Добірка наукової літератури з теми "MESOPOROUS ZNO"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "MESOPOROUS ZNO".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "MESOPOROUS ZNO"
Xu, Hang, Tianlong Yu, and Yi Liu. "Characteristics and Performance of Nanozinc Oxide/Mesoporous Silica Gel Photocatalytic Composite Prepared by a Sol-Gel Method." Journal of Nanomaterials 2015 (2015): 1–5. http://dx.doi.org/10.1155/2015/154865.
Повний текст джерелаPourdayhimi, Parisa, Pei Wen Koh, Hadi Nur, and Siew Ling Lee. "Highly Crystalline Zinc Oxide/Mesoporous Hollow Silica Composites Synthesized at Low Temperature for the Photocatalytic Degradation of Sodium Dodecylbenzenesulfonate." Australian Journal of Chemistry 72, no. 4 (2019): 252. http://dx.doi.org/10.1071/ch18175.
Повний текст джерелаHong, Min-Hee, Chang-Sun Park, Sangwoo Shin, Hyung Hee Cho, Won-Seon Seo, Young Soo Lim, Jung-Kun Lee, and Hyung-Ho Park. "Effect of Surfactant Concentration Variation on the Thermoelectric Properties of Mesoporous ZnO." Journal of Nanomaterials 2013 (2013): 1–6. http://dx.doi.org/10.1155/2013/172504.
Повний текст джерелаZhou, Zhiping, Kai Lu, Xiao Wei, Tongfan Hao, Yeqing Xu, Xiaodong Lv, and Yufeng Zhang. "A mesoporous fluorescent sensor based on ZnO nanorods for the fluorescent detection and selective recognition of tetracycline." RSC Advances 6, no. 75 (2016): 71061–69. http://dx.doi.org/10.1039/c6ra14890e.
Повний текст джерелаCanto-Aguilar, Esdras J., Carlos A. González-Flores, Diecenia Peralta-Domínguez, José M. Andres-Castán, Renaud Demadrille, Manuel Rodríguez-Pérez, and Gerko Oskam. "Electrodeposition of Simonkolleite as a Low-Temperature Route to Crystalline ZnO Films for Dye-Sensitized Solar Cells." Journal of The Electrochemical Society 169, no. 4 (April 1, 2022): 042504. http://dx.doi.org/10.1149/1945-7111/ac62c8.
Повний текст джерелаHong, Min-Hee, Chang-Sun Park, Won-Seon Seo, Young Soo Lim, Jung-Kun Lee, and Hyung-Ho Park. "Thermoelectric Properties of Al-Doped Mesoporous ZnO Thin Films." Journal of Nanomaterials 2013 (2013): 1–6. http://dx.doi.org/10.1155/2013/131537.
Повний текст джерелаHong, Min-Hee, Wooje Han, Kyu-Yeon Lee, and Hyung-Ho Park. "The thermoelectric properties of Au nanoparticle-incorporated Al-doped mesoporous ZnO thin films." Royal Society Open Science 6, no. 5 (May 2019): 181799. http://dx.doi.org/10.1098/rsos.181799.
Повний текст джерелаPourdayhimi, Parisa, Pei Wen Koh, Mohamed Mohd Salleh, Hadi Nur, and Siew Ling Lee. "Zinc Oxide Nanoparticles-Immobilized Mesoporous Hollow Silica Spheres for Photodegradation of Sodium Dodecylbenzenesulfonate." Australian Journal of Chemistry 69, no. 7 (2016): 790. http://dx.doi.org/10.1071/ch15495.
Повний текст джерелаSINGH, SARIKA, K. C. BARICK, and D. BAHADUR. "NOVEL AND EFFICIENT THREE DIMENSIONAL MESOPOROUS ZnO NANOASSEMBLIES FOR ENVIRNOMENTAL REMEDIATION." International Journal of Nanoscience 10, no. 04n05 (August 2011): 1001–5. http://dx.doi.org/10.1142/s0219581x11008654.
Повний текст джерелаZhang, Hui, Chen Chen, Xiao Long Xu, Rong Wu, Fan Li, and Mei Zhang. "Syntheses of Mesoporous ZnO and SnO2 Microspheres by Spray Reaction Process." Key Engineering Materials 519 (July 2012): 74–78. http://dx.doi.org/10.4028/www.scientific.net/kem.519.74.
Повний текст джерелаДисертації з теми "MESOPOROUS ZNO"
Fall, Safall. "Fabrication et analyse de nanomatériaux à bases d'oxydes par des techniques de diffusion de rayonnement." Phd thesis, Université du Maine, 2011. http://tel.archives-ouvertes.fr/tel-00607031.
Повний текст джерелаNygren, Kristian. "Solar cells based on synthesized nanocrystalline ZnO thin films sensitized by chlorophyll a and photopigments isolated from spinach." Thesis, Linköping University, Department of Physics, Chemistry and Biology, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-55032.
Повний текст джерелаThe principles of dye-sensitized solar cells were studied and are outlined in this thesis. An overview of the basic steps needed to create a DSC isfollowed by detailed experimental information on how to assemble the solar cells that were fabricated in this project. They were based on synthesizednanocrystalline ZnO thin films sensitized by chlorophyll a as well as isolated photopigments from spinach leaves. The nanocrystals werestudied using XRD, and it was confirmed that three different methods of synthesis resulted in ZnO crystals of a few nanometers. The solar cellswere assembled with Au electrodes in a sandwich configuration and their photovoltaic properties were measured. Overall light-to-electricity conversionwas low with the highest efficiency being 0.21 %. An astonishingly low efficiency of 0.0003 % was noted for a thin film which was not thermallytreated, and it is suggested that heat-treatment is of great importance. It was also found that photopigments from spinach can be extractedeasily and used as molecular sensitizer without any demanding purification steps.
Großmann, Dennis [Verfasser], Wolfgang [Gutachter] Grünert, and Martin [Gutachter] Muhler. "Methanol synthesis over Cu/ZnO aggregates encapsulated in carbon nanotubes and mesoporous silica / Dennis Großmann ; Gutachter: Wolfgang Grünert, Martin Muhler ; Fakultät für Chemie und Biochemie." Bochum : Ruhr-Universität Bochum, 2013. http://d-nb.info/1214440746/34.
Повний текст джерелаOliveira, Cristine Santos de 1990. "Sistemas nanoestruturados de ZnO contendo Eu3+ em sílica mesoporosa." [s.n.], 2013. http://repositorio.unicamp.br/jspui/handle/REPOSIP/250543.
Повний текст джерелаDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Química
Made available in DSpace on 2018-08-22T20:07:38Z (GMT). No. of bitstreams: 1 Oliveira_CristineSantosde_M.pdf: 3527061 bytes, checksum: 7dfe90cc79337811bc7955e8a1531586 (MD5) Previous issue date: 2013
Resumo: O trabalho consistiu na síntese de sistemas nanoestruturados de ZnO contendo Eu em sílica mesoporosa, o vidro poroso Vycor (PVG), utilizando o método de ciclos de impregnação-decomposição (CIDs). Sistemas de nanopartículas puras de ZnO, na forma PVG/10ZnO mostraram que o ZnO apresentou-se predominantemente na forma de sítios de ZnO monodispersos com absorção em 245-250 nm e na forma de nanopartículas, com tamanho médio em torno de 4,5 nm, para as quais inicialmente não se observou uma absorção característica. Através de espectroscopia de luminescência observou-se transferência de energia do ZnO monodisperso para a matriz, porém nenhuma emissão no visível característica de defeitos. Para o sistema PVG/10Eu observou-se transições f-f características nos espectros de emissão e excitação, e a transferência de carga O¿¿Eu. Os sistemas seguintes sintetizados na forma PVG/ZnO@ZnO/M@ZnO, com M = Eu, Al, Sr, Pr e Yb visaram o estudo do sistema principal PVG/ZnO@ZnO/Eu@ZnO, o qual apresentou emissões do Eu relativamente mais intensas do que no sistema PVG/10Eu além de apresentar o favorecimento do crescimento do ZnO sob a forma de nanopartículas, crescendo sobre os aglomerados de dopante. Nessas condições, surge a banda proibida do ZnO em torno de 360 nm, cuja borda é deslocada para menores energias com o número de CIDs, em acordo com uma equação da literatura, indicando um regime de confinamento quântico. Esta banda é observada na luminescência e também transfere energia para a matriz, ainda não sendo observadas emissões de defeitos do ZnO. Estudos com Sr e Al não confirmaram a formação de defeito do tipo Zni decorrente da inserção do íon Eu na rede do óxido. Os espectros de excitação para os sistemas de ZnO contendo Eu não foram conclusivos quanto à transferência de energia devido à presença de bandas do Eu, e num sistema similar substituindo-se por Yb não foi observada esta transferência. Medidas de tempo de vida mostraram um aumento da estabilidade do Eu no sistema com a presença prévia do ZnO, e também sob seu recobrimento. Através das emissões excitônicas do ZnO observou-se o efeito de confinamento quântico também na luminescência, o qual se deu de forma similar ao observado para a análise por absorção no UV-Vis
Abstract: The work consisted in the synthesis of nanostructured systems of ZnO containing Eu loaded in a mesoporous silica, the porous Vycor glass (PVG), using the impregnation-decomposition cycles method (IDCs). Pure ZnO nanoparticles systems synthesized in the form PVG/10ZnO have shown that ZnO presents itself predominantly as monodisperse ZnO sites with absorption at 245-250 nm, and nanoparticles, with mean size around 4,5 nm, for which initially no characteristic absorption had been observed. Through luminescence spectroscopy an energy transfer from monodisperse ZnO to the matrix was observed, but no defect-related emissions. For the PVG/10Eu system Eu characteristic f-f transitions were observed in both emission and excitation spectra, as well as the O¿¿Eu charge transfer. The following systems synthesized in a PVG/ZnO@ZnO/M@ZnO pattern, with M = Eu, Al, Sr, Pr e Yb sought the study of the main system PVG/ZnO@ZnO/Eu@ZnO, which presented Eu emissions relatively more intense than the PVG/10Eu system, also showing favoring growth of ZnO under the form of nanoparticles, which now grow over dopant clusters. Under such condition the ZnO band gap is now observed in UV-Vis absorption analysis, with peaks around 360 nm, whose edge is displaced towards lower energies with increasing number of IDCs, also in agreement with a theoretical equation from the literature, pointing to a condition of quantum confinement. This band is observed in luminescence, and also transfers energy to the matrix, and yet no defect-related emissions are observed for ZnO. Studies with Sr and Al did not confirm the formation of a Zni defect due to the insertion of Eu ions into the oxidefs structure. Excitation spectra for Eu-containing ZnO systems were not conclusive as to the existence of an energy transfer due to the presence of Eu bands in the same range, and in the similar system exchanging Eu3+ for Yb3+ such transfer was not observed. Lifetime measurements have shown an increase in Eu stability within the system with ZnO presence previous to its insertion, or after its coating layer(s). Quantum confinement effect was also observed for the ZnO excitonic emissions in luminescence, showing a similar behavior to that obtained thru UV-Vis absorption analysis
Mestrado
Quimica Inorganica
Mestre em Química
Sivaram, Varun. "Simulation, synthesis, sunlight : enhancing electronic transport in solid-state dye-sensitized solar cells." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:0824a954-e9a9-4f14-a6b4-675652d01d4e.
Повний текст джерелаKUSHWAHA, PREETI. "SYNTHESIS OF ZnO AND ITS PHOTOCATALYTIC ACTIVITY." Thesis, 2016. http://dspace.dtu.ac.in:8080/jspui/handle/repository/14897.
Повний текст джерелаChang, Wen-Hsuan, and 張文瑄. "ZnO and MgO nanoparticles confined in 3D mesoporous carbon as efficient nanocomposite anodes for lithium-ion batteries." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/rm6cgw.
Повний текст джерела國立中央大學
化學學系
105
Trainsition metal oxide as anode materials in lithium ion batteries have attracted tremendous attention in the past few years because of their characterstics.ZnO is regarded as one of the most promising anode material for lithium ion batteries (LIBs), due to its high theoretical capacity (978 mAh/g), natural abundance, and low cost. Although MgO is electrochemically inactive, its adsorption capacity towards liquid electrolyte functioning as a protective coating and enhancement in ionic conductivity encourages the use of a MgO-decorated composite as an anode for LIBs. The ZnO@CMK-8 and MgO@CMK-8 nanocomposites, composed of ultrafine ZnO and MgO nanoparticles encapsulated in three dimensional (3D) ordered mesoporous carbon CMK-8, has been successfully synthesized and served as promising anode materials in lithium-ion batteries (LIBs) with different concertration, separately. The prepared ZnO@CMK-8 and MgO@CMK-8 have been characterized by various techniques, such as XRD, nitrogen adsorption-desorption, high-resolution TEM, and SEM measurements. Our characterization results demonstrates that both ZnO and MgO nanoparticles can be incorporated into the mesopores of CMK-8 with high dispersion and small particle sizes. As anode materials in lithium ion batteries the composites ZnO@CMK-8-0.5M displays higher initial discharge capacity(2214 mAh/g) than bulk ZnO. MgO@CMK-8-10wt% also demonstrates the better results(744 mAh/g) than rude MgO.
Li, Hsiang-Tien, and 李享典. "Synthesis and Identification of ZnS Quantum Dot Inside Layered and Mesoporous Materials and Their Application in Photocatalytic Reactions." Thesis, 2010. http://ndltd.ncl.edu.tw/handle/64935406401690061802.
Повний текст джерела國立中興大學
化學系所
98
Greenhouse gases have caused global climate anomalies, and it will be more serious within the next few years. Therefore the reduction of carbon dioxide indeed becomes indispensable. The apporach of this study is to adsorb the carbon dioxide from the air to in a matrix with excellent CO2 adsorption capacity. Then carbon dioxide reduction is performed by using light to excite semiconductor photocatalyst to generate electron-hole pair. The matrices used in this study includes Layered Double Hydroxide (LDH) and SBA-15 mesoporous materials. LDH is a good gas matrix to adsorb carbon dioxide. SBA-15 with higher surface area and pore structure are also good for gas adsorption capacity. The use of zinc sulfide (ZnS) quantum dot as semiconductor photocatalyst is due to its high band gap as compared to other semiconductor photocatalyst. This band gap enables this quantum dot to perform the photocatalytic reduction of carbon dioxide.
Частини книг з теми "MESOPOROUS ZNO"
Zhao, Chun Xia, Wen Chen, Qi Liu, and Li Qiang Mai. "Spectroscopic Study of Rod-Like Mesoporous ZnO-SiO2 Composites." In Key Engineering Materials, 2267–70. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-410-3.2267.
Повний текст джерелаChen, Haining, Liqun Zhu, Weiping Li, and Huicong Liu. "Electrodeposition of ZnO Nanocrystallines on ITO Mesoporous Films and Application to Photoelectrochemical Cells." In Supplemental Proceedings, 465–72. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118062111.ch52.
Повний текст джерелаManujlov, Eugene, Yuriy Gnatyuk, Vera Vorobets, Gennadiy Kolbasov, Natalia Smirnova, Anna Eremenko, Asta Guobiené, and Sigitas Tamulevičius. "Mesoporous TiO2 and TiO2/ZnO/Ag films: Sol-Gel Synthesis, Photoelectrochemical and Photocatalytic Properties." In Sol-Gel Methods for Materials Processing, 427–34. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-8514-7_38.
Повний текст джерелаAhmed, Fadi Ibrahim. "Synthesis of Novel Virus-Like Mesoporous Silica-ZnO-Ag Nanoparticles and Quercetin Synergize with NIR Laser for Omicron Mutated Covid-19 Virus Infectious Diseases Treatment." In Research Advances in Microbiology and Biotechnology Vol. 2, 63–75. B P International (a part of SCIENCEDOMAIN International), 2023. http://dx.doi.org/10.9734/bpi/ramb/v2/3792a.
Повний текст джерелаТези доповідей конференцій з теми "MESOPOROUS ZNO"
Abdul-kareem, Asma Abdulgader, Noura AlSanari, Amal Daifallah, Radwa Mohamed, Jolly Bhadra, Deepalekshmi Ponnamma, and Noora Al-Thani. "Piezoelectric Nanogenerators based on Pvdf-Hfp/Zno Mesoporous Silica Nanocomposites for Self-Powering Devices." In Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2020. http://dx.doi.org/10.29117/quarfe.2020.0054.
Повний текст джерелаPauporté, T. "Electrochemical growth of ZnO nanocolumn arrays and ZnO mesoporous films." In SPIE OPTO: Integrated Optoelectronic Devices, edited by Ferechteh H. Teherani, Cole W. Litton, and David J. Rogers. SPIE, 2009. http://dx.doi.org/10.1117/12.808515.
Повний текст джерелаWu, Qishuang, Yue Shen, Guizhi Wu, Linyu Li, Meng Cao, and Feng Gu. "Natural dye -sensitized mesoporous ZnO solar cell." In Seventh International Conference on Thin Film Physics and Applications, edited by Junhao Chu and Zhanshan Wang. SPIE, 2010. http://dx.doi.org/10.1117/12.888318.
Повний текст джерелаWu, Guizhi, Yue Shen, Wanxi Cheng, Feng Gu, Jiancheng Zhang, and Linjun Wang. "Photoelectric properties of a-Si/mesoporous ZnO tandem solar cells." In Seventh International Conference on Thin Film Physics and Applications, edited by Junhao Chu and Zhanshan Wang. SPIE, 2010. http://dx.doi.org/10.1117/12.888204.
Повний текст джерелаAykaç, Ahmet, and İzel Ok. "Investigations and Concerns about the Fate of Transgenic DNA and Protein in Livestock." In International Students Science Congress. Izmir International Guest Student Association, 2021. http://dx.doi.org/10.52460/issc.2021.046.
Повний текст джерелаLi, Linyu, Yue Shen, Qishuang Wu, Meng Cao, Feng Gu, and Jiancheng Zhang. "Influence of ion-doping on the photoelectric properties of mesoporous ZnO thin films." In Seventh International Conference on Thin Film Physics and Applications, edited by Junhao Chu and Zhanshan Wang. SPIE, 2010. http://dx.doi.org/10.1117/12.888217.
Повний текст джерелаSowri Babu, K., A. R. C. Reddy, Ch Sujatha, K. V. G. Reddy, and N. K. Mishra. "Observation of excitation wavelength dependent photoluminescence from ZnO nanoparticles embedded in mesoporous silica." In SOLID STATE PHYSICS: PROCEEDINGS OF THE 57TH DAE SOLID STATE PHYSICS SYMPOSIUM 2012. AIP, 2013. http://dx.doi.org/10.1063/1.4790982.
Повний текст джерелаSett, Avik, Anand Kumar Mukhopadhyay, Monojit Mondal, Santanab Majumder, and Tarun Kanti Bhattacharyya. "Tuning Surface Defects of Mesoporous ZnO Nanorods for High Speed Humidity Sensing Application." In 2018 IEEE Sensors. IEEE, 2018. http://dx.doi.org/10.1109/icsens.2018.8589790.
Повний текст джерелаYanglin Liu, Xuechen Duan, and Yajuan Cheng. "Study on preparation of ZnO doped Mesoporous TiO2 Microspheres and its Photocatalytic properties." In 2011 International Conference on Remote Sensing, Environment and Transportation Engineering (RSETE). IEEE, 2011. http://dx.doi.org/10.1109/rsete.2011.5965811.
Повний текст джерелаWu, Mingming, Yue Shen, Feng Gu, Yun Zhang, Yian Xie, and Jiancheng Zhang. "Preparation and photoelectric properties of mesoporous ZnO/TiO 2 composite films for DSSC." In Photonics and Optoelectronics Meetings 2009, edited by Michael Grätzel, Hiroshi Amano, Chin Hsin Chen, Changqing Chen, and Peng Wang. SPIE, 2009. http://dx.doi.org/10.1117/12.843356.
Повний текст джерела