Книги з теми "Maxwell's equations in time domain"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 книг для дослідження на тему "Maxwell's equations in time domain".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте книги для різних дисциплін та оформлюйте правильно вашу бібліографію.
Li, Jichun, and Yunqing Huang. Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-33789-5.
Повний текст джерелаLi, Jichun. Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
Знайти повний текст джерелаAndersson, Ulf. Time-domain methods for the Maxwell equations. Stockholm: Tekniska ho gsk., 2001.
Знайти повний текст джерелаYeffet, Amir. A non-dissipative staggered fourth-order accurate explicit finite difference scheme for the time-domain Maxwell's equations. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1999.
Знайти повний текст джерелаYeffet, Amir. A non-dissipative staggered fourth-order accurate explicit finite difference scheme for the time-domain Maxwell's equations. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1999.
Знайти повний текст джерелаYeffet, Amir. A non-dissipative staggered fourth-order accurate explicit finite difference scheme for the time-domain Maxwell's equations. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1999.
Знайти повний текст джерелаYeffet, Amir. A non-dissipative staggered fourth-order accurate explicit finite difference scheme for the time-domain Maxwell's equations. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1999.
Знайти повний текст джерелаYeffet, Amir. A non-dissipative staggered fourth-order accurate explicit finite difference scheme for the time-domain Maxwell's equations. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1999.
Знайти повний текст джерелаC, Hagness Susan, ed. Computational electrodynamics: The finite-difference time-domain method. 3rd ed. Boston: Artech House, 2005.
Знайти повний текст джерелаC, Hagness Susan, ed. Computational electrodynamics: The finite-difference time-domain method. 2nd ed. Boston: Artech House, 2000.
Знайти повний текст джерелаGiansante, Peter Daniel. High-accuracy finite-difference methods for the time-domain Maxwell equations. [Toronto, Ont.]: University of Toronto, Graduate Dept. of Aerospace Science and Engineering, 1994.
Знайти повний текст джерелаGiansante, Peter Daniel. High-accuracy finite-difference methods for the time-domain Maxwell equations. Ottawa: National Library of Canada, 1994.
Знайти повний текст джерелаBérenger, Jean-Pierre. Perfectly matched layer (PML) for computational electromagnetics. [San Rafael, Calif.]: Morgan & Claypool Publishers, 2007.
Знайти повний текст джерелаHesthaven, J. S. High-order/spectral methods on unstructured grids. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 2001.
Знайти повний текст джерелаI, Warburton, and Institute for Computer Applications in Science and Engineering., eds. High-order/spectral methods on unstructured grids. Hampton, VA: ICASE, National Aeronautics and Space Administration, Langley Research Center, 2001.
Знайти повний текст джерелаI, Warburton, and Institute for Computer Applications in Science and Engineering., eds. High-order/spectral methods on unstructured grids. Hampton, VA: ICASE, National Aeronautics and Space Administration, Langley Research Center, 2001.
Знайти повний текст джерелаChrist, Andreas. Analysis and improvement of the numerical properties of the FDTD algorithm. Konstanz: Hartung-Gorre, 2005.
Знайти повний текст джерела1953-, Rao S. M., ed. Time domain electromagnetics. San Diego: Academic Press, 1999.
Знайти повний текст джерелаKirsch, Andreas, and Frank Hettlich. The Mathematical Theory of Time-Harmonic Maxwell's Equations. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-11086-8.
Повний текст джерелаA, Nicolaides Roy, and Institute for Computer Applications in Science and Engineering., eds. Spurious fields in time domain computations of scattering problems. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1995.
Знайти повний текст джерелаA, Nicolaides Roy, and Institute for Computer Applications in Science and Engineering., eds. Spurious fields in time domain computations of scattering problems. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1995.
Знайти повний текст джерелаKalnins, E. G. Symmetry operators for Maxwell's equations on curved space-time. Hamilton, N.Z: University of Waikato, 1992.
Знайти повний текст джерелаSayas, Francisco-Javier. Retarded Potentials and Time Domain Boundary Integral Equations. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-26645-9.
Повний текст джерелаShvart͡sburg, A. B. Impulse Time-Domain Electromagnetics of Continuous Media. Boston, MA: Birkhäuser Boston, 1999.
Знайти повний текст джерелаHe, Sailing. Time domain wave-splittings and inverse problems. Oxford: Oxford University Press, 1998.
Знайти повний текст джерелаE, Zorumski William, and Langley Research Center, eds. Periodic time-domain nonlocal nonreflecting boundary conditions for duct acoustics. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1996.
Знайти повний текст джерелаE, Zorumski William, and Langley Research Center, eds. Periodic time-domain nonlocal nonreflecting boundary conditions for duct acoustics. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1996.
Знайти повний текст джерелаE, Zorumski William, and Langley Research Center, eds. Periodic time-domain nonlocal nonreflecting boundary conditions for duct acoustics. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1996.
Знайти повний текст джерелаTidriri, M. D. Mathematical analysis of the Navier-Stokes equations with non standard boundary conditions. Hampton, Va: Institute for Computer Applications in Science and Engineering, 1995.
Знайти повний текст джерелаL, Whitfield David, and United States. National Aeronautics and Space Administration., eds. Nonlinear (time domain) and linearized (title & freqency domain) solutions to the compressible Euler equations in conservation law form: Final report for NASA Lewis Research Center. Mississippi States, MS: Computational Fluid Dynamics Laboratory, Engineering Research Center for Computational Field Simulation, Mississippi State University, 1995.
Знайти повний текст джерелаL, Whitfield David, and United States. National Aeronautics and Space Administration., eds. Nonlinear (time domain) and linearized (title & freqency domain) solutions to the compressible Euler equations in conservation law form: Final report for NASA Lewis Research Center. Mississippi States, MS: Computational Fluid Dynamics Laboratory, Engineering Research Center for Computational Field Simulation, Mississippi State University, 1995.
Знайти повний текст джерелаJung, B. H. Time and frequency domain solutions of EM problems: Using integral equations and a hybrid methodology. Hoboken, N.J: IEEE Press, 2010.
Знайти повний текст джерелаBaumeister, Kenneth J. Finite difference time marching in the frequency domain: A parabolic formulation for aircraft acoustic nacelle design. [Washington, D.C: National Aeronautics and Space Administration, 1996.
Знайти повний текст джерелаDzhamay, Anton, Christopher W. Curtis, Willy A. Hereman, and B. Prinari. Nonlinear wave equations: Analytic and computational techniques : AMS Special Session, Nonlinear Waves and Integrable Systems : April 13-14, 2013, University of Colorado, Boulder, CO. Providence, Rhode Island: American Mathematical Society, 2015.
Знайти повний текст джерелаLi, Jichun, and Yunqing Huang. Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials. Springer, 2012.
Знайти повний текст джерелаLi, Jichun, and Yunqing Huang. Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials. Springer, 2015.
Знайти повний текст джерелаOrhanović, Neven. Time domain simulation of Maxwell's equations by the method of characteristics. 1993.
Знайти повний текст джерелаA Fourier collocation time domain method for numerically solving Maxwell's equations. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1991.
Знайти повний текст джерелаComputational electrodynamics: The finite-difference time-domain method. Boston: Artech House, 1995.
Знайти повний текст джерелаEdelvik, Frederik. Hybrid Solvers for the Maxwell Equations in Time-Domain. Uppsala Universitet, 2002.
Знайти повний текст джерелаMittra, Raj, and Wenhua Yu. CFDTD: Conformal Finite Difference Time Domain Maxwell¿s Equations Solver, Software and User¿s Guide. Artech House Publishers, 2003.
Знайти повний текст джерелаSarris, Costas D. Adaptive Mesh Refinement for Time-Domain Numerical Electromagnetics (Synthesis Lectures on Computational Electromagnetics). Morgan and Claypool Publishers, 2007.
Знайти повний текст джерелаApplication of a Finite-Volume Time-Domain Maxwell Equation Solver to Three-Dimensional Objects. Storming Media, 1996.
Знайти повний текст джерелаHettlich, Frank, and Andreas Kirsch. Mathematical Theory of Time-Harmonic Maxwell's Equations: Expansion-, Integral-, and Variational Methods. Springer London, Limited, 2014.
Знайти повний текст джерелаChen, Zhizhang (David), and Shunchuan Yang. Introduction to Time-Domain Numerical Methods for Solving Electromagnetic Problems. Taylor & Francis Group, 2021.
Знайти повний текст джерелаChen, Zhizhang (David), and Shunchuan Yang. Introduction to Time-Domain Numerical Methods for Solving Electromagnetic Problems. Taylor & Francis Group, 2019.
Знайти повний текст джерелаHettlich, Frank, and Andreas Kirsch. The Mathematical Theory of Time-Harmonic Maxwell's Equations: Expansion-, Integral-, and Variational Methods. Springer, 2016.
Знайти повний текст джерелаHettlich, Frank, and Andreas Kirsch. The Mathematical Theory of Time-Harmonic Maxwell's Equations: Expansion-, Integral-, and Variational Methods. Springer, 2014.
Знайти повний текст джерелаSayas, Francisco-Javier. Retarded Potentials and Time Domain Boundary Integral Equations: A Road Map. Springer London, Limited, 2016.
Знайти повний текст джерелаSayas, Francisco-Javier. Retarded Potentials and Time Domain Boundary Integral Equations: A Road Map. Springer, 2016.
Знайти повний текст джерела