Добірка наукової літератури з теми "Measuring transducers"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Measuring transducers".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Measuring transducers"

1

Pistun, Ye P., H. F. Matiko, and H. B. Krykh. "STRUCTURAL AND PARAMETRIC OPTIMIZATION OF GAS-HYDRODYNAMIC MEASURING TRANSDUCERS OF PHYSICAL AND MECHANICAL PARAMETERS OF FLUIDS." Bulletin of Kyiv Polytechnic Institute. Series Instrument Making, no. 62(2) (December 24, 2021): 23–31. http://dx.doi.org/10.20535/1970.62(2).2021.249174.

Повний текст джерела
Анотація:
The article is devoted to improving the methods for building throttle diagrams of gas-hydrodynamic measuring transducers of physical and mechanical parameters of fluids. The authors reviewed modern throttle transducers of various parameters, built on different diagrams, with different numbers and types of throttle elements, with different output signals. We established that the goodness of the measuring transducer is determined both by the structural diagram and the design characteristics of the throttle elements of a specific measuring diagram. The article proposes using structural synthesis with parametric optimization to achieve the specified characteristics of the gas-hydrodynamic transducers. The aim is to develop an effective method for building throttle diagrams of gas-hydrodynamic measuring transducers of physical and mechanical parameters of fluids using structural optimization of diagrams and to evaluate each dia-gram using parametric optimization methods with the appropriate criterion that quantifies the goodness of the measur-ing transducer. To achieve this goal, the authors analyzed the criteria and resources of structural and parametric optimization of gas-hydrodynamic transducers. In particular, the following resources of structural synthesis of measuring transducers’ dia-grams are analyzed: diagram order and throttle arrangement, type of throttles, output signals, supply mode of the transducer. Approaches to parametric optimization of throttle diagrams are offered: based on the mathematical model, one defines the objective function, forms restrictions on variable and fixed values, substantiates optimization parameters, chooses the optimization method. As a result of the research, the authors developed a technique for structural and parametric optimization of gas-hydrodynamic measuring transducers, making it possible to synthesize throttle diagrams and build mathematical models of transducers of specific parameters of the fluid with optimal characteristics.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Pistun, Yevhen, Halyna Matiko, and Hanna Krykh. "Resources for structural optimization of gas-hydrodynamic measuring transducers." Energy engineering and control systems 7, no. 2 (2021): 136–43. http://dx.doi.org/10.23939/jeecs2021.02.136.

Повний текст джерела
Анотація:
The paper presents the analysis of the resources of structural and parametric optimization of gas-hydrodynamic measuring transducers of physical and mechanical parameters of fluids. Resources such as the number of throttles and their arrangement in the diagram, type of throttle elements, measuring channels with a certain type of output signal, the supply mode of the measuring transducer can be integrated into the design process of the measuring transducer of a specific parameter. A mathematical apparatus based on set theory and combinatorial analysis is proposed for synthesizing the possible structures of throttle diagrams, graph theory – for forming a set of measuring channels. The authors have given examples demonstrating the possibilities of building different diagrams of measuring transducers using the resources for structural synthesis. The proposed resources are the means of structural and parametric optimization for synthesizing the gas-hydrodynamic measuring transducers with optimal characteristics.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Slezinger, I. I. "Piezooptical measuring transducers." Measurement Techniques 28, no. 11 (November 1985): 987–92. http://dx.doi.org/10.1007/bf00868793.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Klaus, Leonard, Barbora Arendacká, Michael Kobusch, and Thomas Bruns. "Dynamic torque calibration by means of model parameter identification." ACTA IMEKO 4, no. 2 (June 29, 2015): 39. http://dx.doi.org/10.21014/acta_imeko.v4i2.211.

Повний текст джерела
Анотація:
For the dynamic calibration of torque transducers, a model of the transducer and an extended model of the mounted transducer including the measuring device have been developed. The dynamic behaviour of a torque transducer under test is going to be described by its model parameters. This paper describes the models with these known and unknown parameters and how the calibration measurements are going to be carried out. The principle for the identification of the transducer's model parameters from measurement data is described using a least squares approach. The influence of a variation of the transducer's parameters on the frequency response of the expanded model is analysed.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Yu, Jinpeng, Yan Zhou, Ni Mo, Zhe Sun, and Lei Zhao. "Theoretical and Experimental Analysis on the Influence of Rotor Non-Mechanical Errors of the Inductive Transducer in Active Magnetic Bearings." Sensors 18, no. 12 (December 11, 2018): 4376. http://dx.doi.org/10.3390/s18124376.

Повний текст джерела
Анотація:
Inductive transducers are widely applied to active magnetic bearings (AMBs). However, when the rotor rotates at a high speed, the rotor defects will affect the measuring signal (the magnetic field generated by transducer coils) and then reduce the transducer measuring accuracy. The rotor in AMBs is assembled with laminations, which will result in rotor non-mechanical errors. In this paper, rotor non-mechanical errors, including the anisotropic internal permeability and anisotropic surface conductivity, and their influence on double-pole variable-gap inductive transducers are explored in depth. The anisotropic internal permeability will affect the transducer measuring accuracy and bring about 1.3 ± 0.1 % measurement error. The anisotropic surface conductivity leads to different eddy currents around the rotor, influences the equivalent reluctance of the magnetic circuit, and then affectsthe transducer measuring accuracy. The experiments prove that rotor non-mechanical errors have a significant influence on transducer measurement accuracy, and the reduction of the transducer excitation frequency can reduce the measurement error and improve the AMB control performance.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Klaus, Leonard. "Model parameter identification from measurement data for dynamic torque calibration – Measurement results and validation." ACTA IMEKO 5, no. 3 (November 4, 2016): 55. http://dx.doi.org/10.21014/acta_imeko.v5i3.318.

Повний текст джерела
Анотація:
<p><span lang="EN-US">The dynamic calibration of torque transducers requires the </span><span lang="EN-GB">modelling</span><span lang="EN-US"> of the measuring device and of the transducer under test. The transducer's dynamic properties are described by means of model parameters, which are going to be identified from measurement data. To be able to do so, two transfer functions are calculated. In this paper, the transfer functions and the procedure for the model parameter identification are presented. Results of a parameter identification of a torque transducer are also given, and the validity of the identified parameters is </span><span lang="EN-GB">analysed</span><span lang="EN-US"> by comparing the results with independent measurements. The successful parameter identification is a prerequisite for a model-based dynamic calibration of torque transducers.</span></p>
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Klaus, Leonard, Thomas Bruns, and Michael Kobusch. "Modelling of a Dynamic Torque Calibration Device and Determination of Model Parameters." ACTA IMEKO 3, no. 2 (June 23, 2014): 14. http://dx.doi.org/10.21014/acta_imeko.v3i2.79.

Повний текст джерела
Анотація:
For the dynamic calibration of torque transducers, a calibration device has been developed. This paper describes the model of the measuring device and methods for the determination of its model parameters. The modelling of the calibration set-up is required for the identification of the corresponding model parameters of the torque transducer under test. These parameters describe the transducer's dynamic behaviour. Measurement methods and devices for the determination of mass moment of inertia and torsional stiffness are explained. This research is part of EMRP JRP IND09 - "Traceable Dynamic Measurement of Mechanical Quantities".
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Zheleznyak, V. K., V. B. Tolubko, L. P. Kriuchkova, and A. P. Provozin. "Rationale for the parameters of the measuring transducer in RFID technology with inductive coupling." Proceedings of the National Academy of Sciences of Belarus, Physical-Technical Series 64, no. 1 (March 28, 2019): 98–109. http://dx.doi.org/10.29235/1561-8358-2019-64-1-98-109.

Повний текст джерела
Анотація:
In the work the technology of radio-frequency identification of objects with inductive coupling is considered, using passive electric oscillating circuits tuned to fixed frequencies from the working frequency range as identification features of the object. The choice of the primary measuring transducer and the informative parameter is based on the results of the analysis of the system of inductively coupled active and passive electric oscillation circuits, known from the theory of radio engineering circuits. The parameters of the measuring transducer ensuring the fulfillment of the requirements for identification and localization of objects specified by technological conditions are substantiated. Factors that are potentially dangerous with respect to reducing the information reliability of the measuring transducer are considered, as well as the possibility of reducing their influence to a minimum. The problems of experimental research are formulated. It is shown that the analysis can be performed by software discrete adjustment of the primary measuring transducer and the generator feeding it. In this case, the task of increasing the speed is targeted at decreasing the duration of the step of tuning the primary measuring transducer. The required reliability of object identification is achieved by: ensuring high stability of the frequencies of the generator supplying the primary measuring transducer; accuracy and stability of tuning of the primary measuring transducer to the frequencies of the supplying generator; protection of the primary measuring transducer from the influence of interference generated by external sources and other measuring converters of the object identification system (electromagnetic compatibility of the object identification system); sufficient magnitude of the response of the primary measuring transducer to the introduction of passive electrical oscillation circuits; sufficient frequency tuning interval for passive electric oscillation circuits; accuracy and stability of tuning of passive electric oscillation circuits; stability of the detection threshold relative to the initial level of the informative parameter. Electromagnetic compatibility of measuring transducers, whose sensing elements are in the zone of mutual influence, is provided by synchronizing the operation of measuring transducers with shunting of inactive sensors, screening, mutual orientation and spacing of sensing elements.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Bishop, Craig T., and Mark A. Donelan. "Measuring waves with pressure transducers." Coastal Engineering 11, no. 4 (November 1987): 309–28. http://dx.doi.org/10.1016/0378-3839(87)90031-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Golovin, V. V., and K. P. Latyshenko. "Mathematical modeling of measuring transducers." Izvestiya MGTU MAMI 8, no. 3-3 (June 10, 2014): 25–31. http://dx.doi.org/10.17816/2074-0530-67520.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Measuring transducers"

1

Alcock, Robin D. "Transducers for measuring acoustic transients." Thesis, Loughborough University, 1997. https://dspace.lboro.ac.uk/2134/32473.

Повний текст джерела
Анотація:
This thesis is concerned with the design and development of measuring devices for the characterisation of acoustic transients with high temporal and spatial resolution. Three new techniques are demonstrated characterising acoustic transients generated by Nd-YAG laser (1060nm, 30ns, 55mJ) assisted breakdown of water and air. The first technique demonstrates the use of a high power semiconductor laser in a high speed multiple exposure imaging system. This system developed is capable of illuminating an event with up to 10 pulses of light at a maximum repetition rate of 5MHz, with a timing accuracy of ≈5ns. Each semiconductor laser light pulse has a FWHM duration of 50ns, peak power of 30W, and a wavelength of 860nm. Images of individual acoustic transients are displayed on the same CCD camera frame, and it was found that this is best achieved using a dark field imaging technique such as Schlieren imaging.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Paul, Van Emburg David. "Finite element model of a capacitive transducer for measuring surface motion." Thesis, Georgia Institute of Technology, 1992. http://hdl.handle.net/1853/17553.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zakharov, I. P., and P. Neyezhmakov. "Determination of the time constant of measuring transducers." Thesis, Zakharov I. Determination of the time constant of measuring transducers / I. Zakharov, P. Neyezhmakov // Measurement: sparking tomorrow’s smart revolution XXIII IMEKO World Congress “ August 30 September 3, 2021, Yokohama, Japan, 2021. https://openarchive.nure.ua/handle/document/18982.

Повний текст джерела
Анотація:
The methods for the experimental determination of the time constant of measuring transducers are described. The method is based on determining the parameters of the steady-state response of the measuring transducer using a periodic sequence of rectangular pulses of known time pulse and repetition period as an input signal. Expressions for determining the time constant for various response parameters: maximum, minimum, average, and average rectified values are given. The evaluation of the measurement uncertainty for each of the obtained expressions is made. The proposed method has high accuracy and low labour intensity in comparison with the known graph-analytical methods.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Qi, Haiming. "Analysis and design of a contact pressure distribution measuring system." Thesis, McGill University, 1987. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=64066.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Tychkov, V. V., and R. V. Trembovetskaya. "Calibration of ionometric transducers for information-measuring systems and automatic control systems in real mode." Thesis, Sumy State University, 2017. http://essuir.sumdu.edu.ua/handle/123456789/65151.

Повний текст джерела
Анотація:
Currently, there are a number of ways ISE calibrations, each of which depends on several factors: the amount and nature of the sample, frequency analysis, metrological characteristics and electrode-active properties of the material of the electrodes themselves. However, these calibration methods have limitations when used in the flow-injection analysis method (FIA).
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Karri, Avinash Wang Shuping. "Employment of dual frequency excitation method to improve the accuracy of an optical current sensor by measuring both current and temperature." [Denton, Tex.] : University of North Texas, 2008. http://digital.library.unt.edu/permalink/meta-dc-9766.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Souza, Matheus Oliveira. "Sensor de nível tipo deslocador com autocompensação da densidade do líquido." Pós-Graduação em Engenharia Elétrica, 2018. http://ri.ufs.br/jspui/handle/riufs/9568.

Повний текст джерела
Анотація:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
Level measurement plays a crucial role in a wide range of scientific and industrial applications, such as agriculture, hydrology, soil science, oil, pharmaceutical and food industries, among others. Due to the need of measuring level in different environments and for different liquids, granulated solids or powder, several sensors have been proposed to this end, for example, capacitive, infrared, hydrostatic, ultrasonic, radar, laser, optical, displacer, among others, each having its pros and cons. In particular, displacer-type level sensors are highly linear, precise and exact for a given working condition, in addition to having low cost and being easily installed. However, these sensors estimate liquid level indirectly by measuring the buoyancy forces on a displacer connected to a strain gauge, which makes it highly sensitive to variations in liquid density. As a consequence, it is also sensitive to variations in the liquid temperature, since the density is sensitive to temperature. This makes displacer level sensors unfeasible in industrial applications that do not keep such quantities in a range tight enough to ensure low measurement errors (e.g., oil, food and pharmaceutical industries). As a way to allow for the use of displacer-type level sensors in industrial applications, it is proposed in this work and it was also built a new displacer-type liquid level sensor self-compensating for liquid density. The proposed method uses the ratio between the buoyancy forces measured by two displacers and two load cells to make it density independent and, as a consequence, temperature invariant. Such characteristic is observed in the simulations results. The prototype experimental results show that the system has high linearity, it is able to mitigate the sensitivity to the density of the measurand, and it has potential to make precise measurements.
A medição de nível desempenha um papel crucial em várias aplicações industriais e científicas, tais como produção e refino do petróleo, agricultura, hidrologia, ciências do solo, indústrias alimentícias, indústrias farmacêuticas, dentre outras. Devido à necessidade de mensurar nível em ambientes distintos e para diferentes líquidos, sólidos granulados ou pó, vários sensores de nível têm sido desenvolvidos, por exemplo, o sensor capacitivo, infravermelho, hidrostático, ultrassônico, radar, laser, óptico, deslocador, dentre outros. Cada um com suas vantagens e desvantagens. Em particular, o sensor de nível tipo deslocador tem alta linearidade, precisão e exatidão, além de ser uma tecnologia de baixo custo e instalação simples. Entretanto, esse tipo de sensor estima o nível indiretamente medindo a força empuxo em um deslocador conectado a uma célula de carga, o que o torna muito sensível a variações na densidade do líquido. Como consequência, o mesmo também é sensível a variações na temperatura do líquido, pois a densidade é sensível à temperatura. Isso inviabiliza a aplicação dessa tecnologia em atividades que a densidade ou a temperatura do líquido não é mantida em uma faixa pequena de variação, como nas indústrias farmacêuticas, alimentícias e petrolíferas. Para viabilizar a aplicação do sensor de nível tipo deslocador em tais atividades, neste trabalho é proposto e construído um sensor de nível tipo deslocador com autocompensação da densidade do líquido. O método proposto usa a relação entre as forças de empuxo medidas por dois deslocadores e duas células de carga para tornar o sensor idealmente insensível às variações na densidade do líquido e, como consequência, insensível a variações na temperatura do líquido. Tal característica é observada nos resultados por simulação. Os resultados dos experimentos realizados com o protótipo mostram que o sistema tem alta linearidade, é capaz de mitigar a sensibilidade à densidade do líquido e tem potencial para fazer medições precisas.
São Cristóvão, SE
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Karri, Avinash. "Employment of dual frequency excitation method to improve the accuracy of an optical current sensor, by measuring both current and temperature." Thesis, University of North Texas, 2008. https://digital.library.unt.edu/ark:/67531/metadc9766/.

Повний текст джерела
Анотація:
Optical current sensors (OCSs) are initially developed to measure relatively large current over a wide range of frequency band. They are also used as protective devices in the event a fault occurs due to a short circuit, in the power generation and distribution industries. The basic principal used in OCS is the Faraday effect. When a light guiding faraday medium is placed in a magnetic field which is produced by the current flowing in the conductor around the magnetic core, the plane of polarization of the linearly polarized light is rotated. The angle of rotation is proportional to the magnetic field strength, proportionality constant and the interaction length. The proportionality constant is the Verdet constant V (λ, T), which is dependent on both temperature and wavelength of the light. Opto electrical methods are used to measure the angle of rotation of the polarization plane. By measuring the angle the current flowing in the current carrying conductor can be calculated. But the accuracy of the OCS is lost of the angle of rotation of the polarization plane is dependent on the Verdet constant, apart from the magnetic field strength. As temperature increases the Verdet constant decreases, so the angle of rotation decreases. To compensate the effect of temperature on the OCS, a new method has been proposed. The current and temperature are measured with the help of a duel frequency method. To detect the line current in the conductor or coil, a small signal from the line current is fed to the reference of the lock in. To detect the temperature, the coil is excited with an electrical signal of a frequency different from the line frequency, and a small sample of this frequency signal is applied to the reference of the lock in. The temperature and current readings obtained are look up at the database value to give the actual output. Controlled environment is maintained to record the values in the database that maps the current and temperature magnitude values at the DSP lock in amplifier, to the actual temperature and current. By this method we can achieve better compensation to the temperature changes, with a large dynamic range and better sensitivity and accuracy.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Merkle, Andrew Charles. "The Implementation of a Photoelectronic Motion Transducer for Measuring the Sub-Micrometer Displacements of Vestibular Bundles." Thesis, Virginia Tech, 2000. http://hdl.handle.net/10919/33170.

Повний текст джерела
Анотація:
The vestibular system is one of our main organs responsible for the sense of balance. This system is located within the inner ear and contains cells with ciliary bundles. These hair cells are transducers that convert a mechanical movement, detected by the bundle of cilia extending from their top surface, into an electrochemical signal to be sent to the brain. The bundles vary structurally within the organs of the inner ear, and this structural difference may play a role in the mechanical properties of each bundle. Analyzing the mechanical properties of the cells will provide information necessary for understanding the transduction process. In an effort to evaluate one of these properties, cell bundle stiffness, a system was designed to mechanically stimulate the bundles within their physiological range and then measure the resulting displacement. The mechanical stimulation was the result of a force applied to the tip of a bundle with the end of a glass whisker. The distance the base of the whisker moves is measured by an extrinsic Fabry-Perot interferometer (EFPI). The magnitude of this movement is compared with the amount the bundle is deflected, detected by a photoelectronic motion transducer (PMT). Knowing these displacements and the stiffness of the glass whisker, simple kinematics is used to determine the bundle stiffness. System tests were conducted on imitation bundles (whiskers of known stiffness) and the experimental stiffness differed from the known value by less than 4.5% for every test. These results lead us to conclude the system was in good working order and could be used to conduct tests on cell bundles. For tissue tests, this work focused on the hair cells located within the utricle, which senses linear accelerations of the head. Within the utricle, we examined two types of hair cells: non-striolar (medial type II) and striolar. Tests on twelve medial type II cells found bundles ranging in stiffness from 0.26 to 2.62 x 10-5 N/m. Results with striolar bundles provided a range from 2.83 to 27.10 x 10-5 N/m. The results of the preliminary tissue tests lead us to conclude that the average stiffness of the striolar and non-striolar bundles seems to vary by an order of magnitude. This is consistent with the relative relationship produced through a computer model. However, the model predicted larger stiffness values for both types of cells.
Master of Science
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Cortez, Ledesma Nicolás Eusebio [UNESP]. "Desenvolvimento e implementação de um sistema para detecção de falhas em estruturas usando microcontrolador." Universidade Estadual Paulista (UNESP), 2012. http://hdl.handle.net/11449/87057.

Повний текст джерела
Анотація:
Made available in DSpace on 2014-06-11T19:22:31Z (GMT). No. of bitstreams: 0 Previous issue date: 2012-02-29Bitstream added on 2014-06-13T19:08:03Z : No. of bitstreams: 1 cortezledesma_ne_me_ilha.pdf: 1539297 bytes, checksum: df4862f51083b9bb17731d2587b77d15 (MD5)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
O monitoramento de integridade estrutural (SHM) baseado na técnica da impedância eletromecânica (EMI) tem sido desenvolvido como uma ferramenta promissora para identificação de falhas estruturais. As aplicações típicas de SHM baseadas em EMI geralmente utilizam um analisador de impedância comercial de alto custo ou sistemas de medição baseados na função de resposta em frequência (FRF). Além do custo elevado, as exigências de capacidade de armazenamento e/ou processamento de dados desses instrumentos são características proibitivas para muitas aplicações. Trabalhos recentes mostram que não é preciso conhecer o valor exato da impedância eletromecânica da estrutura para monitorar sua integridade. Assim, neste trabalho é apresentado um sistema de SHM que permite detectar falhas em estruturas monitorando apenas as variações da tensão elétrica do transdutor. O sistema proposto é portátil, autônomo, rápido, versátil, de baixo custo e substitui com eficiência os instrumentos comerciais na fase de detecção de falhas. A identificação do dano é feita comparando-se as variações da tensão rms da resposta no tempo que um transdutor piezelétrico de PZT, colado na estrutura, fornece para cada frequência do sinal de excitação. Portanto, o sistema proposto não é limitado pela frequência de amostragem, dispensa algoritmos da transformada de Fourier e não exige um computador para processamento, operando de forma autônoma. Um protótipo de baixo custo usando circuitos integrados, um sintetizador digital e um microcontrolador foi construído e testado através de experimentos em estruturas de alumínio para a faixa de frequências a partir de 3 kHz até 50 kHz com boa precisão e estabilidade
Structural health monitoring (SHM) based on electromechanical impedance (EMI) technique has been developed as a promising tool for identifying structural damage. Typical applications in SHM based on EMI generally use high-cost commercial impedance analyzers or measurement systems based on frequency response function (FRF). Besides the high cost, the requirements for storage and/or data processing of these instruments are prohibitive features for many applications. Recent studies show that the exact value of the electromechanical impedance is not required for damage detection. Thus, this work presents a SHM system that can detect damage in structures only monitoring the changes in the voltage of the transducer. The proposed system is portable, autonomous, fast, versatile, low-cost and replaces efficiently commercial instruments in the damage detection stage. The identification of damage is done by comparing the variations in the rms voltage of time response signals from a piezoelectric transducer, such as PZT, bonded to the structure. Different time response signals are obtained for each frequency of the excitation signal. Therefore, the proposed system is not limited by the sampling frequency, dispenses Fourier transform algorithms and does not require a computer for processing, operating autonomously. A low-cost prototype using integrated circuits, a microcontroller and a digital synthesizer was built and tested through experiments with aluminum structures for frequencies ranging from 3 kHz to 50 kHz with good accuracy and stability
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Measuring transducers"

1

Horne, Douglas F. Measuring systems and transducers for industrial applications. Bristol: A. Hilger, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Transducers and their elements: Design and application. Englewood Cliffs, N.J: PTR Prentice Hall, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Jansen, John F. Use of force-measuring transducers in manipulator control. Part I - Theory. Oak Ridge, Tenn: Oak Ridge National Laboratory, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Khazan, Alexander D. Transducersand their elements: Design and application. Englewood Cliffs, N.J: PTR Prentice Hall, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Alcock, Robin Daniel. Transducers for measuring acoustic transients. 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Khazan, Alexander D. Transducers and Their Elements: Design and Application. Prentice Hall PTR, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Khazan, Alexander D. Transducers and Their Elements: Design and Application. Prentice Hall PTR, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Martin, R., and D. R. Allen. Measuring Boiler Tube Wall Thickness in Thermal Power Plants Using Electromagnetic Acoustic Transducers (EMATs). AEA Technology Plc, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Magee, Patrick, and Mark Tooley. Intraoperative monitoring. Edited by Jonathan G. Hardman. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780199642045.003.0043.

Повний текст джерела
Анотація:
Chapter 25 introduced some basic generic principles applicable to many measurement and monitoring techniques. Chapter 43 introduces those principles not covered in Chapter 25 and discusses in detail the clinical applications and limitations of the many monitoring techniques available to the modern clinical anaesthetist. It starts with non-invasive blood pressure measurement, including clinical and automated techniques. This is followed by techniques of direct blood pressure measurement, noting that transducers and calibration have been discussed in Chapter 25. This is followed by electrocardiography. There then follows a section on the different methods of measuring cardiac output, including the pulmonary artery catheter, the application of ultrasound in echocardiography, pulse contour analysis (LiDCO™ and PiCCO™), and transthoracic electrical impedance. Pulse oximetry is then discussed in some detail. Depth of anaesthesia monitoring is then described, starting with the electroencephalogram and its application in BIS™ monitors, the use of evoked potentials, and entropy. There then follow sections on gas pressure measurement in cylinders and in breathing systems, followed by gas volume and flow measurement, including the rotameter, spirometry, and the pneumotachograph, and the measurement of lung dead space and functional residual capacity using body plethysmography and dilution techniques. The final section is on respiratory gas analysis, starting with light refractometry as the standard against which other techniques are compared, infrared spectroscopy, mass spectrometry, and Raman spectroscopy (the principles of these techniques having been introduced in Chapter 25), piezoelectric and paramagnetic analysers, polarography and fuel cells, and blood gas analysis.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

An Experimental Design for Measuring In Situ Radiation Damage to a Piezoelectric Transducer. Storming Media, 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Measuring transducers"

1

Semenov, Andriy O., S. V. Baraban, O. V. Osadchuk, O. O. Semenova, K. O. Koval, and A. Yu Savytskyi. "Microelectronic Pyroelectric Measuring Transducers." In IFMBE Proceedings, 393–97. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31866-6_72.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ştefănescu, Dan Mihai. "Methods and Means for Measuring Cables Tension." In Handbook of Force Transducers, 107–12. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-35322-3_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ştefănescu, Dan Mihai. "General Classification of the Electrical Methods and Principles for Measuring Mechanical Quantities." In Handbook of Force Transducers, 29–40. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-35322-3_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Peters, M. "High Accuracy Calibration Methods for Force Transducers." In Mechanical Problems in Measuring Force and Mass, 227–36. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4414-5_27.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Maeng, Doo-Jin, Keon Kuk, Chang Seung Lee, Kyoung-Won Na, and Yong-Soo Oh. "Performance Improvement in Dome Jet Inkjet Print Head by Measuring Temperature of Heater." In Transducers ’01 Eurosensors XV, 882–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-59497-7_209.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ullerich, S., W. Mokwa, G. vom Bögel, and U. Schnakenberg. "A Foldable Artificial Lens with an Integrated Transponder System for Measuring Intraocular Pressure." In Transducers ’01 Eurosensors XV, 1196–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-59497-7_283.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Weiler, W. "Characteristic Data of Force Transducers Terms and Definitions." In Mechanical Problems in Measuring Force and Mass, 171–74. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4414-5_21.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Taymanov, Roald, and Ksenia Sapozhnikova. "Intelligence and Metrological Reliability of Measuring Transducers Built in Equipment." In Key Engineering Materials, 619–24. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-977-6.619.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Zabolotnyi, Oleksandr, Vitalii Zabolotnyi, and Nikolay Koshevoy. "Oil Products Moisture Measurement Using Adaptive Capacitive Instrument Measuring Transducers." In Lecture Notes in Networks and Systems, 81–91. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-66717-7_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Hellwig, R. H. "Development, Testing and Specifications of Super Precision Force Transducers for International Comparison Measurements." In Mechanical Problems in Measuring Force and Mass, 13–22. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4414-5_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Measuring transducers"

1

Liou, Jim C. P., and Guohua Li. "Transient Pressure Measurements by Recess-Mounted Transducers." In ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/fedsm2003-45252.

Повний текст джерела
Анотація:
Recess-mounted diaphragm-type pressure transducers are often used in measuring transient pressures. When the rise time of the source pressure is very fast, ringing of the transducer may occur. This study investigates the ringing of such a transducer numerically and experimentally for the purpose of developing a general method to recover transient source pressures. The approach is based on modeling the transient hydraulics of the measurement system. Favorable comparisons between the recovered pressure traces with those measured by a flush-mounted transducer were obtained. The proposed method makes recess-mounted transducers viable for measuring rapidly changing pressures in both liquid and gaseous media.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Gordiyenko, Y. Y., A. Y. Panchenko, A. I. Kocherzin, and A. A. Ryabukhin. "Microwave resonator transducers for moisture measuring." In 2000 10th International Crimean Microwave Conference. Microwave and Telecommunication Technology. Conference Proceedings. IEEE, 2000. http://dx.doi.org/10.1109/crmico.2000.1256219.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zakrzewski, J., J. Kwiczala, and H. Urzedniczok. "New magnetoelastic materials for force-measuring transducers." In Optoelectronic and Electronic Sensors II, edited by Zdzislaw Jankiewicz and Henryk Madura. SPIE, 1997. http://dx.doi.org/10.1117/12.266694.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Yurasova, E. V., and A. S. Volosnikov. "Expanding Functionality of “Angle-Parameter-Code” Measuring Transducers." In 2018 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM). IEEE, 2018. http://dx.doi.org/10.1109/icieam.2018.8728817.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Wu, Shilin, Qi Zhang, Zhiping Huang, and Jiulong Xiong. "Research on Frequency Characteristics of Spherical-Cymbal Transducers." In 2009 International Conference on Measuring Technology and Mechatronics Automation. IEEE, 2009. http://dx.doi.org/10.1109/icmtma.2009.335.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Liu, Yi, Lawrence C. Lynnworth, Toan H. Nguyen, Dean Xiao, and Jeffrey Walters. "Ultrasonic Transducers for Measuring Air Flow Near One Bar and High-Temperature Fluid Flows up to 100 Bar." In 1996 1st International Pipeline Conference. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/ipc1996-1915.

Повний текст джерела
Анотація:
For ultrasonically measuring the flow of air at ordinary conditions in common pipe sizes, a simple 100-kHz transducer design often suffices, as the generator and detector of the contrapropagating waves. To prevent crosstalk, acoustic isolation is needed. Isolation can be provided by supporting each transducer between soft O-rings. When the gas is hazardous, corrosive, and at high temperature or high pressure, more rugged transducers are required. One such rugged design consists of one buffer rod inside a permanent pressure boundary. The transducer is always outside the pressure boundary and can be removed without recourse to isolation valves and insertion mechanisms.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Askov, J. B., M. O. Jensen, J. L. Hoenge, H. Nygaard, J. M. Hasenkam, and S. L. Nielsen. "Miniature Transducer for Chordal Force Measurements In Vivo." In ASME 2010 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2010. http://dx.doi.org/10.1115/sbc2010-19181.

Повний текст джерела
Анотація:
The objective of this study was to develop a miniature force transducer capable of measuring tension in chordae tendineae (CT). The force transducer should be small in size compared with former CT force transducers [1;2] while not compromising implantation, durability and sensitivity.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Godovitsyn, I. V., V. S. Sukhanov, and D. V. Gusev. "Test and measuring complex for high-temperature pressure transducers." In Научные тенденции: Вопросы точных и технических наук. ЦНК МОАН, 2018. http://dx.doi.org/10.18411/spc-12-10-2018-02.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

van Neer, P. L. M. J., H. J. Vos, M. G. Danilouchkine, and N. de Jong. "Simple method for measuring phase transfer functions of transducers." In 2010 IEEE Ultrasonics Symposium (IUS). IEEE, 2010. http://dx.doi.org/10.1109/ultsym.2010.5935890.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ray, W. F. "Rogowski transducers for measuring large magnitude short duration pulses." In IEE Symposium Pulsed Power 2000. IEE, 2000. http://dx.doi.org/10.1049/ic:20000292.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Measuring transducers"

1

Diebel, Dean L., and A. C. Tims. A Test Method for Measuring Corona Inception Voltage for Transducer Autotransformers. Fort Belvoir, VA: Defense Technical Information Center, November 1989. http://dx.doi.org/10.21236/ada216818.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії