Добірка наукової літератури з теми "Metal-Organic Hybrid Complexes"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Metal-Organic Hybrid Complexes".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Metal-Organic Hybrid Complexes"

1

Bezombes, Jean-Philippe, Claude Chuit, Robert R. J. Corriu, and Catherine Reyé. "Organic–inorganic hybrid materials containing metal phosphine complexes." Journal of Organometallic Chemistry 643-644 (February 2002): 453–60. http://dx.doi.org/10.1016/s0022-328x(01)01489-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Li, Wenpan, Xiu Xin, Shasha Jing, Xirui Zhang, Kang Chen, Dawei Chen, and Haiyang Hu. "Organic metal complexes based on zoledronate–calcium: a potential pDNA delivery system." Journal of Materials Chemistry B 5, no. 8 (2017): 1601–10. http://dx.doi.org/10.1039/c6tb03041f.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Guo, Fang, and Javier Martí-Rujas. "Second sphere coordination of hybrid metal–organic materials: solid state reactivity." Dalton Transactions 45, no. 35 (2016): 13648–62. http://dx.doi.org/10.1039/c6dt01860b.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kamath, Amarjit, Dipu Kumar Mishra, Dhiraj Brahman, Guillaume Pilet, Biswajit Sinha та Abiral Tamang. "Poly[diaquo(1,10-phenanthroline-κ2N1:N10)(μ2-sulphato-κ2O:O′)copper(ii)]: hydrothermal synthesis, crystal structure and magnetic properties". RSC Advances 6, № 51 (2016): 46030–36. http://dx.doi.org/10.1039/c6ra03493d.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hu, Yang-Yang, Ting-Ting Zhang, Xiao Zhang, De-Chuan Zhao, Xiao-Bing Cui, Qi-Sheng Huo, and Ji-Qing Xu. "New organic–inorganic hybrid compounds constructed from polyoxometalates and transition metal mixed-organic-ligand complexes." Dalton Transactions 45, no. 6 (2016): 2562–73. http://dx.doi.org/10.1039/c5dt04413h.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Xin, Shu-Sheng, Ming-Hua Zhou, Michael A. Beckett, and Chun-Yang Pan. "Recent Advances in Crystalline Oxidopolyborate Complexes of d-Block or p-Block Metals: Structural Aspects, Syntheses, and Physical Properties." Molecules 26, no. 13 (June 22, 2021): 3815. http://dx.doi.org/10.3390/molecules26133815.

Повний текст джерела
Анотація:
Crystalline materials containing hybrid inorganic–organic metal borates (complexes with oxidoborate ligands) display a variety of novel framework building blocks. The structural aspects of these hybrid metallaoxidoborates containing Cd(II), Co(II), Cu(II), Ga(III), In(III), Mn(II), Ni(II) or Zn(II) metal centers are discussed in this review. The review describes synthetic approaches to these hybrid materials, their physical properties, their spectroscopic properties and their potential applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Liu, Yan, Yumei Zhang, Xuejian Li, Qipeng Yuan, and Hao Liang. "Self-repairing metal–organic hybrid complexes for reinforcing immobilized chloroperoxidase reusability." Chemical Communications 53, no. 22 (2017): 3216–19. http://dx.doi.org/10.1039/c6cc10319g.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Xiao, Li-Na, Chun-Xiang Zhao, Xiao-Ming Shi, Hao Zhang, Wen Wu, and Xiao-Bing Cui. "Three new compounds based on similar molybdenum–vanadium clusters and several types of copper complexes." CrystEngComm 20, no. 7 (2018): 969–77. http://dx.doi.org/10.1039/c7ce01908d.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Bhat, Satish S., Vidyanand K. Revankar, Ayesha Khan, Raymond J. Butcher, and Krishnachary Thatipamula. "Supramolecular architecture and photophysical and biological properties of ruthenium(ii) polypyridyl complexes." New Journal of Chemistry 39, no. 5 (2015): 3646–57. http://dx.doi.org/10.1039/c4nj02394c.

Повний текст джерела
Анотація:
A two-dimensional cyclic hybrid water–chloride anionic network has been structurally characterized in a metal–organic matrix. DNA interactions and the cytotoxicity of ruthenium(ii) complexes have been studied.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Zhao, De-Chuan, Yang-Yang Hu, Hong Ding, Hai-Yang Guo, Xiao-Bing Cui, Xiao Zhang, Qi-Sheng Huo, and Ji-Qing Xu. "Polyoxometalate-based organic–inorganic hybrid compounds containing transition metal mixed-organic-ligand complexes of N-containing and pyridinecarboxylate ligands." Dalton Transactions 44, no. 19 (2015): 8971–83. http://dx.doi.org/10.1039/c5dt00201j.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Metal-Organic Hybrid Complexes"

1

Kamath, Amarjit. "Hydrothermal Synthesis and Structural Characterization of Single Crystals of Metal-Organic Hybrid Complexes." Thesis, University of North Bengal, 2018. http://ir.nbu.ac.in/handle/123456789/2791.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Atoini, Youssef. "New luminescent hybrid materials : synthesis and properties." Thesis, Strasbourg, 2017. http://www.theses.fr/2017STRAF004/document.

Повний текст джерела
Анотація:
L'objectif de cette thèse est la synthèse, la caractérisation et l'étude de complexes métalliquesluminescents, en particulier de Pt (II), leurs propriétés d'agrégation en solution, mais également dansun espace confiné ainsi qu’en surface. L'incorporation de complexes de métaux de transition dans lastructure poreuse, et ainsi que leur dépôt à la surface de nanoparticules et dans un cadre métalloorganique(MOF), par greffage post-synthétique, ont été étudiés. Sont également étudiés lacorrélation entre les propriétés de films d’une série de complexes de Pt(II) avec leur morphologie,leur mobilité électronique et la simulation de leur structure auto-assemblée par diffraction auxrayons-X. Les propriétés de luminescence de complexes amphiphiles de Pt(II) sont améliorées àl’intérieur de nanoparticules de silice mesoporeuse par la création d’un d’espace confiné. Un effetsimilaire est observé par le dépôt de complexes de Pt(II) fonctionnalisés sur une surface denanoparticules d’or. La luminescence d’un cadre organométallique a été modifiée par greffage postsynthétiquede complexes d’Ir(III) et de Pt(II)
The aim of this thesis is the synthesis, characterization and investigation of luminescent metalcomplexes, and in particular of Pt(II) compounds, their aggregation properties in solution but inconfined space as well. The incorporation of transition metal complexes in porous structure, and inparticular in a metal-organic framework (MOF), by post-synthesis grafting, have been investigated.Luminescence properties of amphiphilic Pt(II) complexes were enhanced inside mesoporous silicananoparticles by the creation of a confined space. Similar effect is observed by deposition offunctionalized Pt(II) complexes on gold nanoparticles surface. Luminescence of metal organicframework was tuned by post-synthetic grafting of Ir(III) and Pt(II) complexes
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Rico, Santacruz Marisa. "Band gap control in hybrid titania photocatalysts." Doctoral thesis, Universidad de Alicante, 2014. http://hdl.handle.net/10045/42201.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Santoni, Marie-Pierre. "Polyoxométallates hybrides : vers des systèmes covalents photoactifs dans le visible." Thèse, Paris 6, 2010. http://www.theses.fr/2010PA066739.

Повний текст джерела
Анотація:
Notre projet se situe dans le contexte actuel de recherche d’énergies « propres », qui permettraient d’assurer un développement durable. Nous nous sommes intéressés à l’édification de systèmes moléculaires bio-inspirés, capables de : (i) collecter efficacement l’énergie solaire, grâce au design d’assemblages supramoléculaires multi-nucléaires photoactifs ; (ii) transférer efficacement l’énergie accumulée jusqu’au catalyseur, lequel effectue les processus multiélectroniques nécessaires à la génération des combustibles. Notre choix s’est porté sur les systèmes hybrides covalents inorganiques-organiques, à base de POMs photoactivés, dans le visible, par des complexes de métaux de transition. Dans un premier temps, nous avons étudié des chromophores dinucléaires de Ru(II) comprenant le motif électroattracteur 1,3,5-triazine pour leurs capacités de transfert d’énergie et la prolongation du temps de vie de l’état excité. Dans un deuxième temps, la nécessité d’établir une connexion covalente entre le complexe métallique et le POMs nous a amené à faire le design de ligands polydentates ditopiques de type trialkoxo, en vue d’accommoder divers cations métalliques. Nous avons ensuite étudié la complexation de divers métaux de transition sur ces nouveaux POMs. Les systèmes visés étaient soit des systèmes à transfert de charges photoinduits, soit des systèmes photocatalytiques et/ou électrocatalytiques. L’auto-assemblage des POMs, guidé par le mode de coordination du métal et la géométrie de la brique constituante POMs, a été également étudié, car il est un outil puissant dans l’assemblage de systèmes supramoléculaires multi-nucléaires photoactifs.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Santoni, Marie-Pierre. "Polyoxométallates hybrides : vers des systèmes covalents photoactifs dans le visible." Thèse, Paris 6, 2010. http://hdl.handle.net/1866/4559.

Повний текст джерела
Анотація:
Notre projet se situe dans le contexte actuel de recherche d’énergies « propres », qui permettraient d’assurer un développement durable. Nous nous sommes intéressés à l’édification de systèmes moléculaires bio-inspirés, capables de : (i) collecter efficacement l’énergie solaire, grâce au design d’assemblages supramoléculaires multi-nucléaires photoactifs ; (ii) transférer efficacement l’énergie accumulée jusqu’au catalyseur, lequel effectue les processus multiélectroniques nécessaires à la génération des combustibles. Notre choix s’est porté sur les systèmes hybrides covalents inorganiques-organiques, à base de polyoxométallates (POMs) photoactivés, dans le visible, par des complexes de métaux de transition. Dans un premier temps, nous avons étudié des chromophores dinucléaires de Ru(II) comprenant le motif électroattracteur 1,3,5-triazine, en raison de leurs capacités de transfert d’énergie et pour la prolongation du temps de vie de l’état excité du chromophore. Dans un deuxième temps, la nécessité d’établir une connexion covalente entre le complexe métallique et le POM nous a amené à faire le design de ligands polydentates ditopiques de type trialkoxo. Cette méthodologie, flexible sur le plan synthétique, nous a donné accès à une famille de POMs présentant des sites de coordination de denticité variable (de monodentate à tridentate), en vue d’accommoder divers cations métalliques. Nous avons ensuite étudié la complexation de divers métaux de transition sur ces nouveaux POMs. Les systèmes visés étaient soit des systèmes à transfert de charges photoinduits (complexation de Ru, de Re), soit des systèmes photocatalytiques (complexation de Re et Co) et/ou électrocatalytiques (complexation de Co). L’auto-assemblage des POMs, guidé par le mode de coordination du métal (tel Pd(II) ou Re(I)) et la géométrie de la brique constituante POM, a été également étudié, car il constitue un outil puissant dans l’assemblage de systèmes supramoléculaires multi-nucléaires photoactifs. Les systèmes visés sont destinés à servir de systèmes modèles dans l’édification de systèmes moléculaires à composants multiples et de matériaux hybrides multi-fonctionnels.
We are interested in the photocatalytic production of clean energy sources, such as H2, in order to ensure global sustainable development. We focused our attention on molecular bio-inspired systems, capable of : (i) efficient light harvesting, based on the careful design of multi-nuclear supramolecular photoactive units; (ii) efficient energy transfer to the catalyst, chosen for its ability to perform multi-electronic processes needed in fuels production. We chose inorganic-organic covalent hybrids, constituted of visible-photoactivated POMs by transition metal complexes. First, we designed and studied Ru(II) dinuclear complexes, based on the electrodeficient motif 1,3,5-triazine, for their energy transfer properties and extended excited-state lifetimes. Then, the covalent connection, to ensure between sub-units, compelled us to design new ditopic polydentate ligands. This flexible synthetic methodology gave access to a family of POMs presenting various types of coordination sites (from monodentate to tridentate), in order to allow complexation of different metals. Complexation studies on the new POMs were conducted and aimed at : (i) photoinduced charge transfer systems (complexation of Ru, and Re) ; (ii) photocatalytic (complexation of Re and Co) and/or electrocatalytic systems (complexation of Co). Metal-directed self-assembling of POMs (guided by Pd(II) or Re(I)) and the coordination geometry of the POMs building-block, has also been studied, as a tool in the building-up of electro- and photoactive supramolecular systems. The model systems studied will be used to design molecular multi-functional hybrid materials.
Réalisé en cotutelle, sous la direction du Pr. Bernold Hasenknopf, à l'Institut Parisien de Chimie Moléculaire, Université Pierre et Marie Curie (Paris VI, France) et dans le cadre de l'Ecole Doctorale "Physique et Chimie des Matériaux" - Spécialité Chimie Inorganique (ED397).
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Singh, Pradhumn. "Platinum group metal complexes of hybrid organochalcogen ligands and catalytic organic synthesis." Thesis, 2011. http://localhost:8080/iit/handle/2074/3708.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Raghavendra, Kumar P. "Hybrid ligands of (Te,N), (Te,Nx,Oy), (Te,N,S) and (O,N,S/P) type: designing, metal complexes and applications in organic synthesis." Thesis, 2006. http://localhost:8080/iit/handle/2074/3637.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Metal-Organic Hybrid Complexes"

1

Nakatani, Naoki, Jia-Jia Zheng, and Shigeyoshi Sakaki. "Approach of Electronic Structure Calculations to Crystal." In The Materials Research Society Series, 209–55. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-0260-6_11.

Повний текст джерела
Анотація:
AbstractNowadays, the importance of molecular crystals and solids with regular structures is increasing in both basic chemistry and applied fields. However, theoretical studies of those systems based on electronic structure theories have been limited. Although density functional theory (DFT) calculations using generalized gradient approximation type functional under periodic boundary condition is effective for such theoretical studies, we need some improvements for calculating the dispersion interaction and the excited state of crystals. Accordingly, in this chapter, two methods for calculating the electronic structures of molecular crystals are discussed: cluster-model/periodic-model (CM/PM)-combined method and quantum mechanics/periodic-molecular mechanics (QM/periodic-MM) method. In the CM/PM-combined method, an infinite crystal system is calculated by the DFT method under periodic boundary condition, and important moieties, which are represented by CMs, are calculated by either DFT method with hybrid-type functionals or wave function theories such as the Møller–Plesset second-order perturbation theory (MP2), spin-component-scaled-MP2, and coupled-cluster singles and doubles theory with perturbative triples (CCSD(T)). This method is useful for gas adsorption into crystals such as metal–organic frameworks. In the QM/periodic-MM method, an important moiety is calculated using a QM method such as the DFT method with hybrid-type functionals and wave function theories, where the effects of the crystal are incorporated into the QM calculation via the periodic MM method using a classical force field. This method is useful for theoretical studies of excited states and chemical reactions. The applications of these methods in the following processes are described in this chapter: adsorption of gas molecules on metal–organic frameworks, chemical reactions in crystals, and luminescence of the crystals of transition metal complexes. To the best of our knowledge, the theoretical calculations conducted in this chapter show one of the successful approaches of electronic structure theories to molecular crystals, because of the reasonable and practical approximations.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Matias, Tiago Araujo, Gianluca Camillo Azzellini, Lúcio Angnes, and Koiti Araki. "Supramolecular Hybrid Organic/Inorganic Nanomaterials Based on Metalloporphyrins and Phthalocyanines." In Electrochemistry of N4 Macrocyclic Metal Complexes, 1–82. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31332-0_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Higashi, Yuya, Rin Tsuchiya, Diasuke Nakane, and Takashiro Akitsu. "Crystal Structure Prediction for Powder XRD of Polymorph toward Intractable Metal Complexes." In Novelties in Schiff Bases [Working Title]. IntechOpen, 2024. http://dx.doi.org/10.5772/intechopen.114365.

Повний текст джерела
Анотація:
Originating from the challenges of using ordinary methods for determining the structure of salen-type nickel(II) complexes and the limitations of crystallography of unknown organic powders, which has not been reported for many years, this chapter mainly reviews crystal structure prediction, polymorphism, phase transitions, and the application of computational methods. It also states that new research is incorporating computational chemistry for analyzing powder XRD. In particular, we will explore the possibility of predicting polymorphic crystal structures, which are of academic and industrial interest and applying them to metal complexes and organic-inorganic hybrid materials. There are also high hopes for the recent development of electron diffraction.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Nawaz Shariff, Shakeel, Supriya Saravu, and Dileep Ramakrishna. "Schiff Base Complexes for Catalytic Application." In Schiff Base in Organic, Inorganic and Physical Chemistry [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.107904.

Повний текст джерела
Анотація:
Primary amines are combined with an aldehyde group to generate Schiff base compounds, which are called condensation imine products. This class of compounds has a general structure, R-C=NR\', where R and R\' represent alkyl/aryl/cyclohexyl/heterocyclic group. These compounds contain an azomethine group that is basic in nature due to, (i) the presence of lone pair of electrons on the nitrogen and (ii) electron-donating nature of the double bond. Hence, these compounds, as ligands, participate in the formation of metal complexes. The presence of lone pair of electrons on the nitrogen atom and the hybridization involved explains the physical, chemical, and spectral properties of nitrogen-containing moieties. In the case of (sp2) hybridization (trigonal structure), the lone pair of electrons occupies either a symmetrical unhybridized 2p orbital that is perpendicular to the plane of trigonal hybrids or a symmetrical hybrid orbital, whose axis is in the plane, leaving behind only the π-electrons in the unhybridized 2p orbital. A very similar type of hybridization is experienced by the nitrogen atom in the azomethine group. Traditional phosphine complexes of nickel, palladium, and platinum, particularly those of palladium, have played an extremely important role in the development of homogeneous catalysis. Schiff base complexes as catalysts have been studied for various organic transformations such as oxidation, epoxidation, reduction, coupling reactions, polymerization reactions, hydroformylations, and many more.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Maddalena, Lorenza, Federico Carosio, Cong Deng, Weizhao Hu, Yuan Hu, Ting Sai, and Zhengping Fang. "Green Synthesis of Organic–Inorganic Hybrid Fire Retardants." In Green Fire Retardants for Polymeric Materials, 295–355. Royal Society of Chemistry, 2023. http://dx.doi.org/10.1039/bk9781839169793-00295.

Повний текст джерела
Анотація:
This chapter presents the developments and the green synthesis of organic–inorganic hybrid fire retardants such as the self-assembly of polyelectrolytes and nanoparticles from aqueous media, the functionalization of ammonium polyphosphate (APP) by various modification methods, and the flame retardant modification of metal–organic frameworks (MOFs) and the rare-earth/transition metal complex flame retardants. They are systematically expounded from their composition to their preparation as well as their applications. For each substrate, the best performing solutions are presented for analysing the main flame retardant mechanism while also providing a general comparison in terms of properties vs. processing efficiency.
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Metal-Organic Hybrid Complexes"

1

Li, Jian. "Blue emitting square planar metal complexes for displays and lighting applications." In Organic and Hybrid Light Emitting Materials and Devices XXV, edited by Tae-Woo Lee, Franky So, and Chihaya Adachi. SPIE, 2021. http://dx.doi.org/10.1117/12.2596812.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Jenks, J. J., Ward Tegrotenhuis, Radha K. Motkuri, Brian K. Paul, and B. Peter McGrail. "A Computational and Experimental Study of Metal and Covalent Organic Frameworks Used in Adsorption Cooling." In ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels collocated with the ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/icnmm2015-48822.

Повний текст джерела
Анотація:
Metal-organic frameworks (MOFs) have recently attracted enormous interest over the past few years due to their potential applications in energy storage and gas separation. However, there have been few reports on MOFs for adsorption cooling applications. Adsorption cooling technology is an established alternative to mechanical vapor compression refrigeration systems. Adsorption cooling is an excellent alternative in industrial environments where waste heat is available. Applications also include hybrid systems, refrigeration, powerplant dry cooling, cryogenics, vehicular systems and building HVAC. Adsorption based cooling and refrigeration systems have several advantages including few moving parts and negligible power consumption. Key disadvantages include large thermal mass, bulkiness, complex controls, and low COP (0.2–0.5). We explored the use of metal organic frameworks that have very high mass loading and relatively low heats of adsorption, with certain combinations of refrigerants to demonstrate a new type of highly efficient adsorption chiller. An adsorption chiller based on MOFs suggests that a thermally-driven COP>1 may be possible with these materials, which would represent a fundamental breakthrough in performance of adsorption chiller technology. Computational fluid dynamics combined with a system level lumped-parameter model have been used to project size and performance for chillers with a cooling capacity ranging from a few kW to several thousand kW. In addition, a cost model has been developed to project manufactured cost of entire systems. These systems rely on stacked micro/mini-scale architectures to enhance heat and mass transfer. Presented herein are computational and experimental results for hydrophyilic MOFs, fluorophilic MOFs and also flourophilic Covalent-organic frameworks (COFs).
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії