Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Maxwell's equations in time domain.

Статті в журналах з теми "Maxwell's equations in time domain"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Maxwell's equations in time domain".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Huang, Zhi-Xiang, Wei Sha, Xian-Liang Wu, and Ming-Sheng Chen. "Decomposition methods for time-domain Maxwell's equations." International Journal for Numerical Methods in Fluids 56, no. 9 (2008): 1695–704. http://dx.doi.org/10.1002/fld.1569.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Bao, Gang, Bin Hu, Peijun Li, and Jue Wang. "Analysis of time-domain Maxwell's equations in biperiodic structures." Discrete & Continuous Dynamical Systems - B 25, no. 1 (2020): 259–86. http://dx.doi.org/10.3934/dcdsb.2019181.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Van, Tri, and Aihua Wood. "A Time-Domain Finite Element Method for Maxwell's Equations." SIAM Journal on Numerical Analysis 42, no. 4 (January 2004): 1592–609. http://dx.doi.org/10.1137/s0036142901387427.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ala, G., E. Francomano, A. Tortorici, E. Toscano, and F. Viola. "Corrective meshless particle formulations for time domain Maxwell's equations." Journal of Computational and Applied Mathematics 210, no. 1-2 (December 2007): 34–46. http://dx.doi.org/10.1016/j.cam.2006.10.054.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Liu, Yaxing, Joon-Ho Lee, Tian Xiao, and Qing H. Liu. "A spectral-element time-domain solution of Maxwell's equations." Microwave and Optical Technology Letters 48, no. 4 (2006): 673–80. http://dx.doi.org/10.1002/mop.21440.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Buchanan, W. J., and N. K. Gupta. "Maxwell's Equations in the 21st Century." International Journal of Electrical Engineering & Education 30, no. 4 (October 1993): 343–53. http://dx.doi.org/10.1177/002072099303000408.

Повний текст джерела
Анотація:
Maxwell's equations in the 21st Century The finite-difference time-domain method is a novel method for solving Maxwell's curl equations, especially when parallel-processing techniques are applied. The next generation of computers will bring a revolution by exploiting the use of parallel processing in computation to the maximum.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Nevels, R., and J. Jeong. "The Time Domain Green's Function and Propagator for Maxwell's Equations." IEEE Transactions on Antennas and Propagation 52, no. 11 (November 2004): 3012–18. http://dx.doi.org/10.1109/tap.2004.835123.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Cohen, Gary, Xavier Ferrieres, and Sébastien Pernet. "Discontinuous Galerkin methods for Maxwell's equations in the time domain." Comptes Rendus Physique 7, no. 5 (June 2006): 494–500. http://dx.doi.org/10.1016/j.crhy.2006.03.004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Su, Zhuo, Yongqin Yang, and Yunliang Long. "A Compact Unconditionally Stable Method for Time-Domain Maxwell's Equations." International Journal of Antennas and Propagation 2013 (2013): 1–7. http://dx.doi.org/10.1155/2013/689327.

Повний текст джерела
Анотація:
Higher order unconditionally stable methods are effective ways for simulating field behaviors of electromagnetic problems since they are free of Courant-Friedrich-Levy conditions. The development of accurate schemes with less computational expenditure is desirable. A compact fourth-order split-step unconditionally-stable finite-difference time-domain method (C4OSS-FDTD) is proposed in this paper. This method is based on a four-step splitting form in time which is constructed by symmetric operator and uniform splitting. The introduction of spatial compact operator can further improve its performance. Analyses of stability and numerical dispersion are carried out. Compared with noncompact counterpart, the proposed method has reduced computational expenditure while keeping the same level of accuracy. Comparisons with other compact unconditionally-stable methods are provided. Numerical dispersion and anisotropy errors are shown to be lower than those of previous compact unconditionally-stable methods.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Wang, J., and Y. Long. "Long time stable compact fourth-order scheme for time domain Maxwell's equations." Electronics Letters 46, no. 14 (2010): 995. http://dx.doi.org/10.1049/el.2010.1204.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Deore, Narendra, and Avijit Chatterjee. "CELL-VERTEX BASED MULTIGRID SOLUTION OF THE TIME-DOMAIN MAXWELL'S EQUATIONS." Progress In Electromagnetics Research B 23 (2010): 181–97. http://dx.doi.org/10.2528/pierb10062002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Sha, Wei, Zhixiang Huang, Mingsheng Chen, and Xianliang Wu. "Survey on Symplectic Finite-Difference Time-Domain Schemes for Maxwell's Equations." IEEE Transactions on Antennas and Propagation 56, no. 2 (2008): 493–500. http://dx.doi.org/10.1109/tap.2007.915444.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Nevels, Robert, and Jaehoon Jeong. "Time Domain Coupled Field Dyadic Green Function Solution for Maxwell's Equations." IEEE Transactions on Antennas and Propagation 56, no. 8 (August 2008): 2761–64. http://dx.doi.org/10.1109/tap.2008.927574.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Wang, Jianying, Peng Liu, and Yunliang Long. "A Compact Symplectic High-Order Scheme for Time-Domain Maxwell's Equations." IEEE Antennas and Wireless Propagation Letters 9 (2010): 371–74. http://dx.doi.org/10.1109/lawp.2010.2049470.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Kim, Joonshik, and Fernando L. Teixeira. "Parallel and Explicit Finite-Element Time-Domain Method for Maxwell's Equations." IEEE Transactions on Antennas and Propagation 59, no. 6 (June 2011): 2350–56. http://dx.doi.org/10.1109/tap.2011.2143682.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Omick, S., and S. Castillo. "Error characterization for the time-domain numerical solution of Maxwell's equations." IEEE Antennas and Propagation Magazine 36, no. 5 (October 1994): 58–62. http://dx.doi.org/10.1109/74.334927.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Bi, Z., K. Wu, C. Wu, and J. Litva. "A new finite-difference time-domain algorithm for solving Maxwell's equations." IEEE Microwave and Guided Wave Letters 1, no. 12 (December 1991): 382–84. http://dx.doi.org/10.1109/75.103858.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Lee, J. F. "WETD - a finite element time-domain approach for solving Maxwell's equations." IEEE Microwave and Guided Wave Letters 4, no. 1 (1994): 11–13. http://dx.doi.org/10.1109/75.267679.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Bao, Gang, Ying Li, and Zhengfang Zhou. "Lp estimates of time-harmonic Maxwell's equations in a bounded domain." Journal of Differential Equations 245, no. 12 (December 2008): 3674–86. http://dx.doi.org/10.1016/j.jde.2008.03.004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Angulo, Luis Diaz, Jesus Alvarez, Fernando L. Teixeira, M. Fernandez Pantoja, and Salvador G. Garcia. "A Nodal Continuous-Discontinuous Galerkin Time-Domain Method for Maxwell's Equations." IEEE Transactions on Microwave Theory and Techniques 63, no. 10 (October 2015): 3081–93. http://dx.doi.org/10.1109/tmtt.2015.2472411.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Larson, R. W., T. Rudolph, and P. H. Ng. "Special purpose computers for the time domain advance of Maxwell's equations." IEEE Transactions on Magnetics 25, no. 4 (July 1989): 2913–15. http://dx.doi.org/10.1109/20.34322.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Dosopoulos, Stylianos, and Jin-Fa Lee. "Interior Penalty Discontinuous Galerkin Method for the Time-Domain Maxwell's Equations." IEEE Transactions on Magnetics 46, no. 8 (August 2010): 3512–15. http://dx.doi.org/10.1109/tmag.2010.2043235.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Huang, Z. X., X. L. Wu, W. Sha, and M. S. Chen. "Optimal symplectic integrators for numerical solution of time-domain Maxwell's equations." Microwave and Optical Technology Letters 49, no. 3 (January 26, 2007): 545–47. http://dx.doi.org/10.1002/mop.22193.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Huang, Z. X., X. L. Wu, W. E. I. Sha, and B. Wu. "Optimized Operator-Splitting Methods in Numerical Integration of Maxwell's Equations." International Journal of Antennas and Propagation 2012 (2012): 1–8. http://dx.doi.org/10.1155/2012/956431.

Повний текст джерела
Анотація:
Optimized operator splitting methods for numerical integration of the time domain Maxwell's equations in computational electromagnetics (CEM) are proposed for the first time. The methods are based on splitting the time domain evolution operator of Maxwell's equations into suboperators, and corresponding time coefficients are obtained by reducing the norm of truncation terms to a minimum. The general high-order staggered finite difference is introduced for discretizing the three-dimensional curl operator in the spatial domain. The detail of the schemes and explicit iterated formulas are also included. Furthermore, new high-order Padé approximations are adopted to improve the efficiency of the proposed methods. Theoretical proof of the stability is also included. Numerical results are presented to demonstrate the effectiveness and efficiency of the schemes. It is found that the optimized schemes with coarse discretized grid and large Courant-Friedrichs-Lewy (CFL) number can obtain satisfactory numerical results, which in turn proves to be a promising method, with advantages of high accuracy, low computational resources and facility of large domain and long-time simulation. In addition, due to the generality, our optimized schemes can be extended to other science and engineering areas directly.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

BALL, JOHN M., YVES CAPDEBOSCQ, and BASANG TSERING-XIAO. "ON UNIQUENESS FOR TIME HARMONIC ANISOTROPIC MAXWELL'S EQUATIONS WITH PIECEWISE REGULAR COEFFICIENTS." Mathematical Models and Methods in Applied Sciences 22, no. 11 (September 10, 2012): 1250036. http://dx.doi.org/10.1142/s0218202512500364.

Повний текст джерела
Анотація:
We are interested in the uniqueness of solutions to Maxwell's equations when the magnetic permeability μ and the permittivity ε are symmetric positive definite matrix-valued functions in ℝ3. We show that a unique continuation result for globally W1, ∞ coefficients in a smooth, bounded domain, allows one to prove that the solution is unique in the case of coefficients which are piecewise W1, ∞ with respect to a suitable countable collection of subdomains with C0 boundaries. Such suitable collections include any bounded finite collection. The proof relies on a general argument, not specific to Maxwell's equations. This result is then extended to the case when within these subdomains the permeability and permittivity are only L∞ in sets of small measure.
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Knoke, Tobias, Sebastian Kinnewig, Sven Beuchler, Ayhan Demircan, Uwe Morgner, and Thomas Wick. "Domain Decomposition with Neural Network Interface Approximations for time-harmonic Maxwell’s equations with different wave numbers." Selecciones Matemáticas 10, no. 01 (May 31, 2023): 1–15. http://dx.doi.org/10.17268/sel.mat.2023.01.01.

Повний текст джерела
Анотація:
In this work, we consider the time-harmonic Maxwell's equations and their numerical solution with a domain decomposition method. As an innovative feature, we propose a feedforward neural network-enhanced approximation of the interface conditions between the subdomains. The advantage is that the interface condition can be updated without recomputing the Maxwell system at each step. The main part consists of a detailed description of the construction of the neural network for domain decomposition and the training process. To substantiate this proof of concept, we investigate a few subdomains in some numerical experiments with low frequencies. Therein the new approach is compared to a classical domain decomposition method. Moreover, we highlight current challenges of training and testing with different wave numbers and we provide information on the behaviour of the neural-network, such as convergence of the loss function, and different activation functions.
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Helfert, S. F. "The Method of Lines in the time domain." Advances in Radio Science 11 (July 4, 2013): 15–21. http://dx.doi.org/10.5194/ars-11-15-2013.

Повний текст джерела
Анотація:
Abstract. The Method of Lines (MoL) is a semi-analytical numerical algorithm that has been used in the past to solve Maxwell's equations for waveguide problems. It is mainly used in the frequency domain. In this paper it is shown how the MoL can be used to solve initial value problems in the time domain. The required expressions are derived for one-dimensional structures, where the materials may be dispersive. The algorithm is verified with numerical results for homogeneous structures, and for the concatenation of standard dielectric and left handed materials.
Стилі APA, Harvard, Vancouver, ISO та ін.
28

COSTABEL, MARTIN, MONIQUE DAUGE, and CHRISTOPH SCHWAB. "EXPONENTIAL CONVERGENCE OF hp-FEM FOR MAXWELL EQUATIONS WITH WEIGHTED REGULARIZATION IN POLYGONAL DOMAINS." Mathematical Models and Methods in Applied Sciences 15, no. 04 (April 2005): 575–622. http://dx.doi.org/10.1142/s0218202505000480.

Повний текст джерела
Анотація:
The time-harmonic Maxwell equations do not have an elliptic nature by themselves. Their regularization by a divergence term is a standard tool to obtain equivalent elliptic problems. Nodal finite element discretizations of Maxwell's equations obtained from such a regularization converge to wrong solutions in any non-convex polygon. Modification of the regularization term consisting in the introduction of a weight restores the convergence of nodal FEM, providing optimal convergence rates for the h version of finite elements. We prove exponential convergence of hp FEM for the weighted regularization of Maxwell's equations in plane polygonal domains provided the hp-FE spaces satisfy a series of axioms. We verify these axioms for several specific families of hp finite element spaces.
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Zhang, Pan, Yanyan Hu, Yuchen Jin, Shaogui Deng, Xuqing Wu, and Jiefu Chen. "A Maxwell's Equations Based Deep Learning Method for Time Domain Electromagnetic Simulations." IEEE Journal on Multiscale and Multiphysics Computational Techniques 6 (2021): 35–40. http://dx.doi.org/10.1109/jmmct.2021.3057793.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Joon-Ho Lee, Jiefu Chen, and Qing Huo Liu. "A 3-D Discontinuous Spectral Element Time-Domain Method for Maxwell's Equations." IEEE Transactions on Antennas and Propagation 57, no. 9 (September 2009): 2666–74. http://dx.doi.org/10.1109/tap.2009.2027731.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Nickisch, L. J., and P. M. Franke. "Finite-difference time-domain solution of Maxwell's equations for the dispersive ionosphere." IEEE Antennas and Propagation Magazine 34, no. 5 (October 1992): 33–39. http://dx.doi.org/10.1109/74.163808.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

El Bouajaji, M., B. Thierry, X. Antoine, and C. Geuzaine. "A quasi-optimal domain decomposition algorithm for the time-harmonic Maxwell's equations." Journal of Computational Physics 294 (August 2015): 38–57. http://dx.doi.org/10.1016/j.jcp.2015.03.041.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Winges, Johan, and Thomas Rylander. "Higher-order brick-tetrahedron hybrid method for Maxwell's equations in time domain." Journal of Computational Physics 321 (September 2016): 698–707. http://dx.doi.org/10.1016/j.jcp.2016.05.063.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Zhong, Shuangying, and Song Liu. "The Force-Gradient Symplectic Finite-Difference Time-Domain Scheme for Maxwell's Equations." IEEE Transactions on Antennas and Propagation 63, no. 2 (February 2015): 834–38. http://dx.doi.org/10.1109/tap.2014.2381255.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Palaniswamy, Sampath, William F. Hall, and Vijaya Shankar. "Numerical solution to Maxwell's equations in the time domain on nonuniform grids." Radio Science 31, no. 4 (July 1996): 905–12. http://dx.doi.org/10.1029/96rs00783.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Lee, Robert L., and Niel K. Madsen. "A mixed finite element formulation for Maxwell's equations in the time domain." Journal of Computational Physics 85, no. 2 (December 1989): 503. http://dx.doi.org/10.1016/0021-9991(89)90168-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Lee, Robert L., and Niel K. Madsen. "A mixed finite element formulation for Maxwell's equations in the time domain." Journal of Computational Physics 88, no. 2 (June 1990): 284–304. http://dx.doi.org/10.1016/0021-9991(90)90181-y.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Niegemann, Jens, Lasha Tkeshelashvili, and Kurt Busch. "Higher-Order Time-Domain Simulations of Maxwell's Equations Using Krylov-Subspace Methods." Journal of Computational and Theoretical Nanoscience 4, no. 3 (May 1, 2007): 627–34. http://dx.doi.org/10.1166/jctn.2007.027.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Lovetri, Joe, and George I. Costache. "Efficient implementation issues of finite difference time-domain codes for Maxwell's equations." International Journal of Numerical Modelling: Electronic Networks, Devices and Fields 6, no. 3 (August 1993): 195–206. http://dx.doi.org/10.1002/jnm.1660060304.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Meagher, Timothy, Bin Jiang, and Peng Jiang. "An enhanced finite difference time domain method for two dimensional Maxwell's equations." Numerical Methods for Partial Differential Equations 36, no. 5 (January 23, 2020): 1129–44. http://dx.doi.org/10.1002/num.22467.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Huang, Zhi-Xiang, Wei Sha, Xian-Liang Wu, and Ming-Sheng Chen. "A novel high-order time-domain scheme for three-dimensional Maxwell's equations." Microwave and Optical Technology Letters 48, no. 6 (2006): 1123–25. http://dx.doi.org/10.1002/mop.21563.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Bouquet, A., C. Dedeban, and S. Piperno. "Discontinuous Galerkin time‐domain solution of Maxwell's equations on locally refined grids with fictitious domains." COMPEL - The international journal for computation and mathematics in electrical and electronic engineering 29, no. 3 (May 11, 2010): 578–601. http://dx.doi.org/10.1108/03321641011028206.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

DOUGLAS, JIM, JUAN E. SANTOS, and DONGWOO SHEEN. "A NONCONFORMING MIXED FINITE ELEMENT METHOD FOR MAXWELL'S EQUATIONS." Mathematical Models and Methods in Applied Sciences 10, no. 04 (June 2000): 593–613. http://dx.doi.org/10.1142/s021820250000032x.

Повний текст джерела
Анотація:
We present a nonconforming mixed finite element scheme for the approximate solution of the time-harmonic Maxwell's equations in a three-dimensional, bounded domain with absorbing boundary conditions on artificial boundaries. The numerical procedures are employed to solve the direct problem in magnetotellurics consisting in determining a scattered electromagnetic field in a model of the earth having bounded conductivity anomalies of arbitrary shapes. A domain-decomposition iterative algorithm which is naturally parallelizable and is based on a hybridization of the mixed method allows the solution of large three-dimensional models. Convergence of the approximation by the mixed method is proved, as well as the convergence of the iteration.
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Park, Jong Hyuk, and John C. Strikwerda. "The Domain Decomposition Method for Maxwell's Equations in Time Domain Simulations with Dispersive Metallic Media." SIAM Journal on Scientific Computing 32, no. 2 (January 2010): 684–702. http://dx.doi.org/10.1137/070705374.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Yee, K. S., and J. S. Chen. "The finite-difference time-domain (FDTD) and the finite-volume time-domain (FVTD) methods in solving Maxwell's equations." IEEE Transactions on Antennas and Propagation 45, no. 3 (March 1997): 354–63. http://dx.doi.org/10.1109/8.558651.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Sheu, Tony W. H., S. Z. Wang, J. H. Li, and Matthew R. Smith. "Simulation of Maxwell's Equations on GPU Using a High-Order Error-Minimized Scheme." Communications in Computational Physics 21, no. 4 (March 8, 2017): 1039–64. http://dx.doi.org/10.4208/cicp.oa-2016-0079.

Повний текст джерела
Анотація:
AbstractIn this study an explicit Finite Difference Method (FDM) based scheme is developed to solve the Maxwell's equations in time domain for a lossless medium. This manuscript focuses on two unique aspects – the three dimensional time-accurate discretization of the hyperbolic system of Maxwell equations in three-point non-staggered grid stencil and it's application to parallel computing through the use of Graphics Processing Units (GPU). The proposed temporal scheme is symplectic, thus permitting conservation of all Hamiltonians in the Maxwell equation. Moreover, to enable accurate predictions over large time frames, a phase velocity preserving scheme is developed for treatment of the spatial derivative terms. As a result, the chosen time increment and grid spacing can be optimally coupled. An additional theoretical investigation into this pairing is also shown. Finally, the application of the proposed scheme to parallel computing using one Nvidia K20 Tesla GPU card is demonstrated. For the benchmarks performed, the parallel speedup when compared to a single core of an Intel i7-4820K CPU is approximately 190x.
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Yu, Mengjun, and Kun Li. "A data-driven reduced-order modeling approach for parameterized time-domain Maxwell's equations." Networks and Heterogeneous Media 19, no. 3 (2024): 1309–35. http://dx.doi.org/10.3934/nhm.2024056.

Повний текст джерела
Анотація:
<p>This paper proposed a data-driven non-intrusive model order reduction (NIMOR) approach for parameterized time-domain Maxwell's equations. The NIMOR method consisted of fully decoupled offline and online stages. Initially, the high-fidelity (HF) solutions for some training time and parameter sets were obtained by using a discontinuous Galerkin time-domain (DGTD) method. Subsequently, a two-step or nested proper orthogonal decomposition (POD) technique was used to generate the reduced basis (RB) functions and the corresponding projection coefficients within the RB space. The high-order dynamic mode decomposition (HODMD) method leveraged these corresponding coefficients to predict the projection coefficients at all training parameters over a time region beyond the training domain. Instead of direct regression and interpolating new parameters, the predicted projection coefficients were reorganized into a three-dimensional tensor, which was then decomposed into time- and parameter-dependent components through the canonical polyadic decomposition (CPD) method. Gaussian process regression (GPR) was then used to approximate the relationship between the time/parameter values and the above components. Finally, the reduced-order solutions at new time/parameter values were quickly obtained through a linear combination of the POD modes and the approximated projection coefficients. Numerical experiments were presented to evaluate the performance of the method in the case of plane wave scattering.</p>
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Jin, Jian-Ming, Mohammad Zunoubi, Kalyan C. Donepudi, and Weng C. Chew. "Frequency-domain and time-domain finite-element solution of Maxwell's equations using spectral Lanczos decomposition method." Computer Methods in Applied Mechanics and Engineering 169, no. 3-4 (February 1999): 279–96. http://dx.doi.org/10.1016/s0045-7825(98)00158-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Zunoubi, M., Jian-Ming Jin, and Weng Cho Chew. "Spectral Lanczos decomposition method for time domain and frequency domain finite-element solution of Maxwell's equations." Electronics Letters 34, no. 4 (1998): 346. http://dx.doi.org/10.1049/el:19980333.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Tiwari, Apurva, and Avijit Chatterjee. "Divergence Error Based p-adaptive Discontinuous Galerkin Solution of Time-domain Maxwell's Equations." Progress In Electromagnetics Research B 96 (2022): 153–72. http://dx.doi.org/10.2528/pierb22080403.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії