Добірка наукової літератури з теми "Metabolomics (LC-MS)"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Metabolomics (LC-MS)".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Metabolomics (LC-MS)"

1

Zhou, Bin, Jun Feng Xiao, Leepika Tuli, and Habtom W. Ressom. "LC-MS-based metabolomics." Mol. BioSyst. 8, no. 2 (2012): 470–81. http://dx.doi.org/10.1039/c1mb05350g.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Wishart, David S., Leo L. Cheng, Valérie Copié, Arthur S. Edison, Hamid R. Eghbalnia, Jeffrey C. Hoch, Goncalo J. Gouveia, et al. "NMR and Metabolomics—A Roadmap for the Future." Metabolites 12, no. 8 (July 23, 2022): 678. http://dx.doi.org/10.3390/metabo12080678.

Повний текст джерела
Анотація:
Metabolomics investigates global metabolic alterations associated with chemical, biological, physiological, or pathological processes. These metabolic changes are measured with various analytical platforms including liquid chromatography-mass spectrometry (LC-MS), gas chromatography-mass spectrometry (GC-MS) and nuclear magnetic resonance spectroscopy (NMR). While LC-MS methods are becoming increasingly popular in the field of metabolomics (accounting for more than 70% of published metabolomics studies to date), there are considerable benefits and advantages to NMR-based methods for metabolomic studies. In fact, according to PubMed, more than 926 papers on NMR-based metabolomics were published in 2021—the most ever published in a given year. This suggests that NMR-based metabolomics continues to grow and has plenty to offer to the scientific community. This perspective outlines the growing applications of NMR in metabolomics, highlights several recent advances in NMR technologies for metabolomics, and provides a roadmap for future advancements.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

D’eon, Jessica C., Brian P. Lankadurai, André J. Simpson, Eric J. Reiner, David G. Poirier, Greg C. Vanlerberghe, and Myrna J. Simpson. "Cross-Platform Comparison of Amino Acid Metabolic Profiling in Three Model Organisms Used in Environmental Metabolomics." Metabolites 13, no. 3 (March 8, 2023): 402. http://dx.doi.org/10.3390/metabo13030402.

Повний текст джерела
Анотація:
Environmental metabolomics is a promising approach to study pollutant impacts to target organisms in both terrestrial and aquatic environments. To this end, both nuclear magnetic resonance (NMR)- and mass spectrometry (MS)-based methods are used to profile amino acids in different environmental metabolomic studies. However, these two methods have not been compared directly which is an important consideration for broader comparisons in the environmental metabolomics field. We compared the quantification of 18 amino acids in the tissue extracts of Daphnia magna, a common model organism used in both ecotoxicology and ecology, using both 1H NMR spectroscopy and liquid chromatography with tandem MS (LC-MS/MS). 1H NMR quantification of amino acids agreed with the LC-MS/MS quantification for 17 of 18 amino acids measured. We also tested both quantitative methods in a D. magna sub-lethal exposure study to copper and lithium. Again, both NMR and LC-MS/MS measurements showed agreement. We extended our analyses with extracts from the earthworm Eisenia fetida and the plant model Nicotiana tabacum. The concentrations of amino acids by both 1H NMR and LC-MS/MS, agreed and demonstrated the robustness of both techniques for quantitative metabolomics. These findings demonstrate the compatibility of these two analytical platforms for amino acid profiling in environmentally relevant model organisms and emphasizes that data from either method is robust for comparisons across studies to further build the knowledge base related to pollutant exposure impacts and toxic responses of diverse environmental organisms.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Emwas, Abdul-Hamid, Raja Roy, Ryan T. McKay, Leonardo Tenori, Edoardo Saccenti, G. A. Nagana Gowda, Daniel Raftery, et al. "NMR Spectroscopy for Metabolomics Research." Metabolites 9, no. 7 (June 27, 2019): 123. http://dx.doi.org/10.3390/metabo9070123.

Повний текст джерела
Анотація:
Over the past two decades, nuclear magnetic resonance (NMR) has emerged as one of the three principal analytical techniques used in metabolomics (the other two being gas chromatography coupled to mass spectrometry (GC-MS) and liquid chromatography coupled with single-stage mass spectrometry (LC-MS)). The relative ease of sample preparation, the ability to quantify metabolite levels, the high level of experimental reproducibility, and the inherently nondestructive nature of NMR spectroscopy have made it the preferred platform for long-term or large-scale clinical metabolomic studies. These advantages, however, are often outweighed by the fact that most other analytical techniques, including both LC-MS and GC-MS, are inherently more sensitive than NMR, with lower limits of detection typically being 10 to 100 times better. This review is intended to introduce readers to the field of NMR-based metabolomics and to highlight both the advantages and disadvantages of NMR spectroscopy for metabolomic studies. It will also explore some of the unique strengths of NMR-based metabolomics, particularly with regard to isotope selection/detection, mixture deconvolution via 2D spectroscopy, automation, and the ability to noninvasively analyze native tissue specimens. Finally, this review will highlight a number of emerging NMR techniques and technologies that are being used to strengthen its utility and overcome its inherent limitations in metabolomic applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Sawada, Yuji, and Masami Yokota Hirai. "INTEGRATED LC-MS/MS SYSTEM FOR PLANT METABOLOMICS." Computational and Structural Biotechnology Journal 4, no. 5 (January 2013): e201301011. http://dx.doi.org/10.5936/csbj.201301011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Rojo, David, Coral Barbas, and Francisco J. Rupérez. "LC–MS metabolomics of polar compounds." Bioanalysis 4, no. 10 (June 2012): 1235–43. http://dx.doi.org/10.4155/bio.12.100.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Fang, Zhong-Ze, and Frank J. Gonzalez. "LC–MS-based metabolomics: an update." Archives of Toxicology 88, no. 8 (April 8, 2014): 1491–502. http://dx.doi.org/10.1007/s00204-014-1234-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kim, Gyoung-Deuck, Jin Lee, and Joong-Hyuck Auh. "Metabolomic Screening of Anti-Inflammatory Compounds from the Leaves of Actinidia arguta (Hardy Kiwi)." Foods 8, no. 2 (February 1, 2019): 47. http://dx.doi.org/10.3390/foods8020047.

Повний текст джерела
Анотація:
The metabolomic screening of potential anti-inflammatory compounds in the leaves of Actinidia arguta was performed by using LC-MS/MS. Ethanol extracts were prepared, and the anti-inflammatory effects were investigated based on nitric oxide (NO) synthesis and inducible nitric oxide synthase expression in lipopolysaccharide-induced RAW 264.7 macrophages. The 75% ethanol extract showed the highest inhibitory effect on nitric oxide (NO) production, and it was further separated by in vitro bioassay-guided fractionation using preparative LC with reversed-phase column separation. Through multiple steps of fractionation, sub-fraction 1-3 was finally purified, and caffeic acid derivatives, such as caffeoylthreonic acid and danshensu (salvianic acid A), were successfully identified as key anti-inflammatory compounds by LC-MS/MS and metabolomics analyses. This is the first study identifying anti-inflammatory compounds in A. arguta (Actinidia arguta) leaves through bioassay-guided fractionation and metabolomics screening. Results of this study would be useful for the application of A. arguta leaves as a nutraceutical.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Fecke, Antonia, Nay Min Min Thaw Saw, Dipali Kale, Siva Swapna Kasarla, Albert Sickmann, and Prasad Phapale. "Quantitative Analytical and Computational Workflow for Large-Scale Targeted Plasma Metabolomics." Metabolites 13, no. 7 (July 13, 2023): 844. http://dx.doi.org/10.3390/metabo13070844.

Повний текст джерела
Анотація:
Quantifying metabolites from various biological samples is necessary for the clinical and biomedical translation of metabolomics research. One of the ongoing challenges in biomedical metabolomics studies is the large-scale quantification of targeted metabolites, mainly due to the complexity of biological sample matrices. Furthermore, in LC-MS analysis, the response of compounds is influenced by their physicochemical properties, chromatographic conditions, eluent composition, sample preparation, type of MS ionization source, and analyzer used. To facilitate large-scale metabolite quantification, we evaluated the relative response factor (RRF) approach combined with an integrated analytical and computational workflow. This approach considers a compound’s individual response in LC-MS analysis relative to that of a non-endogenous reference compound to correct matrix effects. We created a quantitative LC-MS library using the Skyline/Panorama web platform for data processing and public sharing of data. In this study, we developed and validated a metabolomics method for over 280 standard metabolites and quantified over 90 metabolites. The RRF quantification was validated and compared with conventional external calibration approaches as well as literature reports. The Skyline software environment was adapted for processing such metabolomics data, and the results are shared as a “quantitative chromatogram library” with the Panorama web application. This new workflow was found to be suitable for large-scale quantification of metabolites in human plasma samples. In conclusion, we report a novel quantitative chromatogram library with a targeted data analysis workflow for biomedical metabolomic applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Liu, Xiaoyan, Xiaoyi Tian, Shi Qinghong, Haidan Sun, Li Jing, Xiaoyue Tang, Zhengguang Guo, et al. "Characterization of LC-MS based urine metabolomics in healthy children and adults." PeerJ 10 (June 22, 2022): e13545. http://dx.doi.org/10.7717/peerj.13545.

Повний текст джерела
Анотація:
Previous studies reported that sex and age could influence urine metabolomics, which should be considered in biomarker discovery. As a consequence, for the baseline of urine metabolomics characteristics, it becomes critical to avoid confounding effects in clinical cohort studies. In this study, we provided a comprehensive lifespan characterization of urine metabolomics in a cohort of 348 healthy children and 315 adults, aged 1 to 78 years, using liquid chromatography coupled with high resolution mass spectrometry. Our results suggest that sex-dependent urine metabolites are much greater in adults than in children. The pantothenate and CoA biosynthesis and alanine metabolism pathways were enriched in early life. Androgen and estrogen metabolism showed high activity during adolescence and youth stages. Pyrimidine metabolism was enriched in the geriatric stage. Based on the above analysis, metabolomic characteristics of each age stage were provided. This work could help us understand the baseline of urine metabolism characteristics and contribute to further studies of clinical disease biomarker discovery.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Metabolomics (LC-MS)"

1

Hellmuth, Christian. "LC-MS/MS applications in Targeted Clinical Metabolomics." Diss., Ludwig-Maximilians-Universität München, 2014. http://nbn-resolving.de/urn:nbn:de:bvb:19-168254.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Elmsjö, Albert. "Selectivity in NMR and LC-MS Metabolomics : The Importance of Sample Preparation and Separation, and how to Measure Selectivity in LC-MS Metabolomics." Doctoral thesis, Uppsala universitet, Avdelningen för analytisk farmaceutisk kemi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-318296.

Повний текст джерела
Анотація:
Until now, most metabolomics protocols have been optimized towards high sample throughput and high metabolite coverage, parameters considered to be highly important for identifying influenced biological pathways and to generate as many potential biomarkers as possible. From an analytical point of view this can be troubling, as neither sample throughput nor the number of signals relates to actual quality of the detected signals/metabolites. However, a method’s selectivity for a specific signal/metabolite is often closely associated to the quality of that signal, yet this is a parameter often neglected in metabolomics. This thesis demonstrates the importance of considering selectivity when developing NMR and LC-MS metabolomics methods, and introduces a novel approach for measuring chromatographic and signal selectivity in LC-MS metabolomics. Selectivity for various sample preparations and HILIC stationary phases was compared. The choice of sample preparation affected the selectivity in both NMR and LC-MS. For the stationary phases, selectivity differences related primarily to retention differences of unwanted matrix components, e.g. inorganic salts or glycerophospholipids. Metabolites co-eluting with these matrix components often showed an incorrect quantitative signal, due to an influenced ionization efficiency and/or adduct formation. A novel approach for measuring selectivity in LC-MS metabolomics has been introduced. By dividing the intensity of each feature (a unique mass at a specific retention time) with the total intensity of the co-eluting features, a ratio representing the combined chromatographic (amount of co-elution) and signal (e.g. in-source fragmentation) selectivity is acquired. The calculated co-feature ratios have successfully been used to compare the selectivity of sample preparations and HILIC stationary phases. In conclusion, standard approaches in metabolomics research might be unwise, as each metabolomics investigation is often unique.  The methods used should be adapted for the research question at hand, primarily based on any key metabolites, as well as the type of sample to be analyzed. Increased selectivity, through proper choice of analytical methods, may reduce the risks of matrix-associated effects and thereby reduce the false positive and false negative discovery rate of any metabolomics investigation.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Gipson, Geoffrey T. Sokhansanj Bahrad. "Discovery Of discriminative LC-MS and 1H NMR metabolomics markers /." Philadelphia, Pa. : Drexel University, 2008. http://hdl.handle.net/1860/2766.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Zhou, Bin. "Computational Analysis of LC-MS/MS Data for Metabolite Identification." Thesis, Virginia Tech, 2011. http://hdl.handle.net/10919/36109.

Повний текст джерела
Анотація:
Metabolomics aims at the detection and quantitation of metabolites within a biological system. As the most direct representation of phenotypic changes, metabolomics is an important component in system biology research. Recent development on high-resolution, high-accuracy mass spectrometers enables the simultaneous study of hundreds or even thousands of metabolites in one experiment. Liquid chromatography-mass spectrometry (LC-MS) is a commonly used instrument for metabolomic studies due to its high sensitivity and broad coverage of metabolome. However, the identification of metabolites remains a bottle-neck for current metabolomic studies. This thesis focuses on utilizing computational approaches to improve the accuracy and efficiency for metabolite identification in LC-MS/MS-based metabolomic studies. First, an outlier screening approach is developed to identify those LC-MS runs with low analytical quality, so they will not adversely affect the identification of metabolites. The approach is computationally simple but effective, and does not depend on any preprocessing approach. Second, an integrated computational framework is proposed and implemented to improve the accuracy of metabolite identification and prioritize the multiple putative identifications of one peak in LC-MS data. Through the framework, peaks are likely to have the m/z values that can give appropriate putative identifications. And important guidance for the metabolite verification is provided by prioritizing the putative identifications. Third, an MS/MS spectral matching algorithm is proposed based on support vector machine classification. The approach provides an improved retrieval performance in spectral matching, especially in the presence of data heterogeneity due to different instruments or experimental settings used during the MS/MS spectra acquisition.
Master of Science
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ebshiana, Amera Abugiala A. "Brain metabolomics : a new comprehensive metabolic profiling approach to Alzheimer's disease pathology using LC-MS and GC-MS." Thesis, King's College London (University of London), 2018. https://kclpure.kcl.ac.uk/portal/en/theses/brain-metabolomics(3abd12c5-da78-4fce-b122-bfaa48b2bb09).html.

Повний текст джерела
Анотація:
Alzheimer’s disease (AD) is the most common form of dementia characterized by memory loss and other cognitive abilities that worsen overtime to interfere with daily life. AD’s incidence and financial burden is rapidly increasing worldwide. Considering brain disease pathology starts 20 years before symptoms become noticeable, detecting molecules capable of precise diagnosis of disease before development of symptoms is a priority. This thesis investigates the possibility of using metabolomics to detect AD associated metabolites and to measure the abundance of a range of small molecule metabolites in human brain to examine how these metabolites are associated with severity of AD pathology and expression of symptoms. A project plan was designed to investigate brain metabolic profiling of AD samples. Initially rat brain samples were used to develop a method capable of the coverage of a wide range of metabolites using Liquid chromatography quadrupole time of flight mass spectrometry (LC- Q-TOF-MS) combining two separation techniques reversed phase (RP) and Hydrophilic liquid chromatography (HILIC). After this, gas chromatography mass spectrometry (GC-MS) analysis was employed with the aim of developing untargeted analysis and expanding the metabolome, thus identifying new and novel AD predictor metabolites to help elucidate and understand brain metabolism. Later, a brain invial dual extraction (IVDE) method was tested and applied to plasma of control and AD groups using a multimodal strategy that combines both LC-MS and GC-MS data. Finally, human brain samples from control, asymptomatic and AD patients were analysed using the developed untargeted LC&GC-MS brain IVDE method. Results revealed unsaturated fatty acids and sphingolipid metabolism to be significantly dysregulated in the brains of patients with varying degrees of Alzheimer pathology.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

D'Urso, Gilda. "Integrated metabolomics approaches for berry fruit used in nutraceutical formulations." Doctoral thesis, Universita degli studi di Salerno, 2016. http://hdl.handle.net/10556/2225.

Повний текст джерела
Анотація:
2014 - 2015
The species under investigation during these three years of PhD course were: Fragaria ananassa, Fragaria vesca, Morus alba, Morus nigra and Myrtus communis. All these species are characterized by the production of small fruits, and all of them are plant species that can be used for the formulation of plant food supplements, in fact they are reported into the official list of Italian legislation (DM 9 luglio 2012- G.U. 21-7-2012, serie generale n. 169, and update on March 27, 2014). Some of them are recognized as traditional food products of Italian region, like Fragaria vesca, that is typical of Campania region and Myrtus communis, that is typical of Sardinia... [edited by author]
XIV n.s.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Rhönnstad, Sofie. "Biotinylation and high affinity avidin capture as a strategy for LC-MS based metabolomics." Thesis, Linköping University, Department of Physics, Chemistry and Biology, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-56771.

Повний текст джерела
Анотація:

Metabolites, small endogenous molecules existing in every living cell, tissue or organism, play a vital role for maintaining life. The collective group of all metabolites, the metabolome, is a consequence of the biochemistry and biochemical pathways that a cell or tissue uses to promote survival. Analysis of the metabolome can be done to reveal changes of specific metabolites which can be a manifestation, a reason or a consequence of for example a disease. The physical chemical diversity amongst these components is tremendous and it poses a large analytical challenge to measure and quantify all of them. Targeting sub groups of the meta­bolome such as specific functional classes has shown potential for increasing metabolite coverage. Group selective labeling with biotin-tags followed by high affinity avidin capture is a well established purification strategy for protein purification.

The purpose with this project is to explore if it is possible to transfer the avidin biotin approach to metabolomics and use this method for small mole­cules purification. Specifically, this investigation aims to see if it is achievable to make a bio­tinylation of specific functional groups, to increase the sensitivity through reduction of sample complexity in liquid chromatography mass spectrometry metabolomics analyses after high affinity avidin capture. By purifying the analyte of interest and thereby reducing the sample complexity there will be a reduction in ion suppression. The aim is to increase the analytical sensitivity through a reduction in ion suppression during liquid chromatography mass spectrometry analysis.

Delimitations have been done to only investigate the possibility to obtain a biotinylation of primary amines and amides. As model compounds phenylalanine, spermi­dine, histamine and nicotinamide have been selected.

The result from this study indicates that it is possible to increase metabolite coverage through biotin labeling followed by high affinity avidin capture. It is a gain in analytical sensitivity of selected model compounds when comparing biotinylation strategy with a control non­biotinylation approach in a complex sample. A broader study of additional model compounds and a method development of this strategy are necessary to optimize a potential future method.

Стилі APA, Harvard, Vancouver, ISO та ін.
8

Scherling, Christian. "Environmental Metabolomics - Metabolomische Studien zu Biodiversität, phänotypischer Plastizität und biotischen Wechselwirkungen von Pflanzen." Phd thesis, Universität Potsdam, 2009. http://opus.kobv.de/ubp/volltexte/2009/3241/.

Повний текст джерела
Анотація:
Ein genereller Ansatz zur Charakterisierung von biologischen Systemen bietet die Untersuchung des Metaboloms, dessen Analyse als „Metabolomics“ bezeichnet wird. “Omics”- Technologien haben das Ziel, ohne Selektionskriterien möglichst alle Bestandteile einer biologischen Probe zu detektieren (identifizieren und quantifizieren), um daraus Rückschlüsse auf nicht vorhersehbare und somit neuartige Korrelationen in biologischen Systemen zu ziehen. Ein zentrales Dogma in der Biologie besteht in der Kausalität zwischen Gen – Enzym – Metabolite. Perturbationen auf einer Ebene rufen systemische Antworten hervor, die in einem veränderten Phänotyp münden können. Metabolite sind die Endprodukte von zellulären regulatorischen Prozessen, deren Abundanz durch die Resonanz auf genetische Modifikationen oder Umwelteinflüsse zurückzuführen ist. Zudem repräsentieren Metabolite ultimativ den Phänotyp eines Organismus und haben die Fähigkeit als Biomarker zu fungieren. Die integrale Analyse verschiedenster Stoffwechselwegen wie Krebszyklus, Pentosephosphatzyklus oder Calvinzyklus offeriert die Identifikation von metabolischen Mustern. In dieser Arbeit wurden sowohl das targeted Profiling via GC-TOF-MS als auch das untargeted Profiling via GC-TOF-MS und LC-FT-MS als analytische Strategien genutzt, um biologische Systeme anhand ihrer Metabolite zu charakterisieren und um physiologische Muster als Resonanz auf endogene oder exogene Stimuli zu erkennen. Dabei standen die metabolische, phänotypische und genotypische Plastizität von Pflanzen im Fokus der Untersuchungen. Metabolische Varianzen eines Phänotyps reflektieren die genotyp-abhängige Resonanz des Organismus auf umweltbedingte Parameter (abiotischer und biotischer Stress, Entwicklung) und können mit sensitiven Metabolite Profiling Methoden determiniert werden. Diese Anwendungen haben unter anderem auch zum Begriff des „Environmental Metabolomics“ geführt. In Kapitel 2 wurde der Einfluss biotischer Interaktionen von endophytischen Bakterien auf den Metabolismus von Pappelklonen untersucht; Kapitel 3 betrachtet die metabolische Plastizität von Pflanzen im Freiland auf veränderte biotische Interaktionsmuster (Konkurrenz/Diversität/Artenzusammensetzung); Abschließend wurde in Kapitel 4 der Einfluss von spezifischen genetischen Modifikationen an Peroxisomen und den daraus resultierenden veränderten metabolischen Fluss der Photorespiration dargestellt. Aufgrund der sensitiven Analyse- Technik konnten metabolische Phänotypen, die nicht zwingend in einen morphologischen Phänotyp mündeten, in drei biologischen Systemen identifiziert und in einen stoffwechselphysiologischen Kontext gestellt werden. Die drei untersuchten biologischen Systeme – in vitro- Pappeln, Grünland- Arten (Arrhenatherion-Gesellschaft) und der Modellorganismus (Arabidopsis) – belegten anschaulich die Plastizität des Metabolismus der Arten, welche durch endogene oder exogene Faktoren erzeugt wurden.
A general approach to characterise biological systems offers the analysis of the metabolome, named “metabolomics”. “Omics”- technologies are untargeted approaches without any selection criteria which aim to detect every potential analyte in a sample in order to draw conclusions about new correlations in biological systems. A central dogma in biology is the causality between gene – enzyme – metabolite. Perturbations on one level are reflected in systemic response, which possibly result in a changed phenotype. Metabolites are end products of its gene expression and metabolism, whose abundance is determined as a resonance of genetic modifications or environmental disturbance. Furthermore metabolites represent the ultimate phenotype of an organism and are able to act as a biomarker. The integral analysis of distinct metabolic pathways like TCA, Pentose phosphate and Calvin cycle consequently leads to the identification of metabolic patterns. In this work targeted profiling via GC-TOF-MS as well as untargeted profiling via GC-TOF-MS and LC-FT-MS were used as analytical strategies to characterise biological systems on the basis of their metabolites and to identify physiological patterns as resonance of endogenic or exogenic stimuli. The focus of the investigations concentrates on the metabolic, phenotypic and genotypic plasticity of plants. Metabolic variance of a phenotype is reflected in the genotypic dependence response of an organism on environmental parameters which may be detected via sensitive metabolic profiling methods. In chapter 2 the influence of biotic interaction of endophytic bacteria on the metabolism of their poplar host was analyzed; chapter 3 explores the metabolic plasticity of field-grown grassland species as a consequence of biotic interaction pattern (competition / diversity / species composition); In conclusion, chapter 4 illustrates the influence of specific genetic modifications on peroxisomes and the consequent changed metabolic flux in the photorespiration pathway. Due to the sensitive analytic methods, metabolic phenotypes in all three biological systems could be identified and classified in a physiological context. The three biological systems – in vitro poplar plants, field-grown grassland species and the model organism Arabidopsis – demonstrate the plasticity of the metabolism of species in response to stimuli.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Parmar, D. S. "High resolution mass spectrometry based quantification in metabolomics." Thesis(Ph.D.), CSIR-National Chemical Laboratory, Pune, 2018. http://dspace.ncl.res.in:8080/xmlui/handle/20.500.12252/4562.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ghezal, Salma. "Etude métabolomique par LC-MS/MS chez Plasmodium Falciparum, parasite responsable du Paludisme." Thesis, Montpellier 2, 2014. http://www.theses.fr/2014MON20179.

Повний текст джерела
Анотація:
La forme la plus sévère de paludisme est causée par le parasite unicellulaire P. falciparum. Lors de la phase intra-érythrocytaire de son développement, P. falciparum met en place des fonctions métaboliques nécessaires à son développement dans l'érythrocyte, à sa multiplication et enfin à sa dissémination vers d'autres érythrocytes. Comprendre et élucider les structures et les dynamiques du réseau métabolique chez le parasite, permettent de découvrir de nouvelles voies métaboliques et des étapes clefs qui peuvent jouer un rôle important dans le développement du parasite. Elles permettent également de déterminer le mécanisme d'action des agents antipaludiques et de mieux comprendre les résistances associées aux traitements existants. Dans cet objectif, une approche métabolomique ciblée, utilisant la chromatographie liquide couplée à la spectrométrie de masse en tandem (LC-MS/MS) a été utilisée. Cette approche consiste en une quantification absolue de métabolites impliqués dans les voies de biosynthèse des phospholipides membranaires du parasite mais également d'autres métabolites qui reflètent son statut métabolique. Nous avons dans un premier temps, déterminé les distributions et les quantités absolues des métabolites présents dans un érythrocyte infecté par P. falciparum en comparaison avec un érythrocyte sain. Nous avons également mis en évidence les perturbations causées par cette infection sur le métabolisme de l'érythrocyte humain ainsi que les différents échanges qu'entretien le parasite avec sa cellule hôte mais également avec le milieu extracellulaire. Le métabolisme phospholipidique de Plasmodium est complexe car il possède plusieurs voies de synthèses opérant à partir de précurseurs initiaux distincts et conduisant à la synthèse d'un même produit final. Dans l'objectif d'étudier la contribution relative des différentes voies métaboliques dans la biosynthèse des phospholipides majoritaires chez P. falciparum (PC et PE), nous avons développé une approche qui consiste à incuber les érythrocytes infectés en présence de précurseurs marqués
The most severe form of malaria is caused by the single-celled parasite P. falciparum. During the intra-erythrocytic stage of its development, P. falciparum implements several metabolic functions necessary for its development in the erythrocyte, its multiplication and finally to its spread to other erythrocytes. Understand and elucidate the structures and the dynamics of the parasite's metabolic network is useful to discover new metabolic pathways and key steps that may play an important role in the development of the parasite. They also help determine the mechanism of action of antimalarial agents and better understand the resistances associated with available treatments. For this purpose, a targeted metabolomics approach, using liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used. This approach consists of an absolute quantitation of metabolites involved in the biosynthesis of membrane phospholipids of the parasite but also other metabolites that reflect its metabolic status. We initially determined the distributions and the absolute amounts of metabolites in infected erythrocytes in comparison with healthy erythrocytes. We also highlighted the disruption caused by this infection on the metabolism of the human erythrocyte and the various interactions between the parasite and its host cell as well as the extracellular medium. The phospholipids metabolism of Plasmodium is complex because it has several synthetic pathways operating from separate initial precursor and leading to the synthesis of a single end product. With the aim to study the relative contribution of these different metabolics pathways in the biosynthesis of the most important phospholipids in P. falciparum (PC and PE), we have developed an approach that involves incubation of infected erythrocytes in the presence of labeled precursors
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Metabolomics (LC-MS)"

1

Wang, Guo-dong. "LC-MS in Plant Metabolomics." In Plant Metabolomics, 45–61. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-9291-2_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Bajad, Sunil, and Vladimir Shulaev. "LC-MS-Based Metabolomics." In Methods in Molecular Biology, 213–28. Totowa, NJ: Humana Press, 2010. http://dx.doi.org/10.1007/978-1-61737-985-7_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Fujimori, Tamaki, and Kazunori Sasaki. "LC-MS-based Metabolomics." In Encyclopedia of Systems Biology, 1109–11. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9863-7_1155.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Theodoridis, Georgios A., Helen G. Gika, and Ian D. Wilson. "LC-MS-Based Nontargeted Metabolomics." In Metabolomics in Practice, 93–115. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527655861.ch5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Wang, Guo-dong. "Applications of LC-MS in Plant Metabolomics." In Plant Metabolomics, 213–26. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-9291-2_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Yao, Linxing, Amy M. Sheflin, Corey D. Broeckling, and Jessica E. Prenni. "Data Processing for GC-MS- and LC-MS-Based Untargeted Metabolomics." In High-Throughput Metabolomics, 287–99. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9236-2_18.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Artati, Anna, Cornelia Prehn, and Jerzy Adamski. "LC-MS/MS-Based Metabolomics for Cell Cultures." In Methods in Molecular Biology, 119–30. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9477-9_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Seim, Gretchen L., Emily C. Britt, and Jing Fan. "Analysis of Arginine Metabolism Using LC-MS and Isotopic Labeling." In High-Throughput Metabolomics, 199–217. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9236-2_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Zhao, Shuang, and Liang Li. "Chemical Isotope Labeling LC-MS for Metabolomics." In Advances in Experimental Medicine and Biology, 1–18. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-51652-9_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Gautam, Gaurav, Rabea Parveen, and Sayeed Ahmad. "LC-MS-based Metabolomics of Medicinal Plants." In Omics Studies of Medicinal Plants, 157–80. New York: CRC Press, 2023. http://dx.doi.org/10.1201/9781003179139-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Metabolomics (LC-MS)"

1

Lynn, Ke-Shiuan, Chun-Ju Chen, Chi En Tseng, Mei-Ling Cheng, and Wen-Harn Pan. "An Automated Identification Tool for LC-MS Based Metabolomics Studies." In 2019 International Conference on Machine Learning and Cybernetics (ICMLC). IEEE, 2019. http://dx.doi.org/10.1109/icmlc48188.2019.8949193.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Chang, Chun, Ying Liang, Juan Wang, Yongchang Sun, and Wanzhen Yao. "Metabolomic profiling differences among asthma, COPD and healthy controls: a LC-MS-based metabolomics analysis." In ERS International Congress 2019 abstracts. European Respiratory Society, 2019. http://dx.doi.org/10.1183/13993003.congress-2019.pa1701.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Nørskov, Natalja, Cecilie Kyrø, Anja Olsen, Anne Tjønneland, and Knud Erik Knudsen. "High-throughput technique – targeted LC-MS/MS method to measure enterolactone "a biomarker of healthy lifestyle" for epidemiological investigation and clinical diagnosis ." In The 1st International Electronic Conference on Metabolomics. Basel, Switzerland: MDPI, 2016. http://dx.doi.org/10.3390/iecm-1-a004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kammerer, Bernd, Daqiang Pan, Caroline Lindau, and Nils Wiedemann. "The use of mitochondrial metabolomics via combined GC/LC-MS profiling to reveal metabolic dysfunctions in sym1-deleted yeast cells." In 3rd International Electronic Conference on Metabolomics. Basel, Switzerland: MDPI, 2018. http://dx.doi.org/10.3390/iecm-3-05845.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Mak, Tytus, John B. Tyburski, John F. Kalinich, and Albert J. Fornace. "Abstract 116: A novel methodology for analyzing post-processed LC/MS metabolomics data." In Proceedings: AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010; Washington, DC. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/1538-7445.am10-116.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Abu-Reidah, Ibrahim M., Nadia Amessis-Ouchemoukh, Rosa Quirantes-Piné, Khodir Madani, and Antonio Segura-Carretero. "Characterization of phenolic compounds from Globularia alypum L. (Globulariaceae) leaves by LC-QTOF-MS2." In The 1st International Electronic Conference on Metabolomics. Basel, Switzerland: MDPI, 2016. http://dx.doi.org/10.3390/iecm-1-c007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Lezhniova, Vera Runarovna, Ekaterina Vladimirovna Martynova, Timur Il'dusovich Khaibullin, Ilnur Il'dusovich Salafutdinov, Mariia Ivanovna Markelova, Aleksandr Vladimirovich Laikov, Leonid Valentinovich Lopukhov, and Svetlana Frantsevna Khaibullina. "Seasonal changes in serum metabolite and cytokine levels in Multiple Sclerosis." In All-Russian scientific conference with International Participation. Publishing house Sreda, 2022. http://dx.doi.org/10.31483/r-102302.

Повний текст джерела
Анотація:
Multiple sclerosis (MS) is a chronic debilitating disease of unknown etiology. The disease has a seasonal exacerbation of clinical symptoms, which are frequently described in spring and summer. However, the mechanisms of such seasonal exacerbations remain unknown. In this study, we used targeted metabolomics analysis of serum samples using LC-MC/MC to determine seasonal changes in metabolites. We have found changes in multiple metabolites which differed depending on season. The ceramides, belonging to the sphingolipid pathway, were found activated in spring-summer (SS) and fall-winter (FW) MS, suggesting their central role in disease pathogenesis. Our identification of ceramide activation suggests a mechanism of neuron damage in MS which could be further investigated as therapeutic targets.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Uchiyama, N., T. Tsujimoto, R. Arai, T. Yoshitomi, T. Maruyama, Y. Yamamoto, Y. Ozeki, and T. Hakamatsuka. "Metabolomics approach for discrimination of water extracts of Citrus-type crude drugs using NMR and HR-LC-MS." In 67th International Congress and Annual Meeting of the Society for Medicinal Plant and Natural Product Research (GA) in cooperation with the French Society of Pharmacognosy AFERP. © Georg Thieme Verlag KG, 2019. http://dx.doi.org/10.1055/s-0039-3399763.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Stråvik, Mia, Olle Hartvigsson, Stefania Noerman, Anna Sandin, Agnes E. Wold, Malin Barman, and Ann-Sofie Sandberg. "LC-MS-Based Metabolomics for Dietary Biomarker Discovery in a Cohort of Pregnant and Lactating Women and Their Infants." In European Nutrition Conference. Basel Switzerland: MDPI, 2023. http://dx.doi.org/10.3390/proceedings2023091061.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Yao, Zhenzhen, Yaping Shao, and Guowang Xu. "Abstract 1839: Development of urinary pseudo-targeted LC-MS based metabolomics method and its application in hepatocellular carcinoma biomarker discovery." In Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.am2015-1839.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Metabolomics (LC-MS)"

1

Brown Horowitz, Sigal, Eric L. Davis, and Axel Elling. Dissecting interactions between root-knot nematode effectors and lipid signaling involved in plant defense. United States Department of Agriculture, January 2014. http://dx.doi.org/10.32747/2014.7598167.bard.

Повний текст джерела
Анотація:
Root-knot nematodes, Meloidogynespp., are extremely destructive pathogens with a cosmopolitan distribution and a host range that affects most crops. Safety and environmental concerns related to the toxicity of nematicides along with a lack of natural resistance sources threaten most crops in Israel and the U.S. This emphasizes the need to identify genes and signal mechanisms that could provide novel nematode control tactics and resistance breeding targets. The sedentary root-knot nematode (RKN) Meloidogynespp. secrete effectors in a spatial and temporal manner to interfere with and mimic multiple physiological and morphological mechanisms, leading to modifications and reprogramming of the host cells' functions, resulted in construction and maintenance of nematodes' feeding sites. For successful parasitism, many effectors act as immunomodulators, aimed to manipulate and suppress immune defense signaling triggered upon nematode invasion. Plant development and defense rely mainly on hormone regulation. Herein, a metabolomic profiling of oxylipins and hormones composition of tomato roots were performed using LC-MS/MS, indicating a fluctuation in oxylipins profile in a compatible interaction. Moreover, further attention was given to uncover the implication of WRKYs transcription factors in regulating nematode development. In addition, in order to identify genes that might interact with the lipidomic defense pathway induced by oxylipins, a RNAseq was performed by exposing M. javanicasecond-stage juveniles to tomato protoplast, 9-HOT and 13-KOD oxylipins. This transcriptome generated a total of 4682 differentially expressed genes (DEGs). Being interested in effectors, we seek for DEGs carrying a predicted secretion signal peptide. Among the DEGs including signal peptide, several had homology with known effectors in other nematode species, other unknown potentially secreted proteins may have a role as root-knot nematodes' effectors which might interact with lipid signaling. The molecular interaction of LOX proteins with the Cyst nematode effectors illustrate the nematode strategy in manipulating plant lipid signals. The function of several other effectors in manipulating plant defense signals, as well as lipids signals, weakening cell walls, attenuating feeding site function and development are still being studied in depth for several novel effectors. As direct outcome of this project, the accumulating findings will be utilized to improve our understanding of the mechanisms governing critical life-cycle phases of the parasitic M. incognita RKN, thereby facilitating design of effective controls based on perturbation of nematode behavior—without producing harmful side effects. The knowledge from this study will promote genome editing strategies aimed at developing nematode resistance in tomato and other nematode-susceptible crop species in Israel and the United States.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії