Добірка наукової літератури з теми "Metaboliti volatili"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Metaboliti volatili".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Metaboliti volatili"
Xu, Yaying, Changqing Zhu, Changjie Xu, Jun Sun, Donald Grierson, Bo Zhang, and Kunsong Chen. "Integration of Metabolite Profiling and Transcriptome Analysis Reveals Genes Related to Volatile Terpenoid Metabolism in Finger Citron (C. medica var. sarcodactylis)." Molecules 24, no. 14 (July 15, 2019): 2564. http://dx.doi.org/10.3390/molecules24142564.
Повний текст джерелаLu, Xinxin, Lei Zhang, Wenyue Huang, Shujiang Zhang, Shifan Zhang, Fei Li, Hui Zhang, Rifei Sun, Jianjun Zhao, and Guoliang Li. "Integrated Volatile Metabolomics and Transcriptomics Analyses Reveal the Influence of Infection TuMV to Volatile Organic Compounds in Brassica rapa." Horticulturae 8, no. 1 (January 8, 2022): 57. http://dx.doi.org/10.3390/horticulturae8010057.
Повний текст джерелаZheng, Yucheng, Pengjie Wang, Xuejin Chen, Yun Sun, Chuan Yue, and Naixing Ye. "Transcriptome and Metabolite Profiling Reveal Novel Insights into Volatile Heterosis in the Tea Plant (Camellia Sinensis)." Molecules 24, no. 18 (September 17, 2019): 3380. http://dx.doi.org/10.3390/molecules24183380.
Повний текст джерелаXiang, Nan, Hui Xie, Liuwei Qin, Min Wang, Xinbo Guo, and Wen Zhang. "Effect of Climate on Volatile Metabolism in ‘Red Globe’ Grapes (Vitis vinifera L.) during Fruit Development." Foods 11, no. 10 (May 16, 2022): 1435. http://dx.doi.org/10.3390/foods11101435.
Повний текст джерелаXiang, Nan, Yihan Zhao, Bing Zhang, Qiuming Gu, Weiling Chen, and Xinbo Guo. "Volatiles Accumulation during Young Pomelo (Citrus maxima (Burm.) Merr.) Fruits Development." International Journal of Molecular Sciences 23, no. 10 (May 18, 2022): 5665. http://dx.doi.org/10.3390/ijms23105665.
Повний текст джерелаWhiting, M. D., G. Paliyath, and D. P. Murr. "Analysis of Volatile Evolution from Scald-developing and Nondeveloping Sides of Apple Fruits." HortScience 32, no. 3 (June 1997): 457C—457. http://dx.doi.org/10.21273/hortsci.32.3.457c.
Повний текст джерелаFitria, Rizki, Djarot Sasongko Hami Seno, Bambang Pontjo Priosoeryanto, Najmah Najmah, and Waras Nurcholis. "Cytotoxic Activity of Volatile Compounds in Cymbopogon nardus’ Essential Oils." Justek : Jurnal Sains dan Teknologi 5, no. 2 (November 2, 2022): 90. http://dx.doi.org/10.31764/justek.v5i2.10194.
Повний текст джерелаKharasch, Evan D., Jesara L. Schroeder, H. Denny Liggitt, Sang B. Park, Dale Whittington, and Pamela Sheffels. "New Insights into the Mechanism of Methoxyflurane Nephrotoxicity and Implications for Anesthetic Development (Part 1)." Anesthesiology 105, no. 4 (October 1, 2006): 726–36. http://dx.doi.org/10.1097/00000542-200610000-00019.
Повний текст джерелаCozzolino, Rosaria, Matteo Stocchero, Rosa Perestrelo, and José S. Câmara. "Comprehensive Evaluation of the Volatomic Fingerprint of Saffron from Campania towards Its Authenticity and Quality." Foods 11, no. 3 (January 27, 2022): 366. http://dx.doi.org/10.3390/foods11030366.
Повний текст джерелаKiyota, H., S. Otsuka, A. Yokoyama, S. Matsumoto, H. Wada, and S. Kanazawa. "Effects of highly volatile organochlorine solvents on nitrogen metabolism and microbial counts." Soil and Water Research 7, No. 3 (July 10, 2012): 109–16. http://dx.doi.org/10.17221/30/2011-swr.
Повний текст джерелаДисертації з теми "Metaboliti volatili"
Andreola, Diego <1991>. "Elaborazione di un metodo di analisi per la determinazione di metaboliti volatili che consentono l'individuazione in fase precoce della presenza di muffe in ambienti chiusi mediante GC-MS e desorbimento termico." Master's Degree Thesis, Università Ca' Foscari Venezia, 2018. http://hdl.handle.net/10579/12137.
Повний текст джерелаHess, Joerg. "Modelling the transport of volatile metabolites in the mouth." Thesis, University of the West of England, Bristol, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.490457.
Повний текст джерелаEl-Kader, M. S. A. M. A. "Production of Volatile Secondry Metabolites in Plant Tissue Cultures." Thesis, University of Manchester, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.503643.
Повний текст джерелаTuron, Violette. "Coupling dark fermentation with microalgal heterotrophy : influence of fermentation metabolites mixtures, light, temperature and fermentation bacteria on microalgae growth." Thesis, Montpellier, 2015. http://www.theses.fr/2015MONTS201/document.
Повний текст джерелаGrowing microalgae in heterotrophic mode present several advantages over autotrophic mode such as a higher productivity in terms of biomass and lipids for biofuels production. Nevertheless, this process is limited by the production cost associated with the organic substrate (i.e. glucose) and fermenters sterilization costs. Dark fermentation effluents, mainly composed of acetate and butyrate, could be used as a low-cost medium to grow microalgae heterotrophically or mixotrophically. The aims of this PhD were i) to optimize microalgae growth on various mixtures of fermentations metabolites using the presence or absence light and different cultivation temperatures and ii) to assess the feasibility of using unsterilized fermentation effluents. First, a model based on mass balance was built to characterize heterotrophic growth rates and yields when Chlorella sorokiniana and Auxenochlorella protothecoides were supplemented with different mixtures of acetate and butyrate. Results showed that the acetate:butyrate ratio and the butyrate concentration per se were two key parameters for promoting heterotrophic growth. Then, further studies showed that the presence of light and the use of suboptimal temperature (30 °C) could reduce the butyrate inhibition on growth by either triggering autotrophic production of biomass or enhancing growth on acetate. Finally, it was shown that microalgae could outcompete fermentation bacteria for acetate when growing on raw dark fermentation effluents, thanks to a fast algal growth on acetate (1.75 d-1) and a drastic change of culture conditions to the detrimental of bacterial growth
Cheung, William Hon Kit. "Metabolic profiling of volatile organic compounds and enhanced vibrational spectroscopy." Thesis, University of Manchester, 2011. https://www.research.manchester.ac.uk/portal/en/theses/metabolic-profiling-of-volatile-organic-compounds-and-enhanced-vibrational-spectroscopy(adcff7c7-96e3-4b5a-8d77-4a943b75f211).html.
Повний текст джерелаBerrou, Kevin. "Développement d’outils innovants pour l'étude de l’infection chronique." Thesis, Nîmes, 2019. http://www.theses.fr/2019NIME0001.
Повний текст джерелаOne of the major challenges in the management of diabetic foot wounds is to obtain information to anticipate the evolution of these infections. Currently, there are no sufficiently effective tools to distinguish a colonized wound to an infected wound. The proposed approach is based on the discrimination of several bacteria frequently found in chronic diabetic foot wounds from their metabolic profile, and more specifically the volatile metabolites they produce. Indeed, the dynamism of bacterial metabolism would be able to highlight the changes that are occurring in the wound. First, a new methodology for the concentration of volatile metabolites by Stir Bar Sorptive Extraction (SBSE) was developed. It is based on the use of stir bars that are placed both in the culture medium and in headspace, followed by GC-MS analysis. The method was then compared with another concentration method using the fibres (SPME) and we highlighted a better concentration capacity with a more sensitive detection. This methodology was then used to monitor the metabolic production of six bacterial strains grown under conditions mimicking the chronic wound. Their metabolic profile allowed us to distinguish bacterial species. Moreover, more surprisingly, it was possible to distinguish two strains of Staphylococcus aureus with different virulence profiles. Finally, a co-culture was performed and we showed that 83% of the metabolites produced in simple culture were found, proving the interest of the methodology to distinguish bacterial strains of the same species within a wound
Sohrabi, Mohsen. "Oral Microbiota and their Volatile Metabolites in Oral Squamous Cell Carcinoma." Thesis, Griffith University, 2016. http://hdl.handle.net/10072/366691.
Повний текст джерелаThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Medical Science
Griffith Health
Full Text
Moalemiyan, Mitra. "Volatile metabolic profiling to detect and discriminate diseases of mango fruit." Thesis, McGill University, 2005. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=97971.
Повний текст джерелаRobert-Hazotte, Aline. "Impact du métabolisme des molécules odorantes sur la perception olfactive chez l'Homme." Thesis, Bourgogne Franche-Comté, 2018. http://www.theses.fr/2018UBFCK073.
Повний текст джерелаThe sense of smell permits the perception of volatile substances commonly known as odors. This sense plays an important role in the feeding and wellness of individuals because it involves exchanges with their environment (search for food or partners, predators detection…). The efficiency of the olfactory system mainly relies on its sensitivity depending on the odorant affinity for their olfactory receptors but also on an enzymatic clearance mechanism of odorants which involves the Odorant metabolizing Enzymes (OME) to avoid the saturation of the receptors. Recent studies have shown that the biotransformation of odorants by EMO, in the olfactory epithelium, participates in the olfactory perception. Indeed, OME catalyse the deactivation of the odorants and their subsequent elimination which led to the termination of the olfactory signal. In this context, this work aims to provide a better understanding of the enzymatic mechanisms of the OME in mammal olfactory perception and to study more specifically these mechanisms in human.The first axis of this work, based on physicochemical analysis, has consisted to develop an innovative proton transfer reaction mass spectrometry technique (PTR-MS) to allow the analysis in real time of the odorants biotransformation by OME. This technique was first applied ex vivo using rats and rabbits olfactory epithelium and olfactory mucus but also in vivo directly inside the human nasal cavity. Thus, we have demonstrated that the olfactory biotransformation of odorants catalyzed by different enzymes like glutathione transferases, carboxylesterases and dicarbonyl xylulose reductases (DCXR), is a very fast mechanism (few milliseconds). This very high velocity is perfectly consistent with the physiological dynamics of the olfactory process. Moreover, PTR-MS analyzes revealed that the odorants biotransformation could produce volatile metabolites with odorous properties which could participate in the global olfactory perception by interacting also with olfactory receptors. These various metabolites have been formally identified by a gas chromatography-mass spectrometry technique (GC-MS).The second axis, based on psychophysical method, evaluated the impact of the odorant metabolism in the human olfactory perception. For this purpose, an original approach recently developed in the lab, consisting of the modulation of the olfactory perception through a competition between odorants metabolized by the same EMO was transposed from the rabbit model to the human. The metabolic competition between several diketones toward DCXR was first demonstrated by biochemical analysis using the corresponding human recombinant enzyme. Then, an olfactometric study carried out on a 40 subjects panel demonstrated that this competition mechanism between odorants induces modulations of the biotransformation of these molecules and thus leads to modifications of their relative bioavailability and in fine of their perception. These new and significant results demonstrate that modulations impacting odorants metabolism leads immediately to changes in their olfactory perception. This thesis highlights on the function of EMO in mammals and reveals for the first time in human a significant role of the odorant metabolism in olfactory perception
Bahroun, Najat. "Detection of Salmonella in food samples using exogenous volatile organic compound metabolites." Thesis, Northumbria University, 2017. http://nrl.northumbria.ac.uk/32550/.
Повний текст джерелаКниги з теми "Metaboliti volatili"
Sayyed, R. Z., and Virgilio Gavicho Uarrota, eds. Secondary Metabolites and Volatiles of PGPR in Plant-Growth Promotion. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-07559-9.
Повний текст джерелаSmith, Neil A. Metabolism of dimethyl disulphide, carbon disulphide and other volatile sulphur compounds by chemolithoautotrophic sulphur bacteria. [s.l.]: typescript, 1988.
Знайти повний текст джерелаH, Cummings John, Rombeau John L, and Sakata Takashi, eds. Physiological and clinical aspects of short-chain fatty acids. Cambridge: Cambridge University Press, 1995.
Знайти повний текст джерелаKrupke, Oliver A. The significance of volatile antifungal metabolites produced by trichomerma harzianum biotype Th4, in green-mould disease of commercial mushroom crops. St. Catharines, Ont: Brock University, Dept. of Biological Sciences, 2001.
Знайти повний текст джерелаVolatiles and Metabolites of Microbes. Elsevier, 2021. http://dx.doi.org/10.1016/c2020-0-00302-6.
Повний текст джерелаVolatiles and Metabolites of Microbes. Elsevier Science & Technology, 2021.
Знайти повний текст джерелаSingh, Joginder, Ajay Kumar, and Jastin Samuel. Volatiles and Metabolites of Microbes. Elsevier Science & Technology Books, 2021.
Знайти повний текст джерелаSecondary Metabolites and Volatiles of PGPRs in Plant-Growth Promotion. Springer International Publishing AG, 2022.
Знайти повний текст джерелаTraul, David E., and Rachel Diehl. Supratentorial Tumors. Edited by David E. Traul and Irene P. Osborn. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780190850036.003.0001.
Повний текст джерелаVairappan, Charles S. Ecological Chemicals as Ecosystem Function Mediaters and Potential Lead Pharmaceuticals. UMS Press, 2021. http://dx.doi.org/10.51200/ecologicalchemicalsumspress2021-978-967-2962-94-6.
Повний текст джерелаЧастини книг з теми "Metaboliti volatili"
Blanck, T. J. J., and E. S. Casella. "Interaction of Volatile Anesthetics with Calcium-Sensitive Sites in the Myocardium." In Cell Calcium Metabolism, 581–91. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4684-5598-4_60.
Повний текст джерелаSalwan, Richa, Nidhi Rialch, and Vivek Sharma. "Bioactive Volatile Metabolites of Trichoderma: An overview." In Secondary Metabolites of Plant Growth Promoting Rhizomicroorganisms, 87–111. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-5862-3_5.
Повний текст джерелаHempel, V., W. Heipertz, H.-V. Gärtner, and M. Schmelzle. "Metabolism and Acute Toxicity of Volatile Anesthetics." In Inhalation Anesthetics, 41–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-71232-6_6.
Повний текст джерелаLiu, Yu, Li Zou, and Choon Nam Ong. "Untargeted Metabolomic Analysis of Nonvolatile and Volatile Glucosinolates in Brassicaceae." In Plant Secondary Metabolism Engineering, 219–29. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2185-1_18.
Повний текст джерелаLauritsen, F. R., and D. Lloyd. "Direct Detection of Volatile Metabolites Produced by Microorganisms." In Mass Spectrometry for the Characterization of Microorganisms, 91–106. Washington, DC: American Chemical Society, 1993. http://dx.doi.org/10.1021/bk-1994-0541.ch007.
Повний текст джерелаWüst, Matthias. "Advances in the Analysis of Volatile Isoprenoid Metabolites." In Biotechnology of Isoprenoids, 201–13. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/10_2014_278.
Повний текст джерелаWheatley, Ron E. "The Role of Soil Microbial Volatile Products in Community Functional Interactions." In Secondary Metabolites in Soil Ecology, 269–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-74543-3_13.
Повний текст джерелаRoze, Ludmila V., Randolph M. Beaudry, and John E. Linz. "Analysis of Volatile Compounds Emitted by Filamentous Fungi Using Solid-Phase Microextraction-Gas Chromatography/Mass Spectrometry." In Fungal Secondary Metabolism, 133–42. Totowa, NJ: Humana Press, 2012. http://dx.doi.org/10.1007/978-1-62703-122-6_9.
Повний текст джерелаLemfack, Marie-Chantal, Hubert Bahl, Birgit Piechulla, and Nancy Magnus. "The Domain of Bacteria and Their Volatile Metabolic Potential." In Bacterial Volatile Compounds as Mediators of Airborne Interactions, 1–38. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-7293-7_1.
Повний текст джерелаIbdah, Mwafaq, Andrew Muchlinski, Mossab Yahyaa, Bhagwat Nawade, and Dorothea Tholl. "Carrot Volatile Terpene Metabolism: Terpene Diversity and Biosynthetic Genes." In The Carrot Genome, 279–93. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-03389-7_16.
Повний текст джерелаТези доповідей конференцій з теми "Metaboliti volatili"
Jurjevic, Z., G. Rains, D. Wilson, M. Tertuliano, J. Tomberlin, and W. Lewis. "86. Volatile Metabolites Associated with Aflatoxigenic and Nontoxigenic Strains of." In AIHce 2006. AIHA, 2006. http://dx.doi.org/10.3320/1.2758993.
Повний текст джерелаVrignaud, Marjorie, Zoe Buniazet, Pierre R. Marcoux, Jean Hue, Isabelle Texier-Nogues, and Florence Ricoul. "Functionalized nanoporous materials for volatile metabolites monitoring with direct optical transduction." In 2014 IEEE Sensors. IEEE, 2014. http://dx.doi.org/10.1109/icsens.2014.6985154.
Повний текст джерелаAbdullah, Azian Azamimi, Nur Najwa Amrahuddin, and Shigehiko Kanaya. "In silico prediction of biological activity of volatile metabolite using deep learning algorithm." In INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING (ICoBE 2021). AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0111582.
Повний текст джерелаMartin, J., and P. Gao. "145. Volatile Metabolites Produced by Stachybotrys Chartarum on Rice and Gypsum Board." In AIHce 2000. AIHA, 2000. http://dx.doi.org/10.3320/1.2763472.
Повний текст джерелаChaskes, Mark B., Young E. Lee, Elina Toskala, Gurston Nyquist, Bruce Kimball, and Mindy Rabinowitz. "Unique Volatile Metabolite Signature of Sinonasal Inverted Papilloma Detectible in Plasma and Nasal Secretions." In 31st Annual Meeting North American Skull Base Society. Georg Thieme Verlag KG, 2022. http://dx.doi.org/10.1055/s-0042-1743698.
Повний текст джерелаVashisht, Gaurav, Kantida Koysombat, Rachael Hough, Lauren Lett, Sherry Browne, Naomi Lloyd, and Chris Probert. "PWE-125 Effect of turmeric on the faecal volatile organic metabolites in healthy individuals." In British Society of Gastroenterology, Annual General Meeting, 4–7 June 2018, Abstracts. BMJ Publishing Group Ltd and British Society of Gastroenterology, 2018. http://dx.doi.org/10.1136/gutjnl-2018-bsgabstracts.359.
Повний текст джерелаFinnegan, Jason, Bridget Peterkin, Hee-Chan Han, Jennifer M. Yentes, Stephen I. Rennard, and Eric J. Markvicka. "Wireless, Battery Free Wearable Electronic Nose." In 2022 Design of Medical Devices Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/dmd2022-1038.
Повний текст джерелаKistenev, Yu V., A. V. Shapovalov, A. V. Borisov, and A. I. Knyazkova. "Possibilities of laser spectroscopy for monitoring the profile dynamics of the volatile metabolite in exhaled air." In XXII International Symposium Atmospheric and Ocean Optics. Atmospheric Physics, edited by Gennadii G. Matvienko and Oleg A. Romanovskii. SPIE, 2016. http://dx.doi.org/10.1117/12.2249144.
Повний текст джерелаCalalb, Tatiana, Cornelia Fursenco, Maria Gonceariuc, and Violeta Butnaras. "Studiul microscopic al trihomilor glandulari și nonglandulari la genotipuri de Lavandula Angustifolia Mill. ssp. Angustifolia." In International Scientific Symposium "Plant Protection – Achievements and Prospects". Institute of Genetics, Physiology and Plant Protection, Republic of Moldova, 2020. http://dx.doi.org/10.53040/9789975347204.63.
Повний текст джерелаMitsubayashi, Kohji, Po-Jen Chien, Ming Ye, Takuma Suzuki, Koji Toma, and Takahiro Arakawa. "Fluorometric biosniffer (biochemical gas sensor) for breath acetone as a volatile indicator of lipid metabolism." In SPIE BioPhotonics Australasia, edited by Mark R. Hutchinson and Ewa M. Goldys. SPIE, 2016. http://dx.doi.org/10.1117/12.2244660.
Повний текст джерелаЗвіти організацій з теми "Metaboliti volatili"
Galili, Gad, Harry J. Klee, and Asaph Aharoni. Elucidating the impact of enhanced conversion of primary to secondary metabolism on phenylpropanoids secondary metabolites associated with flavor, aroma and health in tomato fruits. United States Department of Agriculture, January 2012. http://dx.doi.org/10.32747/2012.7597920.bard.
Повний текст джерелаAharoni, Asaph, Zhangjun Fei, Efraim Lewinsohn, Arthur Schaffer, and Yaakov Tadmor. System Approach to Understanding the Metabolic Diversity in Melon. United States Department of Agriculture, July 2013. http://dx.doi.org/10.32747/2013.7593400.bard.
Повний текст джерелаIbdah, Mwafaq, Dorothea Tholl, and Philipp W. Simon. How temperature stress changes carrot flavor: Elucidating the genetic determinants of undesired taste in carrots. United States Department of Agriculture, January 2014. http://dx.doi.org/10.32747/2014.7598171.bard.
Повний текст джерелаKleman, Isabella. Onion storage diseases and their headspace volatiles. Faculty of Landscape Architecture, Horticulture and Crop Production Science, Swedish University of Agricultural Sciences, 2023. http://dx.doi.org/10.54612/a.602791tdo5.
Повний текст джерелаDudareva, Natalia, Alexander Vainstein, Eran Pichersky, and David Weiss. Integrating biochemical and genomic approaches to elucidate C6-C2 volatile production: improvement of floral scent and fruit aroma. United States Department of Agriculture, September 2007. http://dx.doi.org/10.32747/2007.7696514.bard.
Повний текст джерелаEyal, Yoram, Gloria Moore, and Efraim Lewinsohn. Study and Manipulation of the Flavanoid Biosynthetic Pathway in Citrus for Flavor Engineering and Seedless Fruit. United States Department of Agriculture, October 2003. http://dx.doi.org/10.32747/2003.7570547.bard.
Повний текст джерела