Добірка наукової літератури з теми "MCNP / Geant4"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "MCNP / Geant4".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "MCNP / Geant4"
Wilson, Emma, Mike Anderson, David Prendergasty, and David Cheneler. "Comparison of CdZnTe neutron detector models using MCNP6 and Geant4." EPJ Web of Conferences 170 (2018): 08008. http://dx.doi.org/10.1051/epjconf/201817008008.
Повний текст джерелаVarignier, Geoffrey, Valentin Fondement, Cédric Carasco, Johann Collot, Bertrand Pérot, Thomas Marchais, Pierre Chuilon, Emmanuel Caroli, and Mai-Linh Doan. "Comparison between GEANT4 and MCNP for well logging applications." EPJ Web of Conferences 288 (2023): 01002. http://dx.doi.org/10.1051/epjconf/202328801002.
Повний текст джерелаHrytsiuk, C. V., А. M. Bozhuk, А. V. Nosovskyi, and V. І. Gulik. "Cross-Verification of Monte Carlo Codes Geant4 and MCNP6 for Muon Tomography." Nuclear Power and the Environment 21, no. 2 (2021): 49–60. http://dx.doi.org/10.31717/2311-8253.21.2.5.
Повний текст джерелаMatuszak, Natalia. "Monte Carlo jako jedna z metod symulacyjnych w radioterapii." Letters in Oncology Science 16, no. 2 (June 10, 2019): 15–22. http://dx.doi.org/10.21641/los.2019.17.2.91.
Повний текст джерелаNovikov, N. V. "Monte Carlo Computer Simulation Method for Solving the Problem of Particle Passage through Matter." Поверхность. Рентгеновские, синхротронные и нейтронные исследования, no. 6 (June 1, 2023): 94–106. http://dx.doi.org/10.31857/s1028096023060122.
Повний текст джерелаBarton, C. J., W. Xu, R. Massarczyk, and S. R. Elliott. "Examining LEGEND-1000 cosmogenic neutron backgrounds in Geant4 and MCNP." Journal of Instrumentation 19, no. 05 (May 1, 2024): P05056. http://dx.doi.org/10.1088/1748-0221/19/05/p05056.
Повний текст джерелаDiJulio, Douglas D., Isak Svensson, Xiao Xiao Cai, Joakim Cederkall, and Phillip M. Bentley. "Simulating neutron transport in long beamlines at a spallation neutron source using Geant4." Journal of Neutron Research 22, no. 2-3 (October 20, 2020): 183–89. http://dx.doi.org/10.3233/jnr-190134.
Повний текст джерелаKarailias, A., V. Lagaki, C. Katsiva, A. Kanellakopoulos, T. J. Mertzimekis, F. C. Kafantaris та A. Godelitsas. "The Athens Mobile γ-Spectrometry System (AMESOS)". HNPS Proceedings 23 (8 березня 2019): 150. http://dx.doi.org/10.12681/hnps.1894.
Повний текст джерелаTsormpatzoglou, Ioannis, Anastasia Ziagkova, Michael Kokkoris, Maria Diakaki, Roza Vlastou, and Kalliopi Kaperoni. "Cross Section Biasing Technique in 3H(d,n)4He Reaction using the GEANT4 Toolkit." HNPS Advances in Nuclear Physics 30 (July 31, 2024): 250–55. http://dx.doi.org/10.12681/hnpsanp.6289.
Повний текст джерелаFardi, Zeinab, and Payvand Taherparvar. "A Monte Carlo investigation of the dose distribution for new I-125 Low Dose Rate brachytherapy source in water and in different media." Polish Journal of Medical Physics and Engineering 25, no. 1 (March 1, 2019): 15–22. http://dx.doi.org/10.2478/pjmpe-2019-0003.
Повний текст джерелаДисертації з теми "MCNP / Geant4"
Varignier, Geoffrey. "Construction de fonctions de sensibilité spatiales et prédictions rapides de diagraphies nucléaires en environnement de puits tubés." Electronic Thesis or Diss., Université Grenoble Alpes, 2024. http://www.theses.fr/2024GRALY026.
Повний текст джерелаIn petroleum wells, many tools operating on different physical principles are commonly used for data acquisition. This thesis focuses on actives nuclear logging probes involving a neutron or a gamma source. They are used in the oil industry to characterize the well geology and have been initially developed to realize quantitative measurements in open hole conditions where the probe is directly in contact with the rock formation. Once the petroleum well is drilled, a steel casing is installed and cemented, the probes are then no longer in contact with the rock formation and the measurements are considered qualitative due to the complexity of the geometry and the signal attenuation.With the hydrocarbon resources rarefaction, the number of explorations projects decease each year. Petroleum companies have more and more mature wells whose production capacities must be maintained and others at the end of their life which must be abandoned. Those phases require systematically logging measurements. The quantity of logs in cased-hole configuration tends to increase a lot and it becomes necessary to improve their interpretation.The industrial problematic is to characterize quantitatively, in a filed with strong radial heterogeneity, all the components the well (e.g. the fluids, the casing, the cement) and not just the rock reservoir parameters. The approach developed in the thesis is based on the concept of sensitivity function of nuclear logging probes, which represents the 3D dependency of the measurement to the model elements and are obtained by Monte-Carlo simulation. Due to the large number of unknowns, a multiphysical inversion considering the all the measurements of the different nuclear probes (porosity by neutron diffusion, density by gamma diffusion, lithology by neutron-gamma activation) is essential.The first part of the thesis allowed to compare the Monte-Carlo particles transport codes GEANT4 and MCNP for Geosciences applications. Results show a very good agreement for the gamma-gamma physics and a good agreement for the neutron-neutron physics but significant discrepancies for the neutron-gamma physics where MCNP seems to be more relevant.The second part of the thesis allowed to experimental validate Monte-Carlo simulations and to design a sensitivity function computation method specific for the cased-hole configuration. The validation is a comparison between the experimental sensitivity functions measured in calibration center and the numerical sensitivity functions computed using two different methods, the first one based on spatial importances estimated with MCNP and the second one based on interaction locations obtained with GEANT4. The results show good experimental agreement between the measured and calculated radial and axial sensitivity profiles, which validates the concept of sensitivity function with a preference for the interaction locations method which presents greater radial contrast between the different components of the well.The third part of the thesis consisted of making the geological interpretation of a reservoir zone of a cased hole well with sensitivity functions. The neutron-gamma and porosity logs predicted using the sensitivity functions are compared to the measured logs. An optimal earth model is obtained by iteration, showing a good capacity of the fast forward modeling algorithums to quantitatively reproduce the logs in cased-hole configuration providing that a relevant calibration is apply
Cognet, Marie-Anne. "Etude préliminaire de la mesure du rapport alpha, rapport de la section efficace moyenne de capture sur celle de fission de l'233U, sur la plateforme PEREN - Développement et étude du dispositif expérimental -." Phd thesis, Grenoble INPG, 2007. http://tel.archives-ouvertes.fr/tel-00269052.
Повний текст джерелаCognet, Marie-Anne. "Étude préliminaire de la mesure du rapport alpha, rapport de la section efficace moyenne de capture sur celle de fission de l'233U, sur la plateforme PEREN - Développement et étude du dispositif expérimental -." Phd thesis, Grenoble INPG, 2007. http://www.theses.fr/2007INPG0159.
Повний текст джерелаThis Ph-D thesis was intended to prepare a precise measurement of the alpha ratio of 233U between 1eV and 10keV. This ratio is a key-parameter to calculate the breeding ratio of reactors based on the 232Th/233U cycle. This measurement would be performed, at the LPSC, on the experimental platform PEREN which is composed of a lead slowing-down time spectrometer associated with an intense pulsed neutron generator. Capture and fission rates are measured thanks to 8 scintillators YAP used in coincidence and surrounding a fission chamber. Preliminary tests using 235U resulted in a very low signal to background ratio despite the successive improvements. The different components of the background were identified and quantified experimentally and thanks to simulation tools (MCNP and GEANT4). Nevertheless, the signal to background ratio has still to be increased by about a factor 10 at least, to allow the measurement of the capture of a fissile element with such an experimental setup
Ogheard, Florestan. "Développement d’un système de mesure directe du débit d’émission de sources neutroniques." Thesis, Paris 11, 2012. http://www.theses.fr/2012PA112176/document.
Повний текст джерелаThe manganese bath technique is the reference method for neutron source emission rates calibration. It is used to calibrate neutron sources using radionuclides (AmBe, PuBe, 252Cf,…) in terms of neutron emission rate under 4π sr. As a complement to this technique, the anisotropy of the source is measured using a rotating source holder and a neutron long counter. The neutron source to be measured is immersed in a manganese sulphate solution whereby the emitted neutrons are captured within the bath contents. In a typical configuration (a 1m diameter sphere and a concentrated solution), approximately half of the neutrons lead to the creation of 56Mn via the 55Mn(n, γ) capture reaction. The 56Mn radionuclide has a half-life of approximately 2.6 hours and the bath reaches saturation when the number of nuclei decaying is equal to the number of nuclei created per unit time. The neutron emission rate from the source can then be deduced from the 56Mn activity at saturation, assuming proper modelling of the nuclear reactions occuring in the bath. The manganese bath facility at LNE-LNHB has been recently refurbished in order to comply with appropriate safety and radioprotection regulations. This has lead to the upgrading of both the measurement methodology and the modelling of the bath, and a study on the development of a new detector for the on-line measurement of the manganese activity was started. This new detector uses the β-γ coincidence measurement method. The bêta channel consists of two photomultipliers tubes which allow the detection of Cerenkov light, and the gamma channel uses a solid scintillation detector. The advantage of this measurement method is that it allows the determination of the bath activity without any prior calibration, unlike the former method which uses a gamma-ray detector calibrated using a high activity manganese source. The principle of the Cerenkov-gamma coincidence measurement has been validated by a prototype of the detector and via modelling of the system using the stochastic transport code GEANT4. The final detector has also been made and the results obtained have been compared to those from a primary measurement method already in use at LNE-LNHB. Furthermore, a comparison of the results from modelling the manganese bath with GEANT4, MCNPX and FLUKA have been undertaken to find the most reliable code. This comparison lead to the identification of various weaknesses, particularly in GEANT4, and several uncertainty factors, such as the modeling of the neutron emission and the choice of the cross-section library. Finally, neutron source calibration has been carried out with the Cerenkov-gamma method and the correction factors given by the new modeling of the bath using MCNPX. These results have been complemented with a comparison with the former method simultaneously undertaken, after calibration of the detector in the bath using a 56Mn source irradiated in a nuclear reactor. At the end of this study, several improvements have been proposed, from which a number are currently under development at LNE-LNHB
Ogheard, Florestan. "Développement d'un système de mesure directe du débit d'émission de sources neutroniques." Phd thesis, Université Paris Sud - Paris XI, 2012. http://tel.archives-ouvertes.fr/tel-00740509.
Повний текст джерелаVanstalle, Marie. "Dosimétrie électronique et métrologie neutrons par capteur CMOS a pixels actifs." Phd thesis, Université de Strasbourg, 2011. http://tel.archives-ouvertes.fr/tel-00630288.
Повний текст джерелаOrdóñez, Ródenas José. "Desarrollo de Modelos de Simulación por Monte Carlo como Apoyo a la Medida de Radiactividad Ambiental en Operación Rutinaria y de Emergencias." Doctoral thesis, Universitat Politècnica de València, 2020. http://hdl.handle.net/10251/152188.
Повний текст джерела[EN] In support of the improvement of measurement quality at the Laboratorio de Radiactividad Ambiental (LRA) of the Universitat Politècnica de València (UPV), the Monte Carlo codes represent a powerful tool to complement the tasks related to the measurement of environmental radioactivity, such as the calibration in efficiency of semiconductor detectors, determination of coincidence summing correction factors and characterization of thermoluminescence dosimeters, among others. In the present thesis, Monte Carlo simulation models are developed using the MCNP6 code and the GEANT4 toolkit. Two semiconductor detector models for gamma spectrometry have been made, one type HPGe (High Purity Germanium) and the other one a BEGe (Broad Energy Germanium), both of high purity germanium. Both detectors are used in the routine activities and procedures carried out by the LRA-UPV. The geometric characterization procedure of the semiconductor detectors is detailed, as well as the active volume of the germanium crystal until an optimized geometric model is obtained. On the other hand, a third simulation model has been developed, but in this case from a thermoluminescence dosimeter, specifically from a TLD-100 LiF:Mg,Ti, a model used in the personal dosimetry service for the monitoring and assessment of the professionally exposed workers belonging to the UPV radioactive facility. The simulation model includes a collimated X-ray point source and the phantom recommended by the ISO 4037-3 (water slab phantom). The response function of the dosimeter relative to the energy of 137Cs is obtained and its behaviour is studied for different irradiation conditions (quality of the X-ray beam and angle of incidence) as well as for several thermoluminescent materials in addition to the LiF. The simulation models for gamma spectrometry have been used mainly to obtain efficiency calibration curves for different geometries and measurement matrices and to calculate true summing correction factors for both the 238U and 232Th natural decay series and for specific radioisotopes used in the experimental calibration of the equipment. On the other hand, simulation models have been applied in the context of nuclear or radiological emergency response. Specifically, the BEGe detector model has been used to develop a methodology for optimisation of the process of measuring radioactive samples in water matrices of high activity. This methodology consists of a logistic procedure that includes a screening for emergencies. This procedure is supported by Monte Carlo simulations, focused on determining the optimal measurement configuration to obtain reliable and accurate results, minimizing the manipulation of the radioactive sample. Therefore, the response time by the laboratory is reduced, as well as the risk of contamination and dose exposure.
[CA] En el suport a la millora de la qualitat de mesura en el Laboratori de Radioactivitat Ambiental de la Universitat Politècnica de València, els codis de Monte Carlo representen una potent eina per a complementar les tasques relacionades amb la mesura de la radioactivitat ambiental, com ara el calibratge en eficiència de detectors de semiconductor, determinació de factors de correcció per coincidència i caracterització de dosímetres de termoluminescència, entre altres. En la present tesi es desenvolupen models de simulació en Monte Carlo a través de codis i eines com MCNP6 i GEANT4. En primer lloc s'han realitzat dos models de detector de semiconductor per a espectrometria gamma, un tipus HPGe (High Purity Germanium) i l'altre BEGe (Broad Energy Germanium), tots dos d'alta puresa de germani. Aquests detectors s'empren en les activitats i procediments rutinaris que es realitzen en el Laboratori de Radioactivitat Ambiental (LRA) de la Universitat Politècnica de València (UPV). Es detalla el procediment de caracterització geomètrica dels detectors de semiconductor, així com del volum actiu del cristall de germani fins a obtindre un model geomètric optimitzat. D'altra banda, s'ha obtingut un tercer model de simulació, però en aquest cas d'un dosímetre de termoluminescència, en concret d'un TLD-100 LiF:Mg,Ti, model que s'empra en el servei de dosimetria personal de la UPV. En el model de simulació s'inclou una font puntual col·limada de Raigs-X i el fantoma recomanat per l'ISO 4037-3 (water slab phantom). S'obté la funció de resposta del dosímetre relativa a l'energia del 137Cs i s'estudia el seu comportament per a diferents condicions d'irradiació (qualitat del feix de Raigs-X i angle d'incidència) així com per a diversos materials termoluminescents a més del LiF. Els models de simulació per a espectrometria gamma s'han utilitzat principalment per a l'obtenció de corbes de calibratge en eficiència per a diferents geometries i matrius de mesurament així com per al càlcul de factors de correcció per pic suma tant per a les sèries naturals del 238U i 232*Th com per a radioisòtops específics utilitzats en el calibratge experimental dels equips. D'altra banda, s'han aplicat els models de simulació en el context de resposta en emergències nuclears o radiològiques. En concret, el model del detector BEGe s'ha utilitzat per a desenvolupar una metodologia d'optimització del procés de mesurament de mostres ambientals radioactives en matrius d'aigua d'alta activitat.. Aquesta metodologia consisteix en un procediment logístic que inclou un screening o cribratge d'emergències, suportat per simulacions Monte Carlo, enfocat a triar la configuració òptima de mesurament per a obtindre resultats fiables i precisos minimitzant la manipulació de la mostra radioactiva. D'aquesta manera es redueix el temps de resposta per part del laboratori, així com el risc de contaminació i exposició a dosi.
Finalmente, a la Universitat Politècnica de València por la financiación a través de la beca de Formación de Personal Investigador (FPI)-Subprograma 2 de la convocatoria de 2015 y a la Cátedra CSN-UPV Vicente Serradell
Ordóñez Ródenas, J. (2020). Desarrollo de Modelos de Simulación por Monte Carlo como Apoyo a la Medida de Radiactividad Ambiental en Operación Rutinaria y de Emergencias [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/152188
TESIS
Частини книг з теми "MCNP / Geant4"
Autran Daniela Munteanu, Jean-Luc. "Radiation Response of Group-IV and III-V Semiconductors Subjected to D–D and D–T Fusion Neutrons." In New Advances in Semiconductors [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.103047.
Повний текст джерелаAutran Daniela Munteanu, Jean-Luc. "Radiation Response of Group-IV and III-V Semiconductors Subjected to D–D and D–T Fusion Neutrons." In New Advances in Semiconductors [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.103047.
Повний текст джерелаТези доповідей конференцій з теми "MCNP / Geant4"
Yung-Shun Yeh, Chung-Hsiang Wang, Hong-Ming Liu, Tsung-Che Liu, and Guey-Lin Lin. "Simulating neutron propagations with FLUKA, GEANT4 and MCNP." In 2007 IEEE Nuclear Science Symposium Conference Record. IEEE, 2007. http://dx.doi.org/10.1109/nssmic.2007.4436548.
Повний текст джерелаRomero–Barrientos, Jaime, F. Molina, Pablo Aguilera, and H. F. Arellano. "Calculation of self–shielding factor for neutron activation experiments using GEANT4 and MCNP." In THERMOPHYSICS 2016: 21st International Meeting. Author(s), 2016. http://dx.doi.org/10.1063/1.4955388.
Повний текст джерелаNaeem, Syed F., Shaun D. Clarke, and Sara A. Pozzi. "Comparison of GEANT4 and MCNPX-PoliMi fission models." In 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference (2012 NSS/MIC). IEEE, 2012. http://dx.doi.org/10.1109/nssmic.2012.6551258.
Повний текст джерелаZhang, Guoqing, Xuexin Wang, Jiangang Zhang, Dajie Zhuang, Chaoduan Li, and Fan Gao. "Electron and Beta Dose Rates of UO2 Pellet and Fuel Rod." In 2013 21st International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/icone21-15219.
Повний текст джерелаJuste, B., D. Morera, R. Miro, and G. Verdu. "Calculation of energetic dual-energy detector efficiency using MCNP and GEANT Monte Carlo codes." In 2011 2nd International Conference on Advancements in Nuclear Instrumentation, Measurement Methods and their Applications (ANIMMA). IEEE, 2011. http://dx.doi.org/10.1109/animma.2011.6172946.
Повний текст джерелаHoang, Duc-Tam, Thien-Thanh Tran, Bao-Tran Le, Kim-Tuyet Tran, Dinh-Chuong Huynh, Hoang-Nguyen Vo, and Van-Tao Chau. "First Results of Saturation Curve Measurements of Heat-Resistant Steel Using GEANT4 and MCNP5 Codes." In Proceedings of the Conference on Advances in Radioactive Isotope Science (ARIS2014). Journal of the Physical Society of Japan, 2015. http://dx.doi.org/10.7566/jpscp.6.030144.
Повний текст джерелаShtejer, K., J. D. T. Arruda-Neto, R. Schulte, A. Wroe, T. E. Rodrigues, M. O. de Menezes, M. Moralles, et al. "Comparison of MCNPX and GEANT4 to Predict the Contribution of Non-elastic Nuclear Interactions to Absorbed Dose in Water, PMMA and A150." In MEDICAL PHYSICS: Tenth Mexican Symposium on Medical Physics. AIP, 2008. http://dx.doi.org/10.1063/1.2979250.
Повний текст джерелаЗвіти організацій з теми "MCNP / Geant4"
Mendoza, E., and Daniel Cano-Ott. Update of the Evaluated Neutron Cross Section Libraries for the Geant4 Code. IAEA Nuclear Data Section, June 2018. http://dx.doi.org/10.61092/iaea.5knd-4xdd.
Повний текст джерелаSweger, Zachary. Simulations of Neutron Time-of-Flight Method by Inelastic Scattering Carbon-12 using MCNP6 and Geant4. Office of Scientific and Technical Information (OSTI), June 2019. http://dx.doi.org/10.2172/1532622.
Повний текст джерела