Статті в журналах з теми "Memcapaciteur"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Memcapaciteur.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Memcapaciteur".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Wang, Wei, Hui Xu, Yue Wei Hou, and Hai Jun Liu. "A Circuit Model of the Memcapacitor." Applied Mechanics and Materials 644-650 (September 2014): 3426–29. http://dx.doi.org/10.4028/www.scientific.net/amm.644-650.3426.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Since the manufacture of memcapacitor is complicated and memcapacitors are not commercially available yet, the memcapacitor models are of importance for the research on memcapacitor characteristics and its application. Based on the analysis of the mathematical model of the memcapacitor and its typical characteristics, the memcapacitor model is designed. Some simulation is done to validate the function of the proposed circuit model.
2

SAH, MAHESHWAR PD, RAM KAJI BUDHATHOKI, CHANGJU YANG, and HYONGSUK KIM. "EXPANDABLE CIRCUITS OF MUTATOR-BASED MEMCAPACITOR EMULATOR." International Journal of Bifurcation and Chaos 23, no. 05 (May 2013): 1330017. http://dx.doi.org/10.1142/s0218127413300176.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
An efficient method to build the expandable circuits of memcapacitor (MC) emulator in various configurations is proposed using our expandable memristor (MR) emulator. Most of the previous studies succeeded in designing only a stand-alone memcapacitor emulator. In this study, the expandable architecture of memcapacitor emulator is addressed, where the connectivity and interoperability are the main concern. It is shown that the memcapacitor circuits can be built only with memristors together with a single mutator, which is connected after each input source. Examples of serial, parallel and hybrid memcapacitor circuits are demonstrated in this paper. Also, it is shown that complicated circuits of Wye (Y) and Delta (Δ) memcapacitor connections with multiple input sources can be built with the proposed memcapacitor emulator. Various simulation results showing the proper operations of the proposed mutator-based expandable memcapacitor emulators are included in this paper.
3

Akgul, Akif. "Chaotic Oscillator Based on Fractional Order Memcapacitor." Journal of Circuits, Systems and Computers 28, no. 14 (February 20, 2019): 1950239. http://dx.doi.org/10.1142/s0218126619502396.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Many literatures have discussed fractional order memristor and memcapacitor-based chaotic oscillators but the entire oscillator model is considered to be of fractional order. My interest is to propose a nonlinear oscillator with considering only the memcapacitor element of fractional order. Hence, I propose a fractional order memcapacitor (FMC)-based novel chaotic oscillator. The complete mathematical model for the proposed oscillator is derived and presented in this paper. The dimensionless state equations are then analyzed by using the equilibrium points and their stability, Eigen values, Kaplan–Yorke dimensions and Lyapunov exponents. To understand the complete dynamical behavior, bifurcation graphs are obtained and presented. Finally, the proposed fractional memcapacitor oscillator is implemented by using the shelf components.
4

Mohamed, M. G. A., HyungWon Kim, and Tae-Won Cho. "Modeling of Memristive and Memcapacitive Behaviors in Metal-Oxide Junctions." Scientific World Journal 2015 (2015): 1–16. http://dx.doi.org/10.1155/2015/910126.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Memristive behavior has been clearly addressed through growth and shrinkage of thin filaments in metal-oxide junctions. Capacitance change has also been observed, raising the possibility of using them as memcapacitors. Therefore, this paper proves that metal-oxide junctions can behave as a memcapacitor element by analyzing its characteristics and modeling its memristive and memcapacitive behaviors. We develop two behavioral modeling techniques: charge-dependent memcapacitor model and voltage-dependent memcapacitor model. A new physical model for metal-oxide junctions is presented based on conducting filaments variations, and its effect on device capacitance and resistance. In this model, we apply the exponential nature of growth and shrinkage of thin filaments and use Simmons’ tunneling equation to calculate the tunneling current. Simulation results show how the variations of practical device parameters can change the device behavior. They clarify the basic conditions for building a memcapacitor device with negligible change in resistance.
5

Wang, Guangyi, Shiyi Jiang, Xiaowei Wang, Yiran Shen, and Fang Yuan. "A Novel Memcapacitor Model and Its Application for Generating Chaos." Mathematical Problems in Engineering 2016 (2016): 1–15. http://dx.doi.org/10.1155/2016/3173696.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Memristor and memcapacitor are new nonlinear devices with memory. We present a novel memcapacitor model that has the capability of capturing the behavior of a memcapacitor. Based on this model we also design a chaotic oscillator circuit that contains a HP memristor and the memcapacitor model for generating good pseudorandom sequences. Its dynamic behaviors, including equilibrium points, stability, and bifurcation characteristics, are analyzed in detail. It is found that the proposed oscillator can exhibit some complex phenomena, such as chaos, hyperchaos, coexisting attractors, abrupt chaos, and some novel bifurcations. Moreover, a scheme for digitally realizing this oscillator is provided by using the digital signal processor (DSP) technology. Then the random characteristics of the chaotic binary sequences generated from the oscillator are tested via the test suit of National Institute of Standards and Technology (NIST). The tested randomness definitely reaches the standards of NIST and is better than that of the well-known Lorenz system.
6

Yuan, Fang, Yuxia Li, Guangyi Wang, Gang Dou, and Guanrong Chen. "Complex Dynamics in a Memcapacitor-Based Circuit." Entropy 21, no. 2 (February 16, 2019): 188. http://dx.doi.org/10.3390/e21020188.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this paper, a new memcapacitor model and its corresponding circuit emulator are proposed, based on which, a chaotic oscillator is designed and the system dynamic characteristics are investigated, both analytically and experimentally. Extreme multistability and coexisting attractors are observed in this complex system. The basins of attraction, multistability, bifurcations, Lyapunov exponents, and initial-condition-triggered similar bifurcation are analyzed. Finally, the memcapacitor-based chaotic oscillator is realized via circuit implementation with experimental results presented.
7

Li, Chaobei, Chuandong Li, Tingwen Huang, and Hui Wang. "Synaptic memcapacitor bridge synapses." Neurocomputing 122 (December 2013): 370–74. http://dx.doi.org/10.1016/j.neucom.2013.05.036.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Biolek, D., Z. Biolek, and V. Biolkova. "SPICE modelling of memcapacitor." Electronics Letters 46, no. 7 (2010): 520. http://dx.doi.org/10.1049/el.2010.0358.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Wang, Guangyi, Chuanbao Shi, Xiaowei Wang, and Fang Yuan. "Coexisting Oscillation and Extreme Multistability for a Memcapacitor-Based Circuit." Mathematical Problems in Engineering 2017 (2017): 1–13. http://dx.doi.org/10.1155/2017/6504969.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The coexisting oscillations are observed with a memcapacitor-based circuit that consists of two linear inductors, two linear resistors, and an active nonlinear charge-controlled memcapacitor. We analyze the dynamics of this circuit and find that it owns an infinite number of equilibrium points and coexisting attractors, which means extreme multistability arises. Furthermore, we also show the stability of the infinite many equilibria and analyze the coexistence of fix point, limit cycle, and chaotic attractor in detail. Finally, an experimental result of the proposed oscillator via an analog electronic circuit is given.
10

Hosbas, Mehmet Ziya, Fırat Kaçar, and Abdullah Yesil. "Memcapacitor emulator using VDTA-memristor." Analog Integrated Circuits and Signal Processing 110, no. 2 (January 9, 2022): 361–70. http://dx.doi.org/10.1007/s10470-021-01974-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Deng, Yue, and Yuxia Li. "Nonparametric Bifurcation and Anti-Control of Hyperchaos in a Memristor–Memcapacitor-Based Circuit." International Journal of Bifurcation and Chaos 31, no. 04 (March 30, 2021): 2130012. http://dx.doi.org/10.1142/s0218127421300123.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this paper, a new memristor model and a new memcapacitor model are proposed. Based on the two models, a simple chaotic circuit is constructed. Due to the special characteristics of the memristor and memcapacitor, the proposed circuit has two-dimensional normally hyperbolic manifolds of equilibria, and nonparametric bifurcation can occur when the conditions supporting the normal hyperbolicity of such manifolds are not satisfied. By adding a nonlinear controller to the proposed circuit, an anti-controlled system is realized, which has hyperchaotic dynamic behaviors under some suitable control parameters. The stability of equilibrium points and dynamic properties of the original system and the anti-controlled system are explored by Lyapunov exponents, bifurcation diagrams and so on. Furthermore, the anti-controlled system is applied to design a random sequence generator on digital signal processor platform.
12

He, Shaobo, Santo Banerjee, and Bo Yan. "Chaos and Symbol Complexity in a Conformable Fractional-Order Memcapacitor System." Complexity 2018 (August 5, 2018): 1–15. http://dx.doi.org/10.1155/2018/4140762.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Application of conformable fractional calculus in nonlinear dynamics is a new topic, and it has received increasing interests in recent years. In this paper, numerical solution of a conformable fractional nonlinear system is obtained based on the conformable differential transform method. Dynamics of a conformable fractional memcapacitor (CFM) system is analyzed by means of bifurcation diagram and Lyapunov characteristic exponents (LCEs). Rich dynamics is found, and coexisting attractors and transient state are observed. Symbol complexity of the CFM system is estimated by employing the symbolic entropy (SybEn) algorithm, symbolic spectral entropy (SybSEn) algorithm, and symbolic C0 (SybC0) algorithm. It shows that pseudorandom sequences generated by the system have high complexity and pass the rigorous NIST test. Results demonstrate that the conformable memcapacitor nonlinear system can also be a good model for real applications.
13

Zhou, Wei, Guangyi Wang, and Herbert Ho-Ching Iu. "A memcapacitor-based hyperchaotic conservative system." Chaos: An Interdisciplinary Journal of Nonlinear Science 31, no. 12 (December 2021): 123116. http://dx.doi.org/10.1063/5.0070598.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Konal, Mustafa, Firat Kacar, and Yunus Babacan. "Electronically controllable memcapacitor emulator employing VDCCs." AEU - International Journal of Electronics and Communications 140 (October 2021): 153932. http://dx.doi.org/10.1016/j.aeue.2021.153932.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Gu, Mei-Yuan, Jing-Biao Liu, Guang-Yi Wang, Yan Liang, and Fu-Peng Li. "Memcapacitor-based multivibrator and its experiments." Acta Physica Sinica 68, no. 22 (2019): 228401. http://dx.doi.org/10.7498/aps.68.20190849.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Vista, John, and Ashish Ranjan. "Design of Memcapacitor Emulator using DVCCTA." Journal of Physics: Conference Series 1172 (March 2019): 012104. http://dx.doi.org/10.1088/1742-6596/1172/1/012104.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

ZhenYu Yin, Heng Tian, GuanHua Chen, and Leon O. Chua. "What are Memristor, Memcapacitor, and Meminductor?" IEEE Transactions on Circuits and Systems II: Express Briefs 62, no. 4 (April 2015): 402–6. http://dx.doi.org/10.1109/tcsii.2014.2387653.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Biolek, D., and V. Biolkova. "Mutator for transforming memristor into memcapacitor." Electronics Letters 46, no. 21 (2010): 1428. http://dx.doi.org/10.1049/el.2010.2309.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Fouda, M. E., and A. G. Radwan. "Charge controlled memristor-less memcapacitor emulator." Electronics Letters 48, no. 23 (2012): 1454. http://dx.doi.org/10.1049/el.2012.3151.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Fouda, Mohamed E., and Ahmed G. Radwan. "Resistive-less memcapacitor-based relaxation oscillator." International Journal of Circuit Theory and Applications 43, no. 7 (March 10, 2014): 959–65. http://dx.doi.org/10.1002/cta.1984.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Lyu, Cheng-Han, Rajneesh Chaurasiya, Bo-Ru Lai, Kuan-Ting Chen, and Jen-Sue Chen. "Interfacial traps and band offset enabled charge separation facilitating current/capacitance hysteresis in dual-oxide layered structure." Applied Physics Letters 121, no. 18 (October 31, 2022): 183505. http://dx.doi.org/10.1063/5.0122317.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Gradual switching in the memristor or memcapacitor devices is the key parameter for the next generation of bio-inspired neuromorphic computing. Here, we have fabricated the WOx/ZrOx dual-oxide layered device, which shows the coexistence of gradual resistive and capacitive switching arisen from the current and capacitance hysteresis curves, respectively. The expansion of hysteresis loop can be modulated by altering the oxygen content in the oxide materials. Interestingly, the presence of negative differential resistance (NDR) is dependent on the voltage sweep direction and range of applied bias, which can be reasoned by the local electric field, charge trapping/detrapping, and conduction band offset at the dual-oxide interface. This study provides the concept of the coexistence of current and capacitance hysteresis along with NDR, and it is highly potential for memristor and memcapacitor circuits to explore neuromorphic computing.
22

Wang, Xuan, Yinghong Cao, Hongjie Li, and Bo Li. "A Chaos-Enhanced Fractional-Order Chaotic System with Self-Reproduction Based on a Memcapacitor and Meminductor." Fractal and Fractional 7, no. 8 (July 28, 2023): 582. http://dx.doi.org/10.3390/fractalfract7080582.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Chaotic signals generated by chaotic oscillators based on memory elements are suitable for use in the field of confidential communications because of their very good randomness. But often their maximum Lyapunov exponent is not high enough, so the degree of randomness is not enough. It can be chaos enhanced by transforming it to fractional order using the Caputo differential definition. In this paper, based on the proposed hyperchaotic oscillator, it is extended to a fractional-order form to obtain a chaos-enhanced fractional-order memcapacitor meminductor system, in which several different styles of chaotic and hyperchaotic attractors are found. The dynamical behaviour of the system is studied using bifurcation diagrams, Lyapunov exponent spectrums and Lyapunov dimensions. The multistability of the system is explored in different initial orbits, and the spectral entropy complexity of this system is examined. Finally, a hardware implementation of the memcapacitor meminductor system is given, which demonstrates the effectiveness of the system. This study provides a reference for the study of chaos-enhanced.
23

Romero, Francisco J., Akiko Ohata, Alejandro Toral-Lopez, Andres Godoy, Diego P. Morales, and Noel Rodriguez. "Memcapacitor and Meminductor Circuit Emulators: A Review." Electronics 10, no. 11 (May 21, 2021): 1225. http://dx.doi.org/10.3390/electronics10111225.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In 1971, Prof. L. Chua theoretically introduced a new circuit element, which exhibited a different behavior from that displayed by any of the three known passive elements: the resistor, the capacitor or the inductor. This element was called memristor, since its behavior corresponded to a resistor with memory. Four decades later, the concept of mem-elements was extended to the other two circuit elements by the definition of the constitutive equations of both memcapacitors and meminductors. Since then, the non-linear and non-volatile properties of these devices have attracted the interest of many researches trying to develop a wide range of applications. However, the lack of solid-state implementations of memcapacitors and meminductors make it necessary to rely on circuit emulators for the use and investigation of these elements in practical implementations. On this basis, this review gathers the current main alternatives presented in the literature for the emulation of both memcapacitors and meminductors. Different circuit emulators have been thoroughly analyzed and compared in detail, providing a wide range of approaches that could be considered for the implementation of these devices in future designs.
24

Demasius, Kai-Uwe, Aron Kirschen, and Stuart Parkin. "Energy-efficient memcapacitor devices for neuromorphic computing." Nature Electronics 4, no. 10 (October 2021): 748–56. http://dx.doi.org/10.1038/s41928-021-00649-y.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractData-intensive computing operations, such as training neural networks, are essential for applications in artificial intelligence but are energy intensive. One solution is to develop specialized hardware onto which neural networks can be directly mapped, and arrays of memristive devices can, for example, be trained to enable parallel multiply–accumulate operations. Here we show that memcapacitive devices that exploit the principle of charge shielding can offer a highly energy-efficient approach for implementing parallel multiply–accumulate operations. We fabricate a crossbar array of 156 microscale memcapacitor devices and use it to train a neural network that could distinguish the letters ‘M’, ‘P’ and ‘I’. Modelling these arrays suggests that this approach could offer an energy efficiency of 29,600 tera-operations per second per watt, while ensuring high precision (6–8 bits). Simulations also show that the devices could potentially be scaled down to a lateral size of around 45 nm.
25

Yu, Dongsheng, Zhi Zhou, Herbert Ho-Ching Iu, Tyrone Fernando, and YiHua Hu. "A Coupled Memcapacitor Emulator-Based Relaxation Oscillator." IEEE Transactions on Circuits and Systems II: Express Briefs 63, no. 12 (December 2016): 1101–5. http://dx.doi.org/10.1109/tcsii.2016.2613179.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Gan, Huijun, Dongsheng Yu, Dongkun Li, and He Cheng. "Binary memcapacitor based first-order active filter." Circuit World 46, no. 2 (January 10, 2020): 117–24. http://dx.doi.org/10.1108/cw-06-2019-0061.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Purpose The purpose of this paper is to construct a flux-controlled memcapacitor (MC) emulator without grounded restriction with the binary operation ability. The active first-order low-pass filter (LPF) and high-pass filter (HPF) circuits are constructed by replacing the capacitor with MC. Design/methodology/approach The output saturation of the active device is innovatively adopted to realize the binary operation of MC with two memcapacitance values. By applying the direct current control voltage together with the input signal, the memcapacitance can be controlled, and hence, cut-off frequency of the filters can be adjusted without changing the circuit structure. Findings Experiments and simulation results show that the new filter has good frequency selectivity. Both LPF and HPF can change the cut-off frequency by changing the positive and negative control voltage. The experimental and simulation results are in good agreement with the theoretical analysis, which proves the feasibility and validity of the emulator and the filters. Originality/value These MC emulators are simple and easy to physically fabricate, which have been increasingly used for experiment. It also provide an effective reference for device miniaturization and low power consumption.
27

Wang, Xiaoyuan, Jun Yu, Chenxi Jin, Herbert Ho Ching Iu, and Simin Yu. "Chaotic oscillator based on memcapacitor and meminductor." Nonlinear Dynamics 96, no. 1 (January 31, 2019): 161–73. http://dx.doi.org/10.1007/s11071-019-04781-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Romero, Francisco J., Diego P. Morales, Andres Godoy, Francisco G. Ruiz, Isabel M. Tienda‐Luna, Akiko Ohata, and Noel Rodriguez. "Memcapacitor emulator based on the Miller effect." International Journal of Circuit Theory and Applications 47, no. 4 (February 19, 2019): 572–79. http://dx.doi.org/10.1002/cta.2604.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Zhang, Zixi, Yuriy V. Pershin, and Ivar Martin. "Electromechanical memcapacitor model offering biologically plausible spiking." Chaos, Solitons & Fractals 181 (April 2024): 114601. http://dx.doi.org/10.1016/j.chaos.2024.114601.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Butusov, Denis N., Valerii Y. Ostrovskii, Artur I. Karimov, and Valery S. Andreev. "Semi-Explicit Composition Methods in Memcapacitor Circuit Simulation." International Journal of Embedded and Real-Time Communication Systems 10, no. 2 (April 2019): 37–52. http://dx.doi.org/10.4018/ijertcs.2019040103.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Composition algorithms make up a prospective class of methods for solving ordinary differential equations. Their main advantage is an ability to retain some properties of the simulated continuous systems, e.g. phase space volume. Meanwhile, computational costs of composition solvers for non-Hamiltonian systems are high because the implicit midpoint rule should be used as a basic method. This also complicates the development of embedded applications based on the numerical solution of ODEs, such as hardware chaos generators. In this article, a new semi-explicit composition methods are proposed. The stability regions for different composition algorithms were plotted and a memcapacitor circuit was studied as a test problem. Computational experiments reveal the superior properties of semi-explicit composition algorithms as a hardware-targeted ODE solvers. The obtained results imply that the development of semi-explicit composition algorithms is a step towards construction a new generation of simulation software for nonlinear dynamical systems and embedded chaos generators.
31

Kebbati, Y., P. S. Allaume, and Y. Bennani. "Memristor, Memcapacitor, Meminductor : Models and Experimental Circuit Emulators." Engineering, Technology & Applied Science Research 12, no. 3 (June 6, 2022): 8683–87. http://dx.doi.org/10.48084/etasr.4882.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Before 1971, the number of passive electrical components was limited to three: resistor, capacitor, and inductor. In 1971, Pr. Chua predicted the existence of a fourth element, called memristor, since it corresponds to a resistor with memory behavior. Several years later, the concept of memory circuit was extended to capacitors and inductors. This paper proposes mathematical models for mem-elements, validated by Matlab and experimental circuit emulators for memcapacitor and meminductor. The experimental results show a good fit between theory, Ltspice simulations, and emulation circuits.
32

Babacan, Yunus. "An Operational Transconductance Amplifier-based Memcapacitor and Meminductor." Istanbul University - Journal of Electrical & Electronics Engineering 18, no. 1 (2018): 36–38. http://dx.doi.org/10.5152/iujeee.2018.1806.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Fouda, Mohamed E., and Ahmed G. Radwan. "Memcapacitor response under step and sinusoidal voltage excitations." Microelectronics Journal 45, no. 11 (November 2014): 1372–79. http://dx.doi.org/10.1016/j.mejo.2014.08.002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

M. Emara, Ahmed A., Mohamed M. Aboudina, and Hossam A. H. Fahmy. "Non-volatile low-power crossbar memcapacitor-based memory." Microelectronics Journal 64 (June 2017): 39–44. http://dx.doi.org/10.1016/j.mejo.2017.04.005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Yuan, Fang, Guangyi Wang, Yiran Shen, and Xiaoyuan Wang. "Coexisting attractors in a memcapacitor-based chaotic oscillator." Nonlinear Dynamics 86, no. 1 (June 13, 2016): 37–50. http://dx.doi.org/10.1007/s11071-016-2870-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Shen, Yiran, Guangyi Wang, Yan Liang, Simin Yu, and Herbert Ho-Ching Iu. "Parasitic Memcapacitor Effects on HP TiO2 Memristor Dynamics." IEEE Access 7 (2019): 59825–31. http://dx.doi.org/10.1109/access.2019.2914938.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Vista, John, and Ashish Ranjan. "Simple charge controlled floating memcapacitor emulator using DXCCDITA." Analog Integrated Circuits and Signal Processing 104, no. 1 (April 11, 2020): 37–46. http://dx.doi.org/10.1007/s10470-020-01650-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Petráš, Ivo. "Oscillators Based on Fractional-Order Memory Elements." Fractal and Fractional 6, no. 6 (May 24, 2022): 283. http://dx.doi.org/10.3390/fractalfract6060283.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This paper deals with the new oscillator structures that contain new elements, so-called memory elements, known as memristor, meminductor, and memcapacitor. Such circuits can exhibit oscillations as well as chaotic behavior. New mathematical models of fractional-order elements and whole oscillator circuits are proposed as well. An illustrative example to demonstrate the oscillations and the chaotic behavior through the numerical solution of the fractional-order circuit model is provided.
39

Guo, Zhang, Herbert H. C. Iu, Gangquan Si, Xiang Xu, Babajide Oluwatosin Oresanya, and Yiyuan Bie. "A Phasor Analysis Method for Charge-Controlled Memory Elements." International Journal of Bifurcation and Chaos 30, no. 14 (November 2020): 2030041. http://dx.doi.org/10.1142/s0218127420300414.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Memory elements, including memristor, memcapacitor, meminductor and second-order memristor, have been widely exploited recently to realize circuit systems for a broad scope of applications. This paper introduces a phasor analysis method for memory elements to help with the understanding of the complex nonlinear phenomena in circuits with memory elements. With the proposed method, all different memory elements could be described in a unified form and the series-connected circuit with memristor, memcapacitor, meminductor and second-order memristor could be simply modeled as one variable [Formula: see text]. Thus, the phasor vectors provided a way to conveniently calculate the [Formula: see text]–[Formula: see text] relation of different memory elements and to clearly understand the similarities and differences between all memory elements. Then some interesting phenomena were introduced when combining different memory elements. Moreover, a specific [Formula: see text] with certain [Formula: see text]–[Formula: see text] relations could be easily obtained with the method. And through the inverse calculation, the specific [Formula: see text] could be decomposed to a certain combination of memory elements. Meanwhile, the parameters of [Formula: see text] in the phasor domain were analyzed. Furthermore, the frequency characteristic for a [Formula: see text] circuit could be easily analyzed with the method and a particular series resonance was introduced.
40

Sinha, Anant, Bhawna Aggarwal, Shireesh Kumar Rai, and Shweta Gautam. "Current Conveyor Transconductance Amplifier (CCTA) based Grounded Memcapacitor Emulator." International Journal of Electrical and Electronics Research 10, no. 3 (September 30, 2022): 442–46. http://dx.doi.org/10.37391/ijeer.100306.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A new emulator circuit for designing memcapacitor is proposed in this work. The suggested circuit is designed using a current conveyor transconductance amplifier (CCTA), a memristor and a capacitor. Behaviour of the proposed circuit has been examined for a frequency range of 0.6Hz to 6.4Hz with the help of simulations performed in LTSPICE using TSMC 180nm process parameters. It has been observed that the area inside lobes reduces with increase in frequency. In comparison to other emulators reported in literature, the suggested circuit uses fewer passive components and does not require analog multipliers, thus making it simple to design. The correctness and efficacy of the proposed design are verified using transient analysis, non-volatility analysis, and pinched hysteresis loops.
41

Liu, Xingce, Xiuguo Bi, Huizhen Yan, and Jun Mou. "A Chaotic Oscillator Based on Meminductor, Memcapacitor, and Memristor." Complexity 2021 (December 23, 2021): 1–16. http://dx.doi.org/10.1155/2021/7223557.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this paper, a hyperchaotic circuit consisting of a series memristor, meminductor, and memcapacitor is proposed. The dimensionless mathematical model of the system is established by the state equation of the circuit. The stability of equilibrium point of the system is analyzed by using the traditional dynamic analysis method. Then, the dynamical characteristics of the chaotic system with parameters are analyzed in detail. In addition, the system also has some particular phenomena such as attractor coexistence and state transition. Finally, the circuit is realized by DSP, and the result is consistent with that of numerical simulation. This proves the accuracy of the theoretical analysis. Numerical simulation result shows which hyperchaotic system has very abundant dynamical characteristics.
42

Wang, Guang-Yi, Bo-Zhen Cai, Pei-Pei Jin, and Ti-Ling Hu. "Memcapacitor model and its application in a chaotic oscillator." Chinese Physics B 25, no. 1 (January 2016): 010503. http://dx.doi.org/10.1088/1674-1056/25/1/010503.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Martinez-Rincon, J., and Y. V. Pershin. "Bistable Nonvolatile Elastic-Membrane Memcapacitor Exhibiting a Chaotic Behavior." IEEE Transactions on Electron Devices 58, no. 6 (June 2011): 1809–12. http://dx.doi.org/10.1109/ted.2011.2126022.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Wang, X. Y., A. L. Fitch, H. H. C. Iu, and W. G. Qi. "Design of a memcapacitor emulator based on a memristor." Physics Letters A 376, no. 4 (January 2012): 394–99. http://dx.doi.org/10.1016/j.physleta.2011.11.012.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Ma, Xujiong, Jun Mou, Jian Liu, Chenguang Ma, Feifei Yang, and Xiu Zhao. "A novel simple chaotic circuit based on memristor–memcapacitor." Nonlinear Dynamics 100, no. 3 (April 24, 2020): 2859–76. http://dx.doi.org/10.1007/s11071-020-05601-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Yu, D. S., Y. Liang, H. Chen, and Herbert H. C. Iu. "Design of a Practical Memcapacitor Emulator Without Grounded Restriction." IEEE Transactions on Circuits and Systems II: Express Briefs 60, no. 4 (April 2013): 207–11. http://dx.doi.org/10.1109/tcsii.2013.2240879.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Rajagopal, Karthikeyan, Sajad Jafari, Anitha Karthikeyan, Ashokkumar Srinivasan, and Biniyam Ayele. "Hyperchaotic Memcapacitor Oscillator with Infinite Equilibria and Coexisting Attractors." Circuits, Systems, and Signal Processing 37, no. 9 (January 20, 2018): 3702–24. http://dx.doi.org/10.1007/s00034-018-0750-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Zhao, Lei, Zhen Fan, Shengliang Cheng, Lanqing Hong, Yongqiang Li, Guo Tian, Deyang Chen, et al. "An Artificial Optoelectronic Synapse Based on a Photoelectric Memcapacitor." Advanced Electronic Materials 6, no. 2 (December 15, 2019): 1900858. http://dx.doi.org/10.1002/aelm.201900858.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Zhu, Ying, Yongli He, Chunsheng Chen, Li Zhu, Huiwu Mao, Yixin Zhu, Xiangjing Wang, Yang Yang, Changjin Wan, and Qing Wan. "HfZrOx-based capacitive synapses with highly linear and symmetric multilevel characteristics for neuromorphic computing." Applied Physics Letters 120, no. 11 (March 14, 2022): 113504. http://dx.doi.org/10.1063/5.0084915.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A hardware based artificial neural network (ANN), which holds the potential to alleviate the computation load and energy of a digital computer, has propelled the development of memory devices that can resemble the synapse. Memcapacitors, especially based on ferroelectric materials, with theoretically no static power, nondestructive readout, and multiple polarization states, are expected to have good energy efficiency and endurance as emerging artificial synapses. However, conventional ferroelectric devices are characterized with extremely high remnant polarization, which requires high energy for polarization state updating and always leads to low linearity and symmetry in updating properties. Here, we show a memcapacitive synapse based on an Au/HfZrOx (HZO)/Au ferroelectric memcapacitor with moderate remnant polarization that can offer unexceptionable updating properties for building an ANN. The memcapacitor demonstrates more than 64 weight states with an ultralow weight updating energy of ≤3.0 fJ/ μm2. Both potentiation and depression synaptic characteristics show an ultralow non-linearity of <10−2. Based on these properties, a two-layer restricted Boltzmann machine is built based on this memcapacitive synapse, and it can be trained to reconstruct incomplete images. The reconstructed images show reduced Euclidean distance to originals in comparison with that of the incomplete images. Furthermore, the memcapacitive synapse is also tested by a handwritten digits recognition task based on a simple perceptron, and the pattern recognition accuracy is as high as 93.4%. These results indicate that the HZO-based capacitive synapse devices have great potential for future high-efficiency neuromorphic systems.
50

Guo, Mei, Ran Yang, Meng Zhang, Renyuan Liu, Yongliang Zhu, and Gang Dou. "A novel memcapacitor and its application in a chaotic circuit." Nonlinear Dynamics 105, no. 1 (June 28, 2021): 877–86. http://dx.doi.org/10.1007/s11071-021-06627-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії