Добірка наукової літератури з теми "MEMS Gas Sensors"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "MEMS Gas Sensors".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "MEMS Gas Sensors"

1

Khater, M. E., M. Al-Ghamdi, S. Park, K. M. E. Stewart, E. M. Abdel-Rahman, A. Penlidis, A. H. Nayfeh, A. K. S. Abdel-Aziz, and M. Basha. "Binary MEMS gas sensors." Journal of Micromechanics and Microengineering 24, no. 6 (April 28, 2014): 065007. http://dx.doi.org/10.1088/0960-1317/24/6/065007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Zhu, Jianxiong, Xinmiao Liu, Qiongfeng Shi, Tianyiyi He, Zhongda Sun, Xinge Guo, Weixin Liu, Othman Bin Sulaiman, Bowei Dong, and Chengkuo Lee. "Development Trends and Perspectives of Future Sensors and MEMS/NEMS." Micromachines 11, no. 1 (December 18, 2019): 7. http://dx.doi.org/10.3390/mi11010007.

Повний текст джерела
Анотація:
With the fast development of the fifth-generation cellular network technology (5G), the future sensors and microelectromechanical systems (MEMS)/nanoelectromechanical systems (NEMS) are presenting a more and more critical role to provide information in our daily life. This review paper introduces the development trends and perspectives of the future sensors and MEMS/NEMS. Starting from the issues of the MEMS fabrication, we introduced typical MEMS sensors for their applications in the Internet of Things (IoTs), such as MEMS physical sensor, MEMS acoustic sensor, and MEMS gas sensor. Toward the trends in intelligence and less power consumption, MEMS components including MEMS/NEMS switch, piezoelectric micromachined ultrasonic transducer (PMUT), and MEMS energy harvesting were investigated to assist the future sensors, such as event-based or almost zero-power. Furthermore, MEMS rigid substrate toward NEMS flexible-based for flexibility and interface was discussed as another important development trend for next-generation wearable or multi-functional sensors. Around the issues about the big data and human-machine realization for human beings’ manipulation, artificial intelligence (AI) and virtual reality (VR) technologies were finally realized using sensor nodes and its wave identification as future trends for various scenarios.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Samotaev, Nikolay, Konstantin Oblov, Anastasia Ivanova, Boris Podlepetsky, Nikolay Volkov, and Nazar Zibilyuk. "Technology for SMD Packaging MOX Gas Sensors." Proceedings 2, no. 13 (November 30, 2018): 934. http://dx.doi.org/10.3390/proceedings2130934.

Повний текст джерела
Анотація:
The perspective combination of laser micromilling technology and jet (aerosol) printing technologies for ceramic MEMS producing of microhotplate in the surface mounted device (SMD) package for the metal oxide (MOX) sensor is describing. There are discusses technological and economic aspects of small-scale production of gas MOX sensors. Experiments with laser micromilling of Al2O3 ceramics confirmed possibility to produce MEMS microhotplate for MOX gas sensor in SMD package with form-factor SOT-23. Developed technology process is close to 3D prototype philosophy—rapid, simple and cheap.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Samotaev, Nikolay, Konstantin Oblov, and Anastasia Ivanova. "Laser Micromilling Technology as a Key for Rapid Prototyping SMD ceramic MEMS devices." MATEC Web of Conferences 207 (2018): 04003. http://dx.doi.org/10.1051/matecconf/201820704003.

Повний текст джерела
Анотація:
The flexible laser micromilling technology for ceramic MEMS producing of microhotplate in the surface mounted device (SMD) package for the metal oxide (MOX) gas sensors is describing. There are discusses technological and economic aspects of small-scale production of gas MOX sensors in comparison with classical clean room technologies using for mass production MEMS devices. The main technical factors affecting on using MOX sensors in various applications are presented. Current results demonstrate that using described technology possible to manufacturing all parts of MOX gas sensor in the SMD form-factor SOT-23 package type.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Asri, Muhammad Izzudin Ahmad, Md Nazibul Hasan, Mariatul Rawdhah Ahmad Fuaad, Yusri Md Yunos, and Mohamed Sultan Mohamed Ali. "MEMS Gas Sensors: A Review." IEEE Sensors Journal 21, no. 17 (September 1, 2021): 18381–97. http://dx.doi.org/10.1109/jsen.2021.3091854.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

DiMeo, Frank, Ing-Shin Chen, Philip Chen, Jeffrey Neuner, Andreas Roerhl, and James Welch. "MEMS-based hydrogen gas sensors." Sensors and Actuators B: Chemical 117, no. 1 (September 2006): 10–16. http://dx.doi.org/10.1016/j.snb.2005.05.007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Al-Ghamdi, M. S., M. E. Khater, K. M. E. Stewart, A. Alneamy, E. M. Abdel-Rahman, and A. Penlidis. "Dynamic bifurcation MEMS gas sensors." Journal of Micromechanics and Microengineering 29, no. 1 (November 26, 2018): 015005. http://dx.doi.org/10.1088/1361-6439/aaedf9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Wang, Yu-Hsiang, Chang-Pen Chen, Chih-Ming Chang, Chia-Pin Lin, Che-Hsin Lin, Lung-Ming Fu, and Chia-Yen Lee. "MEMS-based gas flow sensors." Microfluidics and Nanofluidics 6, no. 3 (January 8, 2009): 333–46. http://dx.doi.org/10.1007/s10404-008-0383-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Samotaev, Nikolay, Konstantin Oblov, Pavel Dzhumaev, Marco Fritsch, Sindy Mosch, Mykola Vinnichenko, Nikolai Trofimenko, Christoph Baumgärtner, Franz-Martin Fuchs, and Lena Wissmeier. "Combination of Ceramic Laser Micromachining and Printed Technology as a Way for Rapid Prototyping Semiconductor Gas Sensors." Micromachines 12, no. 12 (November 25, 2021): 1440. http://dx.doi.org/10.3390/mi12121440.

Повний текст джерела
Анотація:
The work describes a fast and flexible micro/nano fabrication and manufacturing method for ceramic Micro-electromechanical systems (MEMS)sensors. Rapid prototyping techniques are demonstrated for metal oxide sensor fabrication in the form of a complete MEMS device, which could be used as a compact miniaturized surface mount devices package. Ceramic MEMS were fabricated by the laser micromilling of already pre-sintered monolithic materials. It has been demonstrated that it is possible to deposit metallization and sensor films by thick-film and thin-film methods on the manufactured ceramic product. The results of functional tests of such manufactured sensors are presented, demonstrating their full suitability for gas sensing application and indicating that the obtained parameters are at a level comparable to those of industrial produced sensors. Results of design and optimization principles of applied methods for micro- and nanosystems are discussed with regard to future, wider application in semiconductor gas sensors prototyping.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Singh, Avneet, Anjali Sharma, Nidhi Dhull, Anil Arora, Monika Tomar, and Vinay Gupta. "MEMS-based microheaters integrated gas sensors." Integrated Ferroelectrics 193, no. 1 (October 13, 2018): 72–87. http://dx.doi.org/10.1080/10584587.2018.1514877.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "MEMS Gas Sensors"

1

Gatty, Hithesh K. "MEMS-based electrochemical gas sensors and wafer-level methods." Doctoral thesis, KTH, Mikro- och nanosystemteknik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-172955.

Повний текст джерела
Анотація:
This thesis describes novel microel ectromechanical system (MEMS) based electrochemical gas sensors and methods of fabrication. This thesis presents the research in two parts. In the first part, a method to handle a thin silicon wafer using an electrochemically active adhesive is described. Handling of a thin silicon wafer is an important issue in 3D-IC manufacturing where through silicon vias (TSVs) is an enabling technology. Thin silicon wafers are flexible and fragile, therefore difficult to handle. In addressing the need for a reliable solution, a method based on an electrochemically active adhesive was developed. In this method, an electrochemically active adhesive was diluted and spin coated on a 100 mm diameter silicon wafer (carrier wafer) on which another silicon wafer (device wafer) was bonded. Device wafer was subjected to post processing fabrication technique such as wafer thinning. Successful debonding of the device wafer was achieved by applying a voltage between the two wafers. In another part of the research, a fabrication process for developing a functional nanoporous material using atomic layer deposition is presented. In order to realize a nanoporous electrode, a nanoporous anodized aluminum oxide (AAO) substrate was used, which was functionalized with very thin layers (~ 10 nm) of platinum (Pt) and aluminum oxide (Al2O3) using atomic layer deposition. Nanoporous material when used as an electrode delivers high sensitivity due to the inherent high surface area and is potentially applicable in fuel cells and in electrochemical sensing. The second part of the thesis addresses the need for a high performance gas sensor that is applicable for asthma monitoring. Asthma is a disease related to the inflammation in the airways of the lungs and is characterized by the presence of nitric oxide gas in the exhaled breath. The gas concentration of above approximately 50 parts-per-billion indicates a likely presence of asthma. A MEMS based electrochemical gas sensor was successfully designed and developed to meet the stringent requirements needed for asthma detection. Furthermore, to enable a hand held asthma measuring instrument, a miniaturized sensor with integrated electrodes and liquid electrolyte was developed. The electrodes were assembled at a wafer-level to demonstrate the feasibility towards a high volume fabrication of the gas sensors. In addition, the designed amperometric gas sensor was successfully tested for hydrogen sulphide concentration, which is a bio marker for bad breath.

QC 20150907

Стилі APA, Harvard, Vancouver, ISO та ін.
2

DeBoer, John Raymond. "Evaluation Methods for Porous Silicon Gas Sensors." Thesis, Georgia Institute of Technology, 2004. http://hdl.handle.net/1853/4971.

Повний текст джерела
Анотація:
This study investigated the behavior of porous silicon gas sensors under exposure to CO, NO, and NH3 gas at the part per million level. Parameters of interest in this study included the electrical, environmental, and chemi-resistive performance associated with various porous silicon morphologies. Based upon the variability of preliminary results, a gas pulsing method was combined with signal processing in order to analyze small impedance changes in an environment of substantial noise. With this technique, sensors could be effectively screened and characterized. Finally this method was combined with various post-treatments in order to improve the sensitivity and selectivity of individual sensors.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zhang, Chen. "Piezoelectric-Based Gas Sensors for Harsh Environment Gas Component Monitoring." Thesis, University of North Texas, 2019. https://digital.library.unt.edu/ark:/67531/metadc1538769/.

Повний текст джерела
Анотація:
In this study, gas sensing systems that are based on piezoelectric smart material and structures are proposed, designed, developed, and tested, which are mainly aimed to address the temperature dependent CO2 gas sensing in a real environment. The state-of-the-art of gas sensing technologies are firstly reviewed and discussed for their pros and cons. The adsorption mechanisms including physisorption and chemisorption are subsequently investigated to characterize and provide solutions to various gas sensors. Particularly, a QCM based gas sensor and a C-axis inclined zigzag ZnO FBAR gas sensor are designed and analyzed for their performance on room temperature CO2 gas sensing, which fall into the scope of physisorption. In contrast, a Langasite (LGS) surface acoustic wave (SAW) based acetone vapor sensor is designed, developed, and tested, which is based on the chemisorption analysis of the LGS substrate. Moreover, solid state gas sensors are characterized and analyzed for chemisorption-based sensitive sensing thin film development, which can be further applied to piezoelectric-based gas sensors (i.e. Ca doped ZnO LGS SAW gas sensors) for performance enhanced CO2 gas sensing. Additionally, an innovative MEMS micro cantilever beam is proposed based on the LGS nanofabrication, which can be potentially applied for gas sensing, when combined with ZnO nanorods deposition. Principal component analysis (PCA) is employed for cross-sensitivity analysis, by which high temperature gas sensing in a real environment can be achieved. The proposed gas sensing systems are designated to work in a high temperature environment by taking advantage of the high temperature stability of the piezoelectric substrates.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Udina, Oliva Sergi. "Smart Chemical Sensors: Concepts and Application." Doctoral thesis, Universitat de Barcelona, 2012. http://hdl.handle.net/10803/84079.

Повний текст джерела
Анотація:
This PhD thesis introduces basic concepts of smart chemical sensors design, which are afterwards applied to a particular application: the analysis of natural gas. The thesis addresses thus two sets of objective, a first set of objectives related to the conceptual design of a smart chemical sensor using smart sensor standards: - The design of an optimal smart chemical sensor architecture - The novel combination in a working prototype of the highly complementary smart sensor standards IEEE-1451 and BS-7986 A second set of objectives is directly related to the selected application. Natural gas quality control. Natural gas is an energy source of major importance in the world energy supply, its quality control is increasingly important due to its origin-dependent properties and the progressive liberalization of the energy market. The objectives related to this application are: - To solve the natural gas quality analysis problem by using a lower cost approach taking advantage of MEMS technology, smart sensor features, and embedded intelligent signal processing. - To select suitable sensing technologies and associated signal processing. An overall goal addressed by the PhD Thesis is in the end the reporting of a working smart sensor prototype implementing all the smart sensor features, MEMS based natural gas analysis and advanced signal processing as a demonstration of a novel low-cost and high speed natural gas analyzer. The thesis covers this research along 7 chapters, introducing the concepts and application in chapters 1 and 2, the objectives in chapter 3, the simulation of a proposed MEMS sensor approach in chapter 4, the description of the advanced signal processing approach adopted in chapter 5, the description of the electronics and engineering of the smart natural gas analyzer prototype in chapter 6, and finally the conclusions of the work in chapter 7.
La tesis introduce conceptos básicos sobre el diseño de sensores químicos inteligentes, en particular presenta los estándares propuestos IEEE-1451 y BS-7986, y elabora una propuesta para el diseño óptimo de dichos sensores químicos inteligentes. Se implementa la propuesta de diseño para una aplicación concreta, el análisis de gas natural. Además de la aplicación de los conceptos sobre sensores químicos inteligentes se pretende además diseñar un analizador compacto, rápido y de bajo coste, para ello se estudia el uso de un microsensor termoeéctrico como sensor principal del analizador. Una vez probada su viabilidad se implementan ambos conceptos (sensores inteligentes y microsensor termoeléctrico) en un prototipo funcional validado en laboratorio. Como resultado se obtiene una propuesta para el diseño de sensores químicos inteligentes basada en estándares, y por otro lado se presenta un nuevo analizador de gas natural, más rápido y compacto que los existentes. Los resultados obtenidos originan diversas publicaciones en revistas así como dos patentes de método y sistema.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Haapalainen, T. (Tomi). "Gas response properties of metal oxide nanoparticle based sensors on MEMS microhotplate platforms." Master's thesis, University of Oulu, 2015. http://jultika.oulu.fi/Record/nbnfioulu-201509031953.

Повний текст джерела
Анотація:
Abstract. This thesis concentrated on the analysis of the gas response properties of several metal oxide based gas sensors. A thin layer of chosen metal oxide was deposited on SGX Sensortech S.A. sensor platforms using pulsed laser deposition (PLD). Metal oxides used in the studies included tungsten trioxide (WO₃3), tin oxide zinc oxide (SnO₂-ZnO) and vanadium pentoxide (V₂O₅). The films were deposited at room temperature and various oxygen partial pressures, and were then post-annealed at 400 °C. Gas response measurements were done in two different temperatures and using several gases including nitrogen oxides (NOx), carbon monoxide (CO), hydrogen (H₂), and ammonia (NH₃). The concentration of the gases were varied during each measurement to probe the sensitivity of the sensors. Gas sensing performance of the sensors were evaluated based on material, selectivity toward different gases, and the effect of surface structure. Oxygen partial pressure during PLD had a clear impact on the structure of the oxide film. Higher pressure resulted in larger agglomerates of particles, which in general leads to lower gas sensitivity due to factors such as grain size and surface area-to-volume ratio. The measurements showed high responses to NOx for WO₃ and SnO₂-ZnO samples, as expected. Also, flipping of the response from low concentration to high concentration was observed for WO₃ and SnO₂-ZnO while V₂O₅ showed a mostly stable response.Metallioksidinanopartikkeleihin perustuvien kaasuantureiden analysointi MEMS-rakenteissa. Tiivistelmä. Tässä työssä analysoitiin useiden metallioksideihin perustuvien antureiden kaasuvasteita. Kaasuantureiden substraattina käytettiin SGX Sensortech S.A. valmistamia mikrolämmittimeen pohjautuvia MEMS-rakenteita. Substraatin päälle kasvatettiin ohut kerros valittuja metallioksideja, kuten volframioksidi (WO₃), tinaoksidin ja sinkkioksidin yhdiste (SnO₂-ZnO), ja vanadiumoksidi (V₂O₅). Kasvatusmenetelmänä käytettiin pulssilaserkasvatusta. Kasvatus tapahtui huoneenlämmössä ja useissa eri hapen osapaineissa. Kasvatuksen jälkeen anturit jälkihehkutettiin 400 °C lämpötilassa. Kaasuvastemittaukset suoritettiin kahdessa eri lämpötilassa usealle eri kaasulle, kuten typpioksideille (NOx), hiilimonoksidille (CO), vetykaasulle (H₂) ja ammoniakille (NH₃). Kaasun konsentraatiota vaihdeltiin mittausten aikana antureiden herkkyyden määrittämiseksi. Kaasuantureiden toimintakykyä arvioitiin materiaalin, selektiivisyyden ja oksidin pintarakenteen perusteella. Hapen osapaineella pulssilaserkasvatuksen aikana oli merkittävä vaikutus oksidikerroksen rakenteeseen. Suuremmassa paineessa kasvatetut kerrokset muodostivat suurempia partikkeleiden agglomeraatteja, mikä yleisesti ottaen johti heikompaan kaasuvasteeseen johtuen suuremmasta partikkelikoosta ja pienemmästä pinta-alan ja tilavuuden suhteesta. Mittauksissa nähtiin voimakkaita reaktioita typpioksidikaasuihin erityisesti SnO₂-ZnO ja WO₃ näytteiden osalta, kuten oli odotettavissa. SnO₂-ZnO ja WO₃ näytteillä oli myös havaittavissa kaasuvasteen suunnan muutos redusoivasta oksidoivaan kaasukonsentraation kasvaessa, kun taas V₂O₅5-näytteet käyttäytyivät enimmäkseen vakaasti.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Puigcorbé, Punzano Jordi. "Anàlisi termo-mecànica d'estructures micromecanitzades per a sensors de gas." Doctoral thesis, Universitat de Barcelona, 2003. http://hdl.handle.net/10803/1509.

Повний текст джерела
Анотація:
En aquest treball s'ha establert una metodologia d'anàlisi i caracterització del comportament tèrmic, mecànic i termomecànic d'estructures micromecanitzades per a sensors de gas a través de la combinació de simulacions numèriques i tècniques de caracterització de microsistemes (mesures electro-tèrmiques, termografia, nanoindentació, AFM, XRD, microscopia confocal, Auger).
L'estudi del comportament tèrmic de les estructures micromecanitzades ha permès obtenir les característiques bàsiques que controlaran el comportament del sensor, com són el consum en potència, la distribució de temperatura i el temps de resposta del substrat. L'anàlisi termomecànic ha consistit en determinar els esforços residuals en cada estructura així com l'estudi de la deformació dels diferents dissenys per a diferents temperatures de treball. S'han identificat diferents mecanismes de degradació en els materials que formen els sensors i s'ha obtingut el comportament termomecànic fins la ruptura del sensor. Tant en l'estudi tèrmic com en el termomecànic, la interacció entre la capa sensora i el substrat micromecanitzat així com l'influencia del material sensor en el comportament global del dispositiu han estat aspectes investigats.
El treball inclou, a més, la caracterització termomecànica del Pt-Ti emprat en estructures micromecanitzades a través de la utilització de mètodes de Nanoindentació, Microscopia de Forces Atòmiques (AFM), Difracció de Raigs X (XRD) i espectroscopia Auger.
També inclou el desenvolupament d'una metodologia per predir la fatiga tèrmica en microsistemes basada en la combinació dels models elasto-plàstics de metalls en capa prima (Alumini, Pt-Ti) amb simulacions numèriques.
Finalment, de la metodologia d'anàlisi electro-termo-mecànic que s'ha dut a terme, es poden obtenir regles de disseny per la implementació de microsistemes que treballin en diferents règims de temperatura i en concret, directament aplicables al disseny i fabricació d'estructures micromecanitzades per a sensors de gas
This work presents a complete thermomechanical study of different micromachined gas sensor substrates based on closed and suspended membrane microstructures. The work has been carried out combining coupled electro-thermo-mechanical three-dimensional finite element method simulations with different experimental techniques such as those used in Microsystems characterization (thermo-electrical, thermography, AFM, XRD, confocal microscopy, Auger..). The performances predicted by simulations, such as the power consumption, the temperature distribution, the time response, the membrane deflection during operation and the preferential failure sites in the micromachined substrates have been confirmed by experience.
The work includes the thermo-mechanical characterization of Pt-Ti thin films used in the structures using Nanoindentation, AFM, XRD and Auger spectroscopy. Additionally, a methodology to predict the thermal fatigue in microsystems, which combines experimental thin metal elasto-plastic models (Al, Pt-Ti) and coupled thermo-mechanical FEM simulations, has been developed.
The good agreement between simulations and experimental results validates the numerical models, and allows us to consider the adaptability of the analyzed designs as micromachined substrates for integrated gas sensors.

Keywords: MEMS, Microsystems, gas sensors, thermal fatigue, Al, Pt-Ti, FEM.
En este trabajo se ha establecido una metodología de análisis y caracterización térmica y termomecánica de estructuras micromecanizadas en silicio para aplicaciones en sensores de gas. Esta investigación ha combinado simulaciones numéricas mediante el método de los elementos finitos con técnicas experimentales de caracterización utilizadas en el campo de los microsistemas (medidas electro-térmicas, termografía, AFM, XRD, microscopia confocal, Auger).
El estudio térmico de dichas estructuras ha permitido obtener su consumo en potencia, la distribución de temperaturas, la dinámica térmica, así como ha permitido fijar con precisión las propiedades térmicas de los materiales típicamente utilizados en la tecnología de los microsistemas. El estudio mecánico ha permitido obtener los esfuerzos residuales inducidos por los procesos de fabricación. Además, se ha obtenido la deformación de las estructuras a diferentes temperaturas de trabajo hasta la ruptura total de las membranas. Durante las altas temperaturas de trabajo se han detectado y analizado diferentes mecanismos de degradación en los materiales.
El trabajo incluye además, la caracterización termo-mecánica del Pt-Ti depositado por sputtering, ampliamente utilizado en microsensores de gas, mediante el empleo de técnicas de Nanoindentación, Microscopia AFM, Difracción de Rayos X (XRD) y espectrocopia Auger.
También presenta el desarrollo de una metodología para la predicción de la fatiga térmica en microsistemas, que se basa en la combinación de modelos elasto-plásticos para metales en capa delgada con simulaciones numéricas.
Finalmente, de la metodología de análisis termo-mecánico que se ha llevado a cabo, se pueden obtener reglas de diseño para microsistemas que trabajen a diferentes temperaturas, y en concreto directamente aplicables al diseño y fabricación de estructuras micromecanizadas para sensores de gas.

Palabras clave: MEMS, microsistemas, sensores de gas, fatiga térmica, Al, Pt-Ti, MEF.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Nagaiah, Narasimha. "NOVEL CONCEPTUAL DESIGN AND ANLYSIS OF POLYMER DERIVED CERAMIC MEMS SENSORS FOR GAS TURBINE ENVIRONMENT." Master's thesis, University of Central Florida, 2006. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4086.

Повний текст джерела
Анотація:
Technical challenges for developing micro sensors for Ultra High Temperature and turbine applications lie in that the sensors have to survive extremely harsh working conditions that exist when converting fuel to energy. These conditions include high temperatures (500-1500°C), elevated pressures (200-400 psi), pressure oscillations, corrosive environments (oxidizing conditions, gaseous alkali, and water vapors), surface coating or fouling, and high particulate loading. Several technologies are currently underdeveloped for measuring these parameters in turbine engines. One of them is an optical-based non-contact technology. However, these nondirective measuring technologies lack the necessary accuracy, at least at present state. An alternative way to measure these parameters without disturbing the working environments is using MEMS type sensors. Currently, the techniques under development for such harsh environment applications are silicon carbide (SiC) and silicon nitrite (Si3N4) –based ceramic MEMS sensors. But those technologies present some limitation such as narrow processing method, high cost (materials and processing cost), and limited using temperatures (typically < 800 C). In this research we propose to develop two sensors based on recently developed polymer-derived ceramics (PDCs): Constant Temperature Hot wire Anemometer, temperature/heat-flux sensor for turbine applications. PDC is a new class of high temperature ceramics. As we shall describe below, many unique features of PDCs make them particularly suitable for the proposed sensors, including: excellent thermo-mechanical properties at high temperatures, enable high temperature operation of the devices; various well-developed processing technologies, such as injection molding,photolithography, embossing, DRIE etching and precise machining, can be used for the fabrication of the devices; and tunable electric conductivity, enable the proposed sensors fabricated from similar materials, thus reliability considerations associated with thermal mismatch, which is a big concern when using MEMS-based sensors at elevated temperatures, will be minimized.
M.S.M.E.
Department of Mechanical, Materials and Aerospace Engineering;
Engineering and Computer Science
Mechanical Engineering
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Gong, Jianwei. "NON-SILICON MICROFABRICATED NANOSTRUCTURED CHEMICAL SENSORS FOR ELECTRIC NOSE APPLICATION." Doctoral diss., University of Central Florida, 2005. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4082.

Повний текст джерела
Анотація:
A systematic investigation has been performed for "Electric Nose", a system that can identify gas samples and detect their concentrations by combining sensor array and data processing technologies. Non-silicon based microfabricatition has been developed for micro-electro-mechanical-system (MEMS) based gas sensors. Novel sensors have been designed, fabricated and tested. Nanocrystalline semiconductor metal oxide (SMO) materials include SnO2, WO3 and In2O3 have been studied for gas sensing applications. Different doping material such as copper, silver, platinum and indium are studied in order to achieve better selectivity for different targeting toxic gases including hydrogen, carbon monoxide, hydrogen sulfide etc. Fundamental issues like sensitivity, selectivity, stability, temperature influence, humidity influence, thermal characterization, drifting problem etc. of SMO gas sensors have been intensively investigated. A novel approach to improve temperature stability of SMO (including tin oxide) gas sensors by applying a temperature feedback control circuit has been developed. The feedback temperature controller that is compatible with MEMS sensor fabrication has been invented and applied to gas sensor array system. Significant improvement of stability has been achieved compared to SMO gas sensors without temperature compensation under the same ambient conditions. Single walled carbon nanotube (SWNT) has been studied to improve SnO2 gas sensing property in terms of sensitivity, response time and recovery time. Three times of better sensitivity has been achieved experimentally. The feasibility of using TSK Fuzzy neural network algorithm for Electric Nose has been exploited during the research. A training process of using TSK Fuzzy neural network with input/output pairs from individual gas sensor cell has been developed. This will make electric nose smart enough to measure gas concentrations in a gas mixture. The model has been proven valid by gas experimental results conducted.
Ph.D.
Department of Mechanical, Materials and Aerospace Engineering;
Engineering and Computer Science
Mechanical Engineering
Стилі APA, Harvard, Vancouver, ISO та ін.
9

CICIOTTI, FULVIO. "Oscillator-Based CMOS Readout Interfaces for Gas Sensing Applications." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2019. http://hdl.handle.net/10281/241089.

Повний текст джерела
Анотація:
Il rilevamento di gas tossici e pericolosi è sempre stato necessario per motivi di sicurezza. Negli ultimi anni, in particolare, l’attenzione per lo sviluppo di sistemi portatili e a basso costo per il rilevamento dei gas è aumentata notevolmente. Questa tesi presenta circuiti CMOS versatili, veloci, ad alta precisione e basso consumo per applicazioni portatili di rilevamento di gas. I sensori target sono i Metal Oxide Semiconductor (MOX). Questi sensori sono ampiamente utilizzati per la loro intrinseca compatibilità con le tecnologie MEMS integrate. Le tipologie di lettura scelte sono basate su un oscillatore controllato dalla resistenza del sensore stessa, in modo da ottenere una conversione resistenza-tempo. Ciò garantisce un ampio range dinamico, una buona precisione e la capacità di far fronte alle grandi variazioni di resistenza del sensore MOX. Quattro diversi prototipi sono stati sviluppati e testati con successo. Sono state anche eseguite misurazioni chimiche con un vero sensore SnO2 MOX, validando i risultati ottenuti. Le misure hanno mostrato come il sensore e l’interfaccia sia in grado di rilevare fino a 5ppm di CO in aria. Gli ASIC sono in grado di coprire 128 dB di DR a 4Hz di output data rate digitale, o 148 dB a 0.4Hz, garantendo un errore relativo percentuale sempre migliore dello 0,4% (SNDR> 48 dB). Le prestazioni target sono state raggiunte con aggressive strategie di progettazione e ottimizzazione a livello di sistema. È stata utilizzata una tecnologia CMOS a 130nm fornita da Infineon Technologies AG. La scelta di un nodo tecnologico così scalato (rispetto alle tipiche implementazioni in questo settore) ha consentito di ridurre ulteriormente i consumi fino a circa 450 μA. Inoltre, questo lavoro introduce la possibilità di utilizzare la stessa architettura basata su oscillatore per eseguire la lettura di sensori capacitivi. I risultati delle misurazioni con sensori capacitivi MEMS hanno mostrato 116 dB di DR, con un SNR di 74 dB a 10Hz di velocità di trasmissione dati digitale. Le architetture sviluppate in questa tesi sono compatibili con gli standard moderni nel settore del rilevamento del gas per dispositivi portatili.
Detection of toxic and dangerous gases has always been a need for safety purpose and, in recent years, portable and low-cost gas sensing systems are becoming of main interest. This thesis presents fast, high precision, low-power, versatile CMOS interface circuits for portable gas sensing applications. The target sensors are Metal Oxide Semiconductor (MOX) sensors which are widely used due to their inherent compatibility with integrated MEMS technologies. The chosen readout typologies are based on the time-domain Resistor-Controlled Oscillator. This guarantees wide dynamic range, good precision and the ability to cope with the large MOX sensor resistance variations. Four different prototypes have been successfully developed and tested. Chemical measurements with a real SnO2 MOX sensor have also been performed to validate the results, showing a minimum CO detection capability in ambient air of 5 ppm. The ASICs are able to cover 128 dB of DR at 4 Hz of digital output data rate, or 148 dB at 0.4 Hz, while providing a relative error always better than 0.4% (SNDR >48 dB). Target performances have been achieved with aggressive design strategies and system-level optimization, and using a scaled (compared to typical implementations in this field) 130nm CMOS technology provided by Infineon Technologies AG. Power consumption is about 450 μA. Moreover, this work introduces the possibility to use the same oscillator-based architecture to perform capacitive sensors readout. Measurement results with capacitive MEMS sensors have shown 116 dB of DR in CSENS mode, with an SNR of 74 dB at 10 Hz of digital output data rate. The architectures developed in this thesis are compatible with the modern standards in the portable gas sensing industry.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Navaei, Milad. "Integration of a micro-gas chromatography system for detection of volatile organic compounds." Diss., Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/53924.

Повний текст джерела
Анотація:
The focus of this dissertation is on the design and micro-fabrication of an all silicon gas chromatography column with a novel two dimensional resistive heater and on its integration with an ultra-low power Thermal Conductivity Detector (TCD) for fast separation and detection of Volatile Organic Compounds (VOC). The major limitations of the current MEMS-GC column are: direct bonding of silicon to silicon, and peak band broadening due to slow temperature programming. As part of this thesis, a new gold eutectic-fusion bonding technique is developed to improve the sealing of the column. Separation of BETX, alkane mixture and VOCs were demonstrated with the MEMS GC column. The time and power required to ramp and sustain the column’s temperature are very high for the current GC columns. To reduce the time required to separate the compounds, a new temperature gradient programming heating method was developed to generate temperature gradients along the length of the column. This novel heating method refocuses eluding bands and counteracts some of the chromatographic band spreading due to diffusion resulting in an improved separation performance. A low power TCD was packaged and tested in a GC by comparison against FID for the detection of a mixture of VOCs. It demonstrated low power operation of a few milliwatts and a very fast response. The MEMS-GC was also demonstrated for rapid detection of the VOC gases released by pathogenic species of Armillaria fungus.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "MEMS Gas Sensors"

1

Sarkar, Chandan Kumar, and Sunipa Roy. MEMS and Nanotechnology for Gas Sensors. Taylor & Francis Group, 2017.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Sarkar, Chandan Kumar, and Sunipa Roy. Mems and Nanotechnology for Gas Sensors. Taylor & Francis Group, 2020.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Sarkar, Chandan Kumar, and Sunipa Roy. MEMS and Nanotechnology for Gas Sensors. Taylor & Francis Group, 2017.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sarkar, Chandan Kumar, and Sunipa Roy. MEMS and Nanotechnology for Gas Sensors. Taylor & Francis Group, 2017.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Sarkar, Chandan Kumar, and Sunipa Roy. MEMS and Nanotechnology for Gas Sensors. Taylor & Francis Group, 2017.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

MEMS and Nanotechnology for Gas Sensors. Taylor & Francis Group, 2015.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "MEMS Gas Sensors"

1

Heidari, Yasaman, Mahshid Padash, and Mohammadreza Faridafshin. "MEMS-based electrochemical gas sensor." In Sensors for Next-Generation Electronic Systems and Technologies, 55–69. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003288633-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

You, Rui, Wenshuai Lu, Dongdong Han, and Yonglai Zhang. "Micromachining Based on Mask-Free Direct Writing: An Advanced Approach to Innovative MEMS Gas Sensors." In Advanced MEMS/NEMS Fabrication and Sensors, 49–73. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-79749-2_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Wu, Jin, Kai Tao, Jianmin Miao, and Leslie K. Norford. "Graphene for Future High-Performance Gas Sensing." In Outlook and Challenges of Nano Devices, Sensors, and MEMS, 347–63. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50824-5_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Wang, Hairong, Xin Tian, and Yankun Tang. "The Sputtered Thin Films as the Sensing Materials for the MEMS Gas Sensors." In Materials for Devices, 105–46. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003141358-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lange, D., O. Brand, and H. Baltes. "Resonant Gas Sensor." In Microtechnology and Mems, 57–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-05060-6_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Alneamy, A., N. Heidari, W. Lacarbonara, and E. Abdel-Rahman. "Single Input–Single Output MEMS Gas Sensor." In NODYCON Conference Proceedings Series, 321–34. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-81170-9_29.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Nebhen, Jamel, Stéphane Meillère, Mohamed Masmoudi, Jean-Luc Seguin, and Khalifa Aguir. "Low Noise CMOS Chopper Amplifier for MEMS Gas Sensor." In Autonomous and Intelligent Systems, 366–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21538-4_36.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bhattacharyya, P., K. Dutta, and P. P. Chattopadhyay. "Electrochemically Derived Oxide Nanoform-Based Gas Sensor Devices: Challenges and Prospects with MEMS Integration." In Advanced Mechatronics and MEMS Devices II, 297–328. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32180-6_14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Das, Surajit, and Jamil Akhtar. "Comparative Study on Temperature Coefficient of Resistance (TCR) of the E-beam and Sputter Deposited Nichrome Thin Film for Precise Temperature Control of Microheater for MEMS Gas Sensor." In Physics of Semiconductor Devices, 495–97. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03002-9_124.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Roy, Sunipa, and Chandan Kumar Sarkar. "Substrate for MEMS." In MEMS and Nanotechnology for Gas Sensors, 17–30. CRC Press, 2017. http://dx.doi.org/10.1201/b18928-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "MEMS Gas Sensors"

1

Bruckner, K., V. Cimalla, F. Niebelschutz, R. Stephan, K. Tonisch, O. Ambacher, and M. A. Hein. "Gas Pressure Sensing Based on MEMS Resonators." In 2007 IEEE Sensors. IEEE, 2007. http://dx.doi.org/10.1109/icsens.2007.4388636.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Udina, S., A. Pardo, S. Marco, J. Santander, and L. Fonseca. "Thermoelectric MEMS sensors for natural gas analysis." In 2008 IEEE Sensors. IEEE, 2008. http://dx.doi.org/10.1109/icsens.2008.4716699.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Li, Q., J. F. L. Goosen, F. van Keulen, and J. T. M. van Beek. "Gas ambient dependence of quality factor in MEMS resonators." In 2009 IEEE Sensors. IEEE, 2009. http://dx.doi.org/10.1109/icsens.2009.5398588.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Serry, Mohamed, Ioana Voiculcscu, and Ahmed Kobtan. "Catalytic Hafnium Oxide Calorimetric MEMS Gas and Chemical Sensor." In 2018 IEEE Sensors. IEEE, 2018. http://dx.doi.org/10.1109/icsens.2018.8589851.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Grzebyk, Tomasz, and Anna Gorecka-Drzazga. "MEMS Nanoleak Gas Injection System." In 2018 XV International Scientific Conference on Optoelectronic and Electronic Sensors (COE). IEEE, 2018. http://dx.doi.org/10.1109/coe.2018.8435150.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Jalbert, Paul. "MEMS Chemical Gas Sensors for Gas Turbine Engine Applications." In 2005 U.S. Air Force T&E Days. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2005. http://dx.doi.org/10.2514/6.2005-7646.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Bond, Tiziana C., Garrett D. Cole, Lynford L. Goddard, and Elaine M. Behymer. "Photonic MEMS for NIR in-situ Gas Detection and Identification." In 2007 IEEE Sensors. IEEE, 2007. http://dx.doi.org/10.1109/icsens.2007.4388666.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Alfeeli, Bassam, Syed Ali, Vaibhav Jain, Reza Montazami, James Heflin, and Masoud Agah. "MEMS-based gas chromatography columns with nano-structured stationary phases." In 2008 IEEE Sensors. IEEE, 2008. http://dx.doi.org/10.1109/icsens.2008.4716545.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Hajjam, Arash, Andrew Logan, and Siavash Pourkamali. "Fabrication and characterization of MEMS-based resonant organic gas sniffers." In 2011 IEEE Sensors. IEEE, 2011. http://dx.doi.org/10.1109/icsens.2011.6127389.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kalaiselvi, S., L. Sujatha, and R. Sundar. "Fabrication of MEMS Accelerometer for Vibration Sensing in Gas Turbine." In 2018 IEEE Sensors. IEEE, 2018. http://dx.doi.org/10.1109/icsens.2018.8589799.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "MEMS Gas Sensors"

1

Field and Gunther. PR-365-08608-R02 MEMS Technology for Natural Gas-Liquid Quality Measurement (Phase II). Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), August 2009. http://dx.doi.org/10.55274/r0010980.

Повний текст джерела
Анотація:
This report summarizes a follow-on task to the project in which SmallTech Consulting was asked by PRCI to undertake an evaluation of MEMS1 Technology for Natural Gas/Liquid Quality Measurement. SmallTech examined the feasibility of using MEMS-based sensors to determine chemical composition measurands of interest within a natural gas pipeline, at or near real-time. This update includes information on timing and estimated costs for collaboration with the most promising of the front-runner candidates as potential vendors or development partners for PRCI.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hall and Brown. PR-343-14607-R01 Miniaturized Gas Chromatography and Gas Quality Sensor. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), February 2015. http://dx.doi.org/10.55274/r0010558.

Повний текст джерела
Анотація:
In natural gas transmission and distribution, many metering stations utilize gas chromatography to ensure the gas complies with the pipeline�s gas quality tariff provisions and to determine the chemical energy content of the gas for billing purposes. It is also used as a check on the operation of gas ultrasonic flowmeters through a calculation of the speed of sound in the gas. Because of limitations on existing gas chromatographs (GC�s), including high installed cost, analysis time, carrier gas consumption and others, there is a desire to consider alternate technologies for natural gas analysis. PRCI has sponsored a study of technologies that utilize the variation in absorption/scattering of optical wavelengths by different molecules. The purpose of this study is to extend that study to the use of additional technologies, such as MEMS (Micro-Electro-Mechanical Systems). This is not a new approach, but recent advancements offer a greater possibility of achievement of the desired goals than in the past. This study reviewed and evaluated work in process with MEMS technology to provide a smaller, less ex-pensive, lower-power and faster GC that can be utilized in a Class 1 Division 2 area. Developments at both commercial firms and in university MEMS research programs have been included. Since there have been several programs to evaluate �energy meters� that attempt to measure gas quality by calculating the BTU content of a gas sample, this study focused on micro-GC�s that can make a much more precise measurement of gas quality.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Loui, A., S. McCall, and J. Zumstein. Research and Development of Non-Spectroscopic MEMS-Based Sensor Arrays for Targeted Gas Detection. Office of Scientific and Technical Information (OSTI), November 2012. http://dx.doi.org/10.2172/1059450.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Loui, A., and S. McCall. Research and Development of Non-Spectroscopic MEMS-Based Sensor Arrays for Targeted Gas Detection. Office of Scientific and Technical Information (OSTI), October 2011. http://dx.doi.org/10.2172/1035279.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії