Добірка наукової літератури з теми "Memcapaciteur"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Memcapaciteur".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Memcapaciteur":

1

Wang, Wei, Hui Xu, Yue Wei Hou, and Hai Jun Liu. "A Circuit Model of the Memcapacitor." Applied Mechanics and Materials 644-650 (September 2014): 3426–29. http://dx.doi.org/10.4028/www.scientific.net/amm.644-650.3426.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Since the manufacture of memcapacitor is complicated and memcapacitors are not commercially available yet, the memcapacitor models are of importance for the research on memcapacitor characteristics and its application. Based on the analysis of the mathematical model of the memcapacitor and its typical characteristics, the memcapacitor model is designed. Some simulation is done to validate the function of the proposed circuit model.
2

SAH, MAHESHWAR PD, RAM KAJI BUDHATHOKI, CHANGJU YANG, and HYONGSUK KIM. "EXPANDABLE CIRCUITS OF MUTATOR-BASED MEMCAPACITOR EMULATOR." International Journal of Bifurcation and Chaos 23, no. 05 (May 2013): 1330017. http://dx.doi.org/10.1142/s0218127413300176.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
An efficient method to build the expandable circuits of memcapacitor (MC) emulator in various configurations is proposed using our expandable memristor (MR) emulator. Most of the previous studies succeeded in designing only a stand-alone memcapacitor emulator. In this study, the expandable architecture of memcapacitor emulator is addressed, where the connectivity and interoperability are the main concern. It is shown that the memcapacitor circuits can be built only with memristors together with a single mutator, which is connected after each input source. Examples of serial, parallel and hybrid memcapacitor circuits are demonstrated in this paper. Also, it is shown that complicated circuits of Wye (Y) and Delta (Δ) memcapacitor connections with multiple input sources can be built with the proposed memcapacitor emulator. Various simulation results showing the proper operations of the proposed mutator-based expandable memcapacitor emulators are included in this paper.
3

Akgul, Akif. "Chaotic Oscillator Based on Fractional Order Memcapacitor." Journal of Circuits, Systems and Computers 28, no. 14 (February 20, 2019): 1950239. http://dx.doi.org/10.1142/s0218126619502396.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Many literatures have discussed fractional order memristor and memcapacitor-based chaotic oscillators but the entire oscillator model is considered to be of fractional order. My interest is to propose a nonlinear oscillator with considering only the memcapacitor element of fractional order. Hence, I propose a fractional order memcapacitor (FMC)-based novel chaotic oscillator. The complete mathematical model for the proposed oscillator is derived and presented in this paper. The dimensionless state equations are then analyzed by using the equilibrium points and their stability, Eigen values, Kaplan–Yorke dimensions and Lyapunov exponents. To understand the complete dynamical behavior, bifurcation graphs are obtained and presented. Finally, the proposed fractional memcapacitor oscillator is implemented by using the shelf components.
4

Mohamed, M. G. A., HyungWon Kim, and Tae-Won Cho. "Modeling of Memristive and Memcapacitive Behaviors in Metal-Oxide Junctions." Scientific World Journal 2015 (2015): 1–16. http://dx.doi.org/10.1155/2015/910126.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Memristive behavior has been clearly addressed through growth and shrinkage of thin filaments in metal-oxide junctions. Capacitance change has also been observed, raising the possibility of using them as memcapacitors. Therefore, this paper proves that metal-oxide junctions can behave as a memcapacitor element by analyzing its characteristics and modeling its memristive and memcapacitive behaviors. We develop two behavioral modeling techniques: charge-dependent memcapacitor model and voltage-dependent memcapacitor model. A new physical model for metal-oxide junctions is presented based on conducting filaments variations, and its effect on device capacitance and resistance. In this model, we apply the exponential nature of growth and shrinkage of thin filaments and use Simmons’ tunneling equation to calculate the tunneling current. Simulation results show how the variations of practical device parameters can change the device behavior. They clarify the basic conditions for building a memcapacitor device with negligible change in resistance.
5

Wang, Guangyi, Shiyi Jiang, Xiaowei Wang, Yiran Shen, and Fang Yuan. "A Novel Memcapacitor Model and Its Application for Generating Chaos." Mathematical Problems in Engineering 2016 (2016): 1–15. http://dx.doi.org/10.1155/2016/3173696.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Memristor and memcapacitor are new nonlinear devices with memory. We present a novel memcapacitor model that has the capability of capturing the behavior of a memcapacitor. Based on this model we also design a chaotic oscillator circuit that contains a HP memristor and the memcapacitor model for generating good pseudorandom sequences. Its dynamic behaviors, including equilibrium points, stability, and bifurcation characteristics, are analyzed in detail. It is found that the proposed oscillator can exhibit some complex phenomena, such as chaos, hyperchaos, coexisting attractors, abrupt chaos, and some novel bifurcations. Moreover, a scheme for digitally realizing this oscillator is provided by using the digital signal processor (DSP) technology. Then the random characteristics of the chaotic binary sequences generated from the oscillator are tested via the test suit of National Institute of Standards and Technology (NIST). The tested randomness definitely reaches the standards of NIST and is better than that of the well-known Lorenz system.
6

Yuan, Fang, Yuxia Li, Guangyi Wang, Gang Dou, and Guanrong Chen. "Complex Dynamics in a Memcapacitor-Based Circuit." Entropy 21, no. 2 (February 16, 2019): 188. http://dx.doi.org/10.3390/e21020188.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this paper, a new memcapacitor model and its corresponding circuit emulator are proposed, based on which, a chaotic oscillator is designed and the system dynamic characteristics are investigated, both analytically and experimentally. Extreme multistability and coexisting attractors are observed in this complex system. The basins of attraction, multistability, bifurcations, Lyapunov exponents, and initial-condition-triggered similar bifurcation are analyzed. Finally, the memcapacitor-based chaotic oscillator is realized via circuit implementation with experimental results presented.
7

Li, Chaobei, Chuandong Li, Tingwen Huang, and Hui Wang. "Synaptic memcapacitor bridge synapses." Neurocomputing 122 (December 2013): 370–74. http://dx.doi.org/10.1016/j.neucom.2013.05.036.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Biolek, D., Z. Biolek, and V. Biolkova. "SPICE modelling of memcapacitor." Electronics Letters 46, no. 7 (2010): 520. http://dx.doi.org/10.1049/el.2010.0358.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Wang, Guangyi, Chuanbao Shi, Xiaowei Wang, and Fang Yuan. "Coexisting Oscillation and Extreme Multistability for a Memcapacitor-Based Circuit." Mathematical Problems in Engineering 2017 (2017): 1–13. http://dx.doi.org/10.1155/2017/6504969.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The coexisting oscillations are observed with a memcapacitor-based circuit that consists of two linear inductors, two linear resistors, and an active nonlinear charge-controlled memcapacitor. We analyze the dynamics of this circuit and find that it owns an infinite number of equilibrium points and coexisting attractors, which means extreme multistability arises. Furthermore, we also show the stability of the infinite many equilibria and analyze the coexistence of fix point, limit cycle, and chaotic attractor in detail. Finally, an experimental result of the proposed oscillator via an analog electronic circuit is given.
10

Hosbas, Mehmet Ziya, Fırat Kaçar, and Abdullah Yesil. "Memcapacitor emulator using VDTA-memristor." Analog Integrated Circuits and Signal Processing 110, no. 2 (January 9, 2022): 361–70. http://dx.doi.org/10.1007/s10470-021-01974-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Memcapaciteur":

1

Cheng, Long. "Relaxor ferroelectrics for neuromorphic computing." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPAST073.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Pour surmonter les défis posés par les architectures traditionnelles de von Neumann, l'informatique neuromorphique s'inspire des sciences du cerveau pour créer du matérielécoénergétique adaptable à des tâches complexes. Les memristors, bien que novateurs,rencontrent des problèmes tels que la chaleur de Joule entravant le calcul neuronal à trèsbasse puissance.Pour remédier à cela, nous proposons un mécanisme de memcapacitor -la transition de phase induite par champ électrique. Les memcapacitors, qui expriment les signaux en tension, offrent une consommation d'énergie inférieure aux memristors (basés surle courant). Notre étude sur les matériaux ferroélectriques relaxeur (PMN-28PT, PZN-4.5PT) et le ferroélectrique conventionnel BTO (001) démontre la nature universelle des transitions de phase induites par champ électrique. Des impulsions personnalisées permettent la reproduction de la potentialisation à long terme (LTP), de la dépression à long terme (LTD) et de la plasticité dépendante du temps d'impulsion (STDP).De plus, les ferroélectriques relaxeur présentent un effet dendritique absent dans les contreparties conventionnelles. La mise en œuvre de dendrites PZN-4.5PT dans les réseaux neuronaux améliore la précision (83.44 %), surpassant les réseaux de memristors avec dendrites linéaires (81.84 %) et surpassant de manière significative les réseaux sans dendrites (80.1 %).En fin de compte, nous mettons en œuvre avec succès un memcapacitor relaxeur enutilisant un film mince PMN. Cette structure métal/ferroélectrique/métal/isolant atteint desétats capacitifs de 3 bits par le biais de transitions de phase induites par champ. 8 états memcapacitifs robustes présentent une maintenance cohérente sur plus de 100 secondes et une endurance exceptionnelle dépassant 5×10^5 cycles. Des impulsions sur mesure émulent efficacement LTP, LTD, et permettent l'exploration des fonctionnalités synaptiques dépendantes de la température
To overcome challenges posed by traditional von Neumann architectures, neuromorphic computing draws inspiration from brain science to create energy-efficient hardware adaptable to complex tasks. Memristors, though novel, face issues like Joule heat hindering ultra-low-power neural computing.To address this, we propose a memcapacitor mechanism - the electric-field-induced phase transition. Memcapacitors, expressing signals as voltage, offer lower power consumption than memristors (current-based). Our study on relaxor ferroelectric materials (PMN-28PT, PZN-4.5PT) and conventional ferroelectric BTO (001) demonstrates the universal nature ofelectric-field-induced phase transitions. Customized pulses enable the replication of long-term potentiation (LTP), depression (LTD), and spike-timing-dependent plasticity (STDP).Additionally, relaxor ferroelectrics exhibit a dendrite effect absent in conventional counterparts. Implementing PZN-4.5PT dendrites in neural networks improves accuracy (83.44%), surpassing memristor networks with linear dendrites (81.84%) and significantly outperforming networks without dendrites (80.1%).Ultimately, we successfully implement a relaxor memcapacitor using a PMN thin film.This metal/ferroelectric/metal/insulator structure achieves 3-bit capacitance states through field-induced phase transitions. 8 robust memcapacitive states exhibit consistent maintenance over 100 seconds and exceptional endurance exceeding 5×10^5cycles. Tailored pulses effectively emulate LTP and LTD, and enable the exploration of temperature-dependent synaptic functionalities
2

Teska, Tomáš. "Nízkopříkonové emulátory prvků vyššího řádu." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2013. http://www.nusl.cz/ntk/nusl-220222.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The thesis deals with emulating higher-order elements using the transformation mutators, which were described by Leon Chua in 1971. The procedure of designing mutators from their mathematical description to the synthesis of concrete electrical circuits is described. The circuit solutions are based on the utilization of advanced circuit principles in order to achieve optimal circuit performance. Mutators are implemented as a set of eight incremental modules. Via their cascade connection, it is possible to emulate arbitrary elements from the periodical table of higher-order elements. The proposed solutions are tested by means of computer simulations and also verified by measurements.

Книги з теми "Memcapaciteur":

1

Radwan, Ahmed G., and Mohammed E. Fouda. On the Mathematical Modeling of Memristor, Memcapacitor, and Meminductor. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-17491-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Radwan, Ahmed G., and Mohammed E. Fouda. On the Mathematical Modeling of Memristor, Memcapacitor, and Meminductor. Springer, 2015.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Radwan, Ahmed G., and Mohammed E. Fouda. On the Mathematical Modeling of Memristor, Memcapacitor, and Meminductor. Springer International Publishing AG, 2016.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Radwan, Ahmed G., and Mohammed E. Fouda. On the Mathematical Modeling of Memristor, Memcapacitor, and Meminductor. Springer, 2015.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Memcapaciteur":

1

Radwan, Ahmed G., and Mohammed E. Fouda. "Memcapacitor Based Applications." In Studies in Systems, Decision and Control, 187–205. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-17491-4_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Radwan, Ahmed G., and Mohammed E. Fouda. "Memcapacitor: Modeling, Analysis, and Emulators." In Studies in Systems, Decision and Control, 151–85. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-17491-4_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Setoudeh, Farbod, and Mohammad Matin Dezhdar. "An Overview of Sinusoidal Oscillators Based on Memristive Devices." In New Insights on Oscillators and Their Applications to Engineering and Science. IntechOpen, 2024. http://dx.doi.org/10.5772/intechopen.111807.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Memristive devices include memristor, memcapacitor, and meminductor. Due to the adjustable resistance of the memristor, adjustable capacity of memcapacitor and adjustable inductance of meminductor, these devices can be used in the design of many analog circuits, including sinusoidal oscillators. Designing and implementation of a low-frequency voltage-controlled oscillator to achieve a wide tuning range, while meeting practical constraints such as small area and low power consumption, is a challenge. This challenge is overcome by replacing the resistors that occupy a large Silicon area in the conventional design with memristors, and hence smaller values of capacitances are used. Therefore, this chapter proposes and characterizes an overview of the implementation of memristive-based oscillators that are used in Electrical Neural Stimulation. In this chapter, an overview of the use of memristive devices in the design of sinusoidal oscillators and voltage-controlled oscillators is presented.
4

"Design of a Memcapacitor Emulator Based on a Memristor." In World Scientific Series on Nonlinear Science Series A, 69–83. WORLD SCIENTIFIC, 2013. http://dx.doi.org/10.1142/9789814383394_0005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

"Practical Realization of an Analog Model of a Memcapacitor." In World Scientific Series on Nonlinear Science Series A, 84–98. WORLD SCIENTIFIC, 2013. http://dx.doi.org/10.1142/9789814383394_0006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Akgul, Akif, Murat Erhan Cimen, Irene M. Moroz, and Ali Fuat Boz. "The modeling of memcapacitor oscillator motion with ANN and its nonlinear control application." In Mem-elements for Neuromorphic Circuits with Artificial Intelligence Applications, 99–123. Elsevier, 2021. http://dx.doi.org/10.1016/b978-0-12-821184-7.00013-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Memcapaciteur":

1

Hamed, Esraa M., Somia H. Rashad, Lobna A. Said, Ahmed G. Radwan, and Ahmed H. Madian. "Memcapacitor based charge pump." In 2017 6th International Conference on Modern Circuits and Systems Technologies (MOCAST). IEEE, 2017. http://dx.doi.org/10.1109/mocast.2017.7937673.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Madian, A. H., S. H. Moustafa, and H. E. El-Kolaly. "Memcapacitor based CMOS neural amplifier." In 2014 IEEE 57th International Midwest Symposium on Circuits and Systems (MWSCAS). IEEE, 2014. http://dx.doi.org/10.1109/mwscas.2014.6908441.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Chen, Luqiu, Guangdi Feng, Jianquan Liu, Shenglan Hao, Qiuxiang Zhu, Bobo Tian, and Chungang Duan. "Ferroelectric Polarization Assisted Trapping Memcapacitor." In 2023 IEEE 6th International Conference on Electronic Information and Communication Technology (ICEICT). IEEE, 2023. http://dx.doi.org/10.1109/iceict57916.2023.10245302.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Fitch, A. L., H. H. C. Iu, and D. S. Yu. "Chaos in a memcapacitor based circuit." In 2014 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2014. http://dx.doi.org/10.1109/iscas.2014.6865177.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Zhiheng Hu, Yingxiang Li, Li Jia, and Juebang Yu. "Chaotic oscillator based on voltage-controlled memcapacitor." In 2010 International Conference on Communications, Circuits and Systems (ICCCAS). IEEE, 2010. http://dx.doi.org/10.1109/icccas.2010.5581863.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Zhiheng Hu, Yingxiang Li, Li Jia, and Juebang Yu. "Chaos in a charge-controlled memcapacitor circuit." In 2010 International Conference on Communications, Circuits and Systems (ICCCAS). IEEE, 2010. http://dx.doi.org/10.1109/icccas.2010.5581864.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Yu, Dongsheng, Zhi Zhou, Herbert H. C. Iu, and Tyrone Fernando. "A coupled memcapacitor emulator based relaxation oscillator." In 2016 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2016. http://dx.doi.org/10.1109/iscas.2016.7539198.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Min, Jiyoung, Sunmean Kim, and Seokhyeong Kang. "Memcapacitor based Minimum and Maximum Gate Design." In 2021 18th International SoC Design Conference (ISOCC). IEEE, 2021. http://dx.doi.org/10.1109/isocc53507.2021.9613984.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Yener, Suayb Cagri, and Resat Mutlu. "Small signal model of memcapacitor-inductor oscillation circuit." In 2017 Electric Electronics, Computer Science, Biomedical Engineerings' Meeting (EBBT). IEEE, 2017. http://dx.doi.org/10.1109/ebbt.2017.7956774.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Fouda, Mohammed, and Ahmed Radwan. "On the mathematical modeling of memcapacitor bridge synapses." In 2014 26th International Conference on Microelectronics (ICM). IEEE, 2014. http://dx.doi.org/10.1109/icm.2014.7071834.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії