, Yu-Hong Lin, Chen-Yu Chou, Guo-Dong Huang, Wei-Fang Su, and Ching-Fuh Lin. "Inverted Polymer Solar Cells with Paired Metal Oxide Modifications through Solution Processing." In Conference on Lasers and Electro-Optics. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/cleo.2010.cmaa6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Hossain, Mohammad Ismail. "On the potential of metal nickel oxide front contact for efficient perovskite solar cells (Conference Presentation)." In Photonics for Solar Energy Systems VIII, edited by Jan Christoph Goldschmidt, Alexander N. Sprafke, and Gregory Pandraud. SPIE, 2020. http://dx.doi.org/10.1117/12.2551661.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Metal-oxide solar cells"

1

Wang, Wenyong, Jinke Tang, Yuri Dahnovsky, Jon M. Pikal, and TeYu Chien. Quantum Dot Sensitized Solar Cells Based on Ternary Metal Oxide Nanowires. Office of Scientific and Technical Information (OSTI), November 2017. http://dx.doi.org/10.2172/1406887.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії