Статті в журналах з теми "Melt transfer"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Melt transfer.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Melt transfer".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

RATTEE, I. D. "Melt-transfer and Film-release Systems of Transfer Printing." Journal of the Society of Dyers and Colourists 93, no. 5 (October 22, 2008): 190–94. http://dx.doi.org/10.1111/j.1478-4408.1977.tb03342.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kisters, A. F. M., R. A. Ward, C. J. Anthonissen, and M. E. Vietze. "Melt segregation and far-field melt transfer in the mid-crust." Journal of the Geological Society 166, no. 5 (September 2009): 905–18. http://dx.doi.org/10.1144/0016-76492009-012.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Taylor, John A., M. Prakash, G. G. Pereira, P. Rohan, Michael Lee, and Barbara Rinderer. "Predicting Dross Formation in Aluminium Melt Transfer Operations." Materials Science Forum 630 (October 2009): 37–44. http://dx.doi.org/10.4028/www.scientific.net/msf.630.37.

Повний текст джерела
Анотація:
Aluminium melt transfer operations can lead to significant amounts of dross formation as a result of chemical oxidation and physical entrapment processes. It has been suggested that these activities may contribute up to 50% of the total metal loss of ~1% in a typical primary aluminium smelter (i.e. 2,500 tonne/annum (tpa) in a smelter of 500,000tpa output). This is a large financial loss to any company, and also, in the new CO2-conscious era, it also represents a significant carbon footprint to ameliorate. A significant proportion of this metal loss may be prevented by adopting more efficient melt transfer strategies that reduce splashing and turbulence thereby resulting in reduced oxide and therefore dross formation. Optimisation of such systems is normally achieved by trial-and-error approaches, however a clear opportunity exists for rapid optimisation by employing computational modelling to explore the effects of changed equipment design and process conditions, such as tilt speed, spout height, spout geometry, etc. In the present paper, the Smoothed Particle Hydrodynamics (SPH) modeling method is used to predict the amount of oxide generated during molten metal transfers from a 500kg capacity tilting crucible furnace into a heated sow mould. Various conditions were tested. An oxidation model based on skimming trials performed in a laboratory-scale (8kg) oxidation rig is employed in the simulation. The predicted oxide from the simulations is compared against those of the experimental pours. It is anticipated that the validated model will be used for modifying the design and optimizing the operation of various melt transfer operations occurring in the aluminium industry.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kim, Kwang-Joo, and Alfons Mersmann. "Direct Contact Heat Transfer in Melt Crystallization." JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 31, no. 4 (1998): 527–35. http://dx.doi.org/10.1252/jcej.31.527.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Baram, J. "Heat transfer characteristics in centrifuge melt-spinning." Journal of Materials Science 23, no. 10 (October 1988): 3656–59. http://dx.doi.org/10.1007/bf00540509.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kuhn, M. "Micro-Meteorological Conditions for Snow Melt." Journal of Glaciology 33, no. 113 (1987): 24–26. http://dx.doi.org/10.1017/s002214300000530x.

Повний текст джерела
Анотація:
AbstractThe energy budget of a snow or ice surface is determined by atmospheric variables like solar and atmospheric long-wave radiation, air temperature, and humidity; the transfer of energy from the free atmosphere to the surface depends on the stability of the atmospheric boundary layer, where vertical profiles of wind speed and temperature determine stability, and on surface conditions like surface temperature (and thus surface humidity), roughness, and albedo.This paper investigates the conditions exactly at the onset or the end of melting using air temperature, humidity, and as the radiation term the sum of global and reflected short-wave plus downward long-wave radiation. For the turbulent exchange in the boundary layer, examples are computed with a transfer coefficient of 18.5 W m−2K−1which corresponds to the average over the ablation period on an Alpine glacier. Ways to estimate the transfer coefficient for various degrees of stability are indicated in the Appendix.It appears from such calculations that snow may melt at air temperatures as low as –10°C and may stay frozen at +10°C.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kuhn, M. "Micro-Meteorological Conditions for Snow Melt." Journal of Glaciology 33, no. 113 (1987): 24–26. http://dx.doi.org/10.3189/s002214300000530x.

Повний текст джерела
Анотація:
AbstractThe energy budget of a snow or ice surface is determined by atmospheric variables like solar and atmospheric long-wave radiation, air temperature, and humidity; the transfer of energy from the free atmosphere to the surface depends on the stability of the atmospheric boundary layer, where vertical profiles of wind speed and temperature determine stability, and on surface conditions like surface temperature (and thus surface humidity), roughness, and albedo.This paper investigates the conditions exactly at the onset or the end of melting using air temperature, humidity, and as the radiation term the sum of global and reflected short-wave plus downward long-wave radiation. For the turbulent exchange in the boundary layer, examples are computed with a transfer coefficient of 18.5 W m−2 K−1 which corresponds to the average over the ablation period on an Alpine glacier. Ways to estimate the transfer coefficient for various degrees of stability are indicated in the Appendix.It appears from such calculations that snow may melt at air temperatures as low as –10°C and may stay frozen at +10°C.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Westerberg, K. W., and B. A. Finlayson. "HEAT TRANSFER TO SPHERES FROM A POLYMER MELT." Numerical Heat Transfer, Part A: Applications 17, no. 3 (April 1990): 329–48. http://dx.doi.org/10.1080/10407789008944746.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Yang, Youqing, Zhen Chen, and Yuwen Zhang. "Melt flow and heat transfer in laser drilling." International Journal of Thermal Sciences 107 (September 2016): 141–52. http://dx.doi.org/10.1016/j.ijthermalsci.2016.04.006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

McFadden, R. R., C. Teyssier, C. S. Siddoway, D. L. Whitney, and C. M. Fanning. "Oblique dilation, melt transfer, and gneiss dome emplacement." Geology 38, no. 4 (April 2010): 375–78. http://dx.doi.org/10.1130/g30493.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Maebius, R. E. "The effects of heat transfer in melt spinning." Journal of Applied Polymer Science 30, no. 4 (April 1985): 1639–52. http://dx.doi.org/10.1002/app.1985.070300429.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Vetrova, D. A., and S. A. Kuznetsov. "Composition of outer sphere cations and the charge transfer kinetics of the Ti (IV)/Ti (III) redox couple in the KCl—KF melt." Transaction Kola Science Centre 11, no. 3-2020 (November 25, 2020): 33–38. http://dx.doi.org/10.37614/2307-5252.2020.3.4.006.

Повний текст джерела
Анотація:
The charge transfer kinetics for the redox couple Ti(IV)/Ti(III) in the KCl —KF (10 wt. %) —K2TiF6was studied by cyclic voltammetry method. The influence of strongly polarizing Mg2+, Ca2+, Sr2+and Ba2+cations on the kinetics of charge transfer for the Ti(IV)/Ti(III) redox couple upon their introduction into the initial melt, was studied. The activation energies of the charge transfer process for the initial melt and for the melt with the addition of alkaline earth metal cations were calculated.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Yaroshenko, Yu G., V. S. Shvydkii, N. A. Spirin, and V. V. Lavrov. "Steady heat transfer in melt-irrigated blast-furnace zone." Steel in Translation 46, no. 2 (February 2016): 88–92. http://dx.doi.org/10.3103/s0967091216020170.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

SUZUKI, Toshio, Yasunori MIYATA, Hiroshi SAKUTA, and Mutuhiko OHTA. "Measurement of Heat Transfer Coefficient between Melt and Chill." Tetsu-to-Hagane 73, no. 2 (1987): 289–96. http://dx.doi.org/10.2355/tetsutohagane1955.73.2_289.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Kim, Jueun, Jeyon Chung, Jinho Hyon, Chunhee Seo, Jihye Nam, and Youngjong Kang. "Heterogeneous Charge-Transfer Nanorods by Strained Melt-Molding Lithography." Journal of Nanoscience and Nanotechnology 16, no. 3 (March 1, 2016): 2715–18. http://dx.doi.org/10.1166/jnn.2016.11100.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Taylor, M. P., and B. J. Welch. "Melt/freeze heat transfer measurements in cryolite-based electrolytes." Metallurgical Transactions B 18, no. 2 (June 1987): 391–98. http://dx.doi.org/10.1007/bf02656158.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Mizushina, Takahiro. "Hardcopy. Hardcopy Systems. The Hot Melt Thermal Transfer Method." Journal of the Institute of Television Engineers of Japan 49, no. 7 (1995): 846–49. http://dx.doi.org/10.3169/itej1978.49.846.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Chung, B. T. F., and V. Iyer. "Heat transfer from moving fibers in melt spinning process." Journal of Applied Polymer Science 44, no. 4 (February 5, 1992): 663–70. http://dx.doi.org/10.1002/app.1992.070440413.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Qi, Zhao Hui, Bao Hong Sun, and Ling Yan Xu. "Numerical Simulation of Heat Transfer and Fluid Flow in Glass Tank Furnace after Bubbling." Advanced Materials Research 328-330 (September 2011): 426–30. http://dx.doi.org/10.4028/www.scientific.net/amr.328-330.426.

Повний текст джерела
Анотація:
Numerical method to simulate the effect of air bubblers on glass melt flow and heat transfer in glass tank furnace is presented in this paper. The numerical simulation is preformed by using Gambit and Fluent software. Results of numerical simulation for glass melt flow and heat transfer with and without air bubbling technology are compared. The roles of stirring air bubblers installed in different locations played are discussed. The results show that mathematical model established in this paper can better simulate the glass melt circulation and heat transfer in glass tank furance, and air bubbler has a significant effect on glass melt circulation and heat transfer, and the best installation locations should be chosen by calculating in order to make full use of the air bubblers. Air bubbling technology will improve the quality of glass obviously if it is used properly. The results obtained can provide reference for engineering design of glass tank furnaces.
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Wang, Yu, Minqiang Gao, Bowei Yang, Jingyuan Bai, and Renguo Guan. "A Calculation Model for Cooling Rate of Aluminum Alloy Melts during Continuous Rheo-Extrusion." Materials 14, no. 19 (September 29, 2021): 5684. http://dx.doi.org/10.3390/ma14195684.

Повний текст джерела
Анотація:
The melt temperature of aluminum alloys plays a significant role in determining the microstructure characteristic during continuous rheo-extrusion. However, it is difficult to measure the actual melt temperature in the roll-shoe gap. In this work, based on the basic theory of heat transfer, a calculation model for heat transfer coefficient of cooling water/roll interface and melt/roll interface is established. In addition, the relationship between the temperature at the melt/roll interface and the velocity of cooling water is investigated. Combined with the CALPHAD calculation, the melt temperature during solidification in the continuous rheo-extrusion process is calculated. Using this model, the cooling rate of an Al–6Mg (wt.%) alloy melt prepared by continuous rheo-extrusion is estimated to be 10.3 K/s. This model used to determine the melt parameters during solidification provides a reference for optimizing the production process of continuous rheo-extrusion technology.
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Kärnä, Aki, Mika Järvinen, and Timo Fabritius. "Supersonic Lance Mass Transfer Modelling." Materials Science Forum 762 (July 2013): 686–90. http://dx.doi.org/10.4028/www.scientific.net/msf.762.686.

Повний текст джерела
Анотація:
Numerical models of steelmaking processes are essential tools for process development and optimisation. A usable model is detailed enough to provide reliable results and not to slow to run. In order to make a fast and accurate model of a single process, all model parameters must be known well. This can be achieved by first simulating detailed models from which the parameters are obtained.In many converter processes oxygen is delivered into melt by supersonic top lance blowing. When such process is modeled, a model describing mass transfer from the lance into melt surface is needed.This paper describes numerical modeling of mass transfer by supersonic lances. Lance flow CFD models are used to determine mass transfer coefficients for typical lance applications. Models are validated with supersonic nozzle data and wall impinging jet mass transfer data from literature. The results are later used in fast process simulation models.
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Zhou, Zhi Ming, Wei Jiu Huang, M. Deng, Min Min Cao, Li Wen Tang, Jing Luo, Xiao Ping Li, and Hua Xia. "Numerical Simulation on Rapidly Solidified Melt Spinning CuFe10 Alloys." Advanced Materials Research 228-229 (April 2011): 416–21. http://dx.doi.org/10.4028/www.scientific.net/amr.228-229.416.

Повний текст джерела
Анотація:
The numerical simulation model of single roller rapid solidification melt-spinning CuFe10 alloys was built in this paper. The vacuum chamber, cooling roller and sample were taken into account as a holistic heat system. Based on the heat transfer theory and liquid solidification theory, the heat transfer during the rapids solidification process of CuFe10 ribbons prepared by melt spinning can be approximately modeled by one-dimensional heat conduction equation, so that the temperature distribution and the cooling rate of the ribbon can be determined by the integration of this equation. The simulative results are coincident very well with the microstructure of rapid solidification melt spinnng CuFe10 alloys at three different wheel speeds 4, 12 and 36 m/s.
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Matychak, Ya, O. Yeliseyeva, V. Fedirko, and V. Tsisar. "Peculiarities of Diffusion Mass Transfer in System Fe[Cr]-Pb[O]." Defect and Diffusion Forum 237-240 (April 2005): 733–38. http://dx.doi.org/10.4028/www.scientific.net/ddf.237-240.733.

Повний текст джерела
Анотація:
Process of high-temperature (650°С) interaction of Cr(Si)-containing steel EP-823 with stagnant Pb melt containing oxygen (CО[Pb] » 10-5 - 10-6 mass.%) was theoretically and experimentally investigated. The structure and composition of oxide layer formed on the steel surface during exposure to Pb melt was examined. It is determined that thin (£ 1000 Å) Cr(Si) - rich oxide layer is formed on the steel surface in the early stages of oxidation. Oxide layer is being formed intensively over the grain boundaries followed by a lateral diffusion of Cr and spreading of Cr2O3 over alloy surface. Iron diffuses through the Cr(Si) - rich continuous oxide layer in the course of time. The formed oxide layer protects the steel against liquid metal penetration. Kinetics of iron diffusion dissolution in the liquid Pb is analytically described taking into account the chemical interaction between iron and oxygen. It is assumed that oxygen ions serves as a “traps” for iron ions and eliminates them from the diffusion flux. Fe−O complexes are considered as separate slowmoving components of the melt. In order to formulate the diffusion problem equations with additional parameter describing the volume reaction between Fe and O in melt and boundary conditions involved the time dependence of oxygen concentration at the interface of both melt and solid metal sides were used. Result is obtained in analytical form using the Laplace transformation. Analysis of obtained relations allow to assert that in the case of dissolution of iron in the lead melt containing “oxygen traps” the diffusion zone are less than that in the conditions of dissolution (without “traps”). However, the total concentration of iron both on surface of oxide layer and in the contact zone of melt is increased.
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Diener, Johann F. A., Richard W. White, and Timothy J. M. Hudson. "Melt production, redistribution and accumulation in mid-crustal source rocks, with implications for crustal-scale melt transfer." Lithos 200-201 (July 2014): 212–25. http://dx.doi.org/10.1016/j.lithos.2014.04.021.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Dixon, George S. "Phonon-Assisted Energy Transfer in Sol-Gel and Melt Glasses." Defect and Diffusion Forum 53-54 (January 1987): 133–38. http://dx.doi.org/10.4028/www.scientific.net/ddf.53-54.133.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Wei, Chin-Yi, and Tse-Fou Zien. "Integral Calculations of Melt-Layer Heat Transfer in Aerodynamic Ablation." Journal of Thermophysics and Heat Transfer 15, no. 1 (January 2001): 116–24. http://dx.doi.org/10.2514/2.6586.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Dumas, Jean-Pierre, Philippe Tordjeman, Youssef Zeraouli, and Frédéric Di Paolo. "Heat transfer model for the cooling of hot melt adhesives." Journal of Adhesion Science and Technology 12, no. 4 (January 1998): 399–413. http://dx.doi.org/10.1163/156856198x00119.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Tkatch, V. I., A. M. Grishin, and V. V. Maksimov. "Estimation of the heat transfer coefficient in melt spinning process." Journal of Physics: Conference Series 144 (January 1, 2009): 012104. http://dx.doi.org/10.1088/1742-6596/144/1/012104.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Touret, J. L. R. "Mantle to lower-crust fluid/melt transfer through granulite metamorphism." Russian Geology and Geophysics 50, no. 12 (December 2009): 1052–62. http://dx.doi.org/10.1016/j.rgg.2009.11.004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Kobayashi, Sumio. "Heat transfer through the melt in a silicon Czochralski process." Journal of Crystal Growth 99, no. 1-4 (January 1990): 692–95. http://dx.doi.org/10.1016/s0022-0248(08)80008-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Sawada, Kayo, Takahiro Shimada, Takeshi Tsukada, Satoshi Komamine, and Eiji Ochi. "Transfer Rate of Ruthenium from Calcination Layer to Glass Melt." Procedia Chemistry 7 (2012): 599–603. http://dx.doi.org/10.1016/j.proche.2012.10.091.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Kobayashi, Sumio, Shunji Miyahara, Toshiyuki Fujiwara, Takayuki Kubo, and Hideki Fujiwara. "Turbulent heat transfer through the melt in silicon Czochralski growth." Journal of Crystal Growth 109, no. 1-4 (February 1991): 149–54. http://dx.doi.org/10.1016/0022-0248(91)90171-z.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

El-Mahallawy, N. A., and M. A. Taha. "Melt spinning of Al-Cu alloys: Modelling of heat transfer." Journal of Materials Science Letters 6, no. 8 (August 1987): 885–89. http://dx.doi.org/10.1007/bf01729858.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Zaĭkin, A. E., A. V. Levin, and A. L. Petrov. "Mass transfer in a melt under laser-arc interaction conditions." Soviet Journal of Quantum Electronics 22, no. 8 (August 31, 1992): 753–55. http://dx.doi.org/10.1070/qe1992v022n08abeh003590.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Bagryantsev, V. I., Z. Ya Pavlenko, A. V. Chevalkov, and N. A. Dvornikov. "Heat transfer in a melt flowing in a short sleeve." Refractories 35, no. 3 (March 1994): 102–6. http://dx.doi.org/10.1007/bf02306791.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Sortland, Øyvind Sunde, and Merete Tangstad. "Boron Removal from Silicon Melts by H2O/H2 Gas Blowing: Mass Transfer in Gas and Melt." Metallurgical and Materials Transactions E 1, no. 3 (June 17, 2014): 211–25. http://dx.doi.org/10.1007/s40553-014-0021-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Ma, Xiang Rong, Wu Zan, and Xin Liang Zhang. "Effect of Argon Gas Flow on the Thermal Field in a Directional Solidification System for Multi-Crystalline Silicon." Advanced Materials Research 690-693 (May 2013): 945–48. http://dx.doi.org/10.4028/www.scientific.net/amr.690-693.945.

Повний текст джерела
Анотація:
Directional Solidification System (DSS) is the commonly used casting station in the solar industry. In order to better understand the casting process, we carried out global simulations of heat transfer to investigate effect of argon gas flow on the thermal field in a directional solidification system for multi-crystalline silicon (mc-Si). The effect of argon gas flow on the global heat transfer and the melt convection are investigated. It was found that the heat transfer at the melt free surface due to the gas convection can not be neglected, though the argon gas flow contributes little to the global heat transfer at most radiative surfaces.
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Prostomolotov, A. I., and N. A. Verezub. "Application of Double Crucible in Cz Si Crystal Growth." Solid State Phenomena 178-179 (August 2011): 501–6. http://dx.doi.org/10.4028/www.scientific.net/ssp.178-179.501.

Повний текст джерела
Анотація:
The numerical modeling of melt flow, heat transfer and impurity (phosphorus) diffusion in the double crucible of "Redmet-90M" Cz puller was carried out in an application to a 200 mm diameter Si single crystal growth. The double crucible consists of two coaxial crucibles having different sizes: 490 mm (external) and 300 mm (internal) inner diameters. The bottom of internal crucible has a central hole of Do = 6 and 12 mm diameter for melt inflow from the external crucible. During crystal pulling the granulated Si was added in the external crucible and a melt of the internal crucible was doped by phosphorus. Three-dimensional features of a rotating melt flow affecting on heat transfer and impurity diffusion in the internal crucible were analyzed. In particular, the melt precession and thermal asymmetry near the liquid-solid interface (LSI) in the internal crucible are discussed. It is shown that a significant phosphorus losses caused by its evaporation from a melt surface may be compensated by additional phosphorus doping in the internal crucible.
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Meco, H., and Ralph E. Napolitano. "Upper-Bound Velocity Limit for Free-Jet Melt Spinning." Materials Science Forum 475-479 (January 2005): 3371–76. http://dx.doi.org/10.4028/www.scientific.net/msf.475-479.3371.

Повний текст джерела
Анотація:
The upper bound for the production of uniform amorphous ribbons during free-jet melt spinning is predicted by coupling a mass balance condition for the melt-pool with a simple boundary layer model for momentum transfer. The relationships between melt-pool length, ribbon thickness and wheel speed are investigated, and a criterion is developed for the onset of unsteady melt-pool behavior, which has previously been associated with increased surface roughness, porosity, and the formation of crystalline phases at high wheel speeds.
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Clason, C. C., D. W. F. Mair, P. W. Nienow, I. D. Bartholomew, A. Sole, S. Palmer, and W. Schwanghart. "Modelling the transfer of supraglacial meltwater to the bed of Leverett Glacier, Southwest Greenland." Cryosphere 9, no. 1 (January 22, 2015): 123–38. http://dx.doi.org/10.5194/tc-9-123-2015.

Повний текст джерела
Анотація:
Abstract. Meltwater delivered to the bed of the Greenland Ice Sheet is a driver of variable ice-motion through changes in effective pressure and enhanced basal lubrication. Ice surface velocities have been shown to respond rapidly both to meltwater production at the surface and to drainage of supraglacial lakes, suggesting efficient transfer of meltwater from the supraglacial to subglacial hydrological systems. Although considerable effort is currently being directed towards improved modelling of the controlling surface and basal processes, modelling the temporal and spatial evolution of the transfer of melt to the bed has received less attention. Here we present the results of spatially distributed modelling for prediction of moulins and lake drainages on the Leverett Glacier in Southwest Greenland. The model is run for the 2009 and 2010 ablation seasons, and for future increased melt scenarios. The temporal pattern of modelled lake drainages are qualitatively comparable with those documented from analyses of repeat satellite imagery. The modelled timings and locations of delivery of meltwater to the bed also match well with observed temporal and spatial patterns of ice surface speed-ups. This is particularly true for the lower catchment (<1000 m a.s.l.) where both the model and observations indicate that the development of moulins is the main mechanism for the transfer of surface meltwater to the bed. At higher elevations (e.g. 1250–1500 m a.s.l.) the development and drainage of supraglacial lakes becomes increasingly important. At these higher elevations, the delay between modelled melt generation and subsequent delivery of melt to the bed matches the observed delay between the peak air temperatures and subsequent velocity speed-ups, while the instantaneous transfer of melt to the bed in a control simulation does not. Although both moulins and lake drainages are predicted to increase in number for future warmer climate scenarios, the lake drainages play an increasingly important role in both expanding the area over which melt accesses the bed and in enabling a greater proportion of surface melt to reach the bed.
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Hurt, R. H., T. H. Fletcher, and R. S. Sampaio. "Heat Transfer From a Molten Phase to an Immersed Coal Particle During Devolatilization." Journal of Heat Transfer 115, no. 3 (August 1, 1993): 717–23. http://dx.doi.org/10.1115/1.2910743.

Повний текст джерела
Анотація:
In several developmental and commercial processes, coal particles come into direct contact with a high-temperature molten phase. These processes include molten carbonate coal gasification and bath smelting for the production of iron. Recently, real-time X-ray fluoroscopic images have been published that show volatile matter evolving rapidly from coal particles immersed in molten phases, displacing the surrounding melt and producing a periodic cycle of formation, rise, and detachment of gas cavities. The present work makes use of these observations to develop a model of heat transfer from the melt to particles undergoing gas evolution. The model is developed for the general case and applied to predict melt-particle heat transfer coefficients under conditions relevant to bath smelting processes. The model shows that the presence of the gas film can actually increase the overall heat transfer rate under certain conditions.
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Easton, Mark A., Mark A. Gibson, Maya Gershenzon, Gary Savage, Vinay Tyagi, Trevor B. Abbott, and Norbert Hort. "Castability of some Magnesium Alloys in a Novel Castability Die." Materials Science Forum 690 (June 2011): 61–64. http://dx.doi.org/10.4028/www.scientific.net/msf.690.61.

Повний текст джерела
Анотація:
This paper reports on the results of the castability of three MRI alloys (153A, 153M and 230D). MRI153A was found to cast best, with castings produced rated with a quality approaching AZ91. MRI230D produced the next best castings, whilst MRI153M showed the worst castability across a range of conditions. However, these alloys showed a tendency to build-up oxide in the melt transfer tube leading to melt transfer problems. This was particularly severe in MRI230D.
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Usov, Eduard V., Pavel D. Lobanov, Ilya A. Klimonov, Alexander E. Kutlimetov, Anton A. Butov, Vladimir I. Chukhno, Ivan G. Kudashov, Alexander I. Svetonosov, and Nikolay A. Pribaturin. "Numerical investigations of stainless steel melt motions on the surface of uranium dioxide." EPJ Web of Conferences 196 (2019): 00005. http://dx.doi.org/10.1051/epjconf/201919600005.

Повний текст джерела
Анотація:
The paper contains the results of numerical simulation of stainless steel melt motions on the surface of uranium dioxide. The investigations are performed for purposes of understanding of the fuel rod behavior during the core disruptive accident in the fast reactors. The systems of mass, energy and momentum conservation equations are solved to simulate melt motion on the surface of the fuel pin. Heat transfer and friction between melt and pin's surface and melt and coolant flow are taken into consideration. The dependences of mass of the melt and the features of the melt motion on coolant velocity and contact angle between melt and surface of the fuel rod are presented.
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Ungethüm, T., E. Spaniol, M. Hertel, and U. Füssel. "Analysis of metal transfer and weld geometry in hot-wire GTAW with indirect resistive heating." Welding in the World 64, no. 12 (September 3, 2020): 2109–17. http://dx.doi.org/10.1007/s40194-020-00986-0.

Повний текст джерела
Анотація:
Abstract In this publication, the different metal transfer modes of a hot-wire GTAW process with indirect resistive preheating of the wire are presented. The hot-wire GTAW process is characterized by an additional preheating unit that is used to heat the wire before it reaches the melt pool. Thus, to preheat the wire, the contact between the melt pool and the wire is not necessary. In order to examine the metal transfer of the wire, deposition welds are analysed using a high-speed camera with a laser light source as well as a data acquisition unit. The presented results comprise the impact analysis of the GTAW current, the hot-wire current, the wire feeding rate, the wire feeding angle as well as the wire feeding direction. The observed metal transfer modes can be characterized as either a constant melting bridge (cmb) between the wire and the melt pool or a recurring melting bridge (rmb). The analysis also reveals that the influence of the process parameters and thus the metal transfer mode on the bead properties is only marginal.
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Kukharev, A. L. "Characteristics of convective heat transfer in the melt of multi-electrode arc furnace." Vestnik IGEU, no. 2 (2020): 13–22. http://dx.doi.org/10.17588/2072-2672.2020.2.013-022.

Повний текст джерела
Анотація:
The modern direction of improving the technology of steel production in high-power arc furnaces is the intensification of magnetohydrodynamic effects for melt mixing. In this regard, it is relevant to study the characteristics of heat trans-fer in the melt of this furnace, taking into account the interaction of electrovortex and thermogravitational convection. The results were obtained using a three-dimensional mathematical model of magnetohydrodynamic and thermal pro-cesses, constructed using a non-inductive approximation, taking into account the k- turbulence model. As heat-generating sources, the model takes into account the heat flows from electric arcs and Joule heating. Processing of the results was carried out using visualization methods of vortex structures. A furnace design containing three arched and three bottom electrodes and providing the formation of additional electrovortex flows in the melt is proposed. It is shown that under the given simulation conditions and currents in 80 kA electrodes a multivortex flow is formed in the furnace melt as a result of the interaction of electrovortex and thermogravitational convection. Electrovortex convection dominates near the bath axis. Thermogravitational convection, due to uneven heating of the melt, leads to a reduction in the size of the main electrovortex flow and the formation of an additional flow near the side walls of the furnace. Maximum speeds of 2 m/s are fixed in the melt areas under electric arcs. In this case, the speed of the downward flow under the electric arcs decreases, and the speed of the upward flow in the region of the bottom elec-trodes increases. The effect of thermogravitational convection on the azimuthal melt flow is manifested mainly in the region of the bottom electrodes, leading to an increase in the azimuthal velocity and displacement of the vortices to the center of the bath. The verification of the proposed model was carried out by comparing the calculation results with the experimental data obtained in laboratory installations with various electrode arrangements. The results will be used to further improve the energy and design parameters of arc furnaces.
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Dosanjh, Sudip S. "Melt propagation in porous media." International Journal of Heat and Mass Transfer 32, no. 7 (July 1989): 1373–76. http://dx.doi.org/10.1016/0017-9310(89)90036-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Hao, Cheng Gang, De Zhi Li, and Jian Min Zeng. "Research on Porous Sprayer for Refining of Aluminium Melt." Advanced Materials Research 418-420 (December 2011): 1856–59. http://dx.doi.org/10.4028/www.scientific.net/amr.418-420.1856.

Повний текст джерела
Анотація:
The relationship among the transfer coefficient of hydrogen, the size and the moving velocity of bubbles has been obtained according to the transfer model of hydrogen in aluminum melt. The experiments were carried out to invetstigate the degassing efficiency of a porous sprayer immersed in the molten aluminum. The results indicate that refining of molten aluminum can be conducted with a porous sprayer that was immersed in the melt at one end and was connected with inert gas at another end through a pipe. The refining efficiency is affected by number of bubbles or size of bubbles and by floating speed of bubbles. The hydrogen concentration in aluminium melt decreases with the increasing of the spraying time. In the condition of 0.6 m3/h flowing rate and spraying time of 10 minutes, the removal rates of hydrogen and impurities are about 60 percent and 68 percent,respectively for A357 casting aluminium alloy.
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Nemtsev, V. A., H. Aniscovich, R. Biatsenia, D. Litouchyk, and A. G. Lukashevich. "Modeling of Heat Transfer Conjugate Problem in Research of Melt Solidification." Heat Transfer Research 39, no. 3 (2008): 229–39. http://dx.doi.org/10.1615/heattransres.v39.i3.40.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Zien, Tse-Fou, and Chin-Yi Wei. "Heat Transfer in the Melt Layer of a Simple Ablation Model." Journal of Thermophysics and Heat Transfer 13, no. 4 (October 1999): 450–59. http://dx.doi.org/10.2514/2.6483.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Prakash, Mahesh, Gerald G. Pereira, Paul W. Cleary, Patrick Rohan, and John A. Taylor. "Validation of SPH predictions of oxide generated during Al melt transfer." Progress in Computational Fluid Dynamics, An International Journal 10, no. 5/6 (2010): 319. http://dx.doi.org/10.1504/pcfd.2010.035365.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії