Добірка наукової літератури з теми "MATRIX FACTORIZATION TECHNIQUES"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "MATRIX FACTORIZATION TECHNIQUES".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "MATRIX FACTORIZATION TECHNIQUES"
Koren, Yehuda, Robert Bell, and Chris Volinsky. "Matrix Factorization Techniques for Recommender Systems." Computer 42, no. 8 (August 2009): 30–37. http://dx.doi.org/10.1109/mc.2009.263.
Повний текст джерелаDu, Ke-Lin, M. N. S. Swamy, Zhang-Quan Wang, and Wai Ho Mow. "Matrix Factorization Techniques in Machine Learning, Signal Processing, and Statistics." Mathematics 11, no. 12 (June 12, 2023): 2674. http://dx.doi.org/10.3390/math11122674.
Повний текст джерелаBehl, Rachna, and Indu Kashyap. "Locus recommendation using probabilistic matrix factorization techniques." Ingeniería Solidaria 17, no. 1 (January 11, 2021): 1–25. http://dx.doi.org/10.16925/2357-6014.2021.01.10.
Повний текст джерелаNguyen, Jennifer, and Mu Zhu. "Content-boosted matrix factorization techniques for recommender systems." Statistical Analysis and Data Mining 6, no. 4 (April 2, 2013): 286–301. http://dx.doi.org/10.1002/sam.11184.
Повний текст джерелаWang, Fei, Hanghang Tong, and Ching-Yung Lin. "Towards Evolutionary Nonnegative Matrix Factorization." Proceedings of the AAAI Conference on Artificial Intelligence 25, no. 1 (August 4, 2011): 501–6. http://dx.doi.org/10.1609/aaai.v25i1.7927.
Повний текст джерелаKhalane, Vivek, Shekhar Suralkar, and Umesh Bhadade. "Image Encryption Based on Matrix Factorization." International Journal of Safety and Security Engineering 10, no. 5 (November 30, 2020): 655–61. http://dx.doi.org/10.18280/ijsse.100510.
Повний текст джерелаNalavade, Jagannath E., Chandra Sekhar Kolli, and Sanjay Nakharu Prasad Kumar. "Deep embedded clustering with matrix factorization based user rating prediction for collaborative recommendation." Multiagent and Grid Systems 19, no. 2 (October 6, 2023): 169–85. http://dx.doi.org/10.3233/mgs-230039.
Повний текст джерелаTong, Lei, Jing Yu, Chuangbai Xiao, and Bin Qian. "Hyperspectral unmixing via deep matrix factorization." International Journal of Wavelets, Multiresolution and Information Processing 15, no. 06 (November 2017): 1750058. http://dx.doi.org/10.1142/s0219691317500588.
Повний текст джерелаYashwanth, A. "Audio Enhancement and Denoising using Online Non-Negative Matrix Factorization and Deep Learning." International Journal for Research in Applied Science and Engineering Technology 10, no. 6 (June 30, 2022): 1703–9. http://dx.doi.org/10.22214/ijraset.2022.44061.
Повний текст джерелаLin, Chih-Jen. "Projected Gradient Methods for Nonnegative Matrix Factorization." Neural Computation 19, no. 10 (October 2007): 2756–79. http://dx.doi.org/10.1162/neco.2007.19.10.2756.
Повний текст джерелаДисертації з теми "MATRIX FACTORIZATION TECHNIQUES"
Frederic, John. "Examination of Initialization Techniques for Nonnegative Matrix Factorization." Digital Archive @ GSU, 2008. http://digitalarchive.gsu.edu/math_theses/63.
Повний текст джерелаHerrmann, Julien. "Memory-aware Algorithms and Scheduling Techniques for Matrix Computattions." Thesis, Lyon, École normale supérieure, 2015. http://www.theses.fr/2015ENSL1043/document.
Повний текст джерелаThroughout this thesis, we have designed memory-aware algorithms and scheduling techniques suitedfor modern memory architectures. We have shown special interest in improving the performance ofmatrix computations on multiple levels. At a high level, we have introduced new numerical algorithmsfor solving linear systems on large distributed platforms. Most of the time, these linear solvers rely onruntime systems to handle resources allocation and data management. We also focused on improving thedynamic schedulers embedded in these runtime systems by adding static information to their decisionprocess. We proposed new memory-aware dynamic heuristics to schedule workflows, that could beimplemented in such runtime systems.Altogether, we have dealt with multiple state-of-the-art factorization algorithms used to solve linearsystems, like the LU, QR and Cholesky factorizations. We targeted different platforms ranging frommulticore processors to distributed memory clusters, and worked with several reference runtime systemstailored for these architectures, such as P A RSEC and StarPU. On a theoretical side, we took specialcare of modelling convoluted hierarchical memory architectures. We have classified the problems thatare arising when dealing with these storage platforms. We have designed many efficient polynomial-timeheuristics on general problems that had been shown NP-complete beforehand
Julià, Ferré Ma Carme. "Missing Data Matrix Factorization Addressing the Structure from Motion Problem." Doctoral thesis, Universitat Autònoma de Barcelona, 2008. http://hdl.handle.net/10803/5785.
Повний текст джерелаEn el cas de matrius de trajectòries corresponents a punts característics que pertanyen a diversos objectes, les tècniques de factorització no es poden aplicar directament per
obtenir el moviment i la forma de cada objecte, ja que les trajectòries no estan ordenades per objectes. A més a més, s'ha de tenir en compte un altre problema: l'estimació del rang de la matriu de trajectòries. El problema és que amb forats, el rang de la matriu no pot ser calculat directament. Per altra banda, com que hi ha múltiples objectes, és difícil d'estimar-lo, sense utilitzar informació com ara nombre d'objectes o tipus de moviment d'aquests. Presentem una tècnica per estimar el rang d'una matriu de trajectòries amb forats. La idea és que, si les trajectòries pertanyen a objectes rígids, la freqüència espectral de la matriu de trajectòries inicial no hauria de variar un cop la matriu ha estat emplenada. Els forats de la matriu són emplenats amb un mètode de factorització, considerant diferents valors per al rang de la matriu. Al mateix temps, el rang de la matriu de trajectòries és estimat fent servir una mesura que compara la freqüència espectral de cada matriu emplenada amb la de la matriu inicial. El proper pas consisteix en segmentar les trajectòries segons el seu moviment. Finalment, qualsevol tècnica d'Estructura a partir de Moviment per a un únic objecte pot ser aplicada per trobar el moviment i la forma de cada objecte.
Intentem aplicar la metodologia proposada per al problema de l'Estructura a partir de Moviment a d'altres aplicacions, no només dins el camp de la visió per computador. En particular, l'objectiu és adaptar els mètodes Alternats per poder aplicar-los a diferents problemes de dimensionalitat reduïda. Una de les possibles aplicacions és la fotometria: la idea és recuperar la reflectància i les normals a la superfície i la direcció de la llum en cada imatge, a partir d'imatges obtingudes sota diferents condicions de llum. En una segona aplicació, l'objectiu és adaptar els mètodes Alternats per poder omplir els forats en una matriu de dades provinents d'expressions de gens. Aquestes matrius són generades amb la informació que proporcionen els DNA microarrays. Finalment, els mètodes Alternats són aplicats a matrius de dades de sistemes de recomanació, molt usats en E-commerce. Aquestes matrius contenen puntuacions que els usuaris han donat a certs productes. La idea és predir les puntuacions que un usuari concret donaria a altres productes, utilitzant la informació emmagatzemada en el sistema.
This work is focused on the missing data matrix factorization addressing the Structure from Motion (SFM) problem. The aim is to decompose a matrix of feature point trajectories into the motion and shape matrices, which contain the relative camera-object motion and the 3D positions of tracked feature points, respectively. This decomposition can be found by using the fact that the matrix of trajectories has a reduced rank. Although several techniques have been proposed to tackle this problem, they may give undesirable results when the percentage of missing data is high. An iterative multiresolution scheme is presented to deal with matrices with high percentages of missing data. Experimental results show the viability of the proposed approach.
In the multiple objects case, factorization techniques can not be directly applied to obtain the SFM of every object, since trajectories are not sorted into different objects. Furthermore, another problem should be faced out: the estimation of the rank of the matrix of trajectories. The problem is that, in this case, the rank of the matrix of trajectories is not bounded, since any prior knowledge about the number of objects nor about their motion is used. This problem becomes more difficult with missing data, since singular values can not be computed to estimate the rank. A technique to estimate the rank of a missing data matrix of trajectories is presented. The good performance of the proposed technique is empirically shown considering sequences with both, synthetic and real data. Once the rank is estimated and the matrix of trajectories is full, the motion segmentation of trajectories is computed. Finally, any factorization technique for the single object case gives the shape and motion of every object.
In addition to the SFM problem, this thesis also shows other applications that can be addressed by means of factorization techniques. Concretely, the Alternation technique, which is used through the thesis, is adapted to address each particular problem. The first proposed application is the photometric stereo: the goal is to recover the reflectance and surface normals and the light source direction at each frame, from a set of images taken under different lighting conditions. In a second application, the aim is to fill in missing data in gene expression matrices by using the Alternation technique. Finally, the Alternation technique is adapted to be applied in recommender systems, widely considered in E-commerce. For each application, experimental results are given in order to show the good performance of the proposed Alternation-based strategy.
Holländer, John. "Investigating the performance of matrix factorization techniques applied on purchase data for recommendation purposes." Thesis, Malmö högskola, Fakulteten för teknik och samhälle (TS), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-20624.
Повний текст джерелаDiop, Mamadou. "Décomposition booléenne des tableaux multi-dimensionnels de données binaires : une approche par modèle de mélange post non-linéaire." Thesis, Université de Lorraine, 2018. http://www.theses.fr/2018LORR0222/document.
Повний текст джерелаThis work is dedicated to the study of boolean decompositions of binary multidimensional arrays using a post nonlinear mixture model. In the first part, we introduce a new approach for the boolean factorization of binary matrices (BFBM) based on a post nonlinear mixture model. Unlike the existing binary matrix factorization methods, the proposed method is equivalent to the boolean factorization model when the matrices are strictly binary and give thus more interpretable results in the case of correlated sources and lower rank matrix approximations compared to other state-of-the-art algorithms. A necessary and suffi-cient condition for the uniqueness of the BFBM is also provided. Two algorithms based on multiplicative update rules are proposed and tested in numerical simulations, as well as on a real dataset. The gener-alization of this approach to the case of binary multidimensional arrays (tensors) leads to the boolean factorisation of binary tensors (BFBT). The proof of the necessary and sufficient condition for the boolean decomposition of binary tensors is based on a notion of boolean independence of binary vectors. The multiplicative algorithm based on the post nonlinear mixture model is extended to the multidimensional case. We also propose a new algorithm based on an AO-ADMM (Alternating Optimization-ADMM) strategy. These algorithms are compared to state-of-the-art algorithms on simulated and on real data
Waggoner, Alexander A. "Triple Non-negative Matrix Factorization Technique for Sentiment Analysis and Topic Modeling." Scholarship @ Claremont, 2017. http://scholarship.claremont.edu/cmc_theses/1550.
Повний текст джерелаDia, Nafissa. "Suivi non-invasif du rythme cardiaque foetal : exploitation de la factorisation non-négative des matrices sur signaux électrocardiographiques et phonocardiographiques." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAS034.
Повний текст джерелаWith more than 200,000 births per day in the world, fetal well-being monitoring during birth is a major clinical challenge. This monitoring is done by analyzing the fetal heart rate (FHR) and its variability, and this has to be robust while minimizing the number of non-invasive sensors to lay on the mother's abdomen.In this context, electrocardiogram (ECG) and phonocardiogram (PCG) signals are of interest since they both bring cardiac information, both redundant and complementary. This multimodality as well as some features of ECG and PCG signals, as quasi-periodicity, have been exploited. Several propositions were put in competition, based on non-negative matrix factorization (NMF), a matrix decomposition algorithm adapted to physiological signals.The final solution proposed for the FHR estimation is based on a source-filter modeling of real fetal ECG or PCG signals, previously extracted, allowing an estimation of the fundamental frequency by NMF.The approach was carried out on a clinical database of ECG and PCG signals on pregnant women and FHR results were validated by comparison with the cardiotocography clinical reference technique
Filippi, Marc. "Séparation de sources en imagerie nucléaire." Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAT025/document.
Повний текст джерелаIn nuclear imaging (scintigraphy, SPECT, PET), diagnostics are often made with time activity curves (TAC) of organs and tissues. These TACs represent the dynamic evolution of tracer distribution inside patient's body. Extraction of TACs can be complicated by overlapping in the 2D image sequences, hence source separation methods must be used in order to extract TAC properly. However, the underlying separation problem is underdetermined. We propose to overcome this difficulty by adding some spatial and temporal prior knowledge about sources on the separation process. The main knowledge used in this work is region of interest (ROI) of organs and tissues. Unlike state of the art methods, ROI are integrated in a robust way in our method, in order to face user-dependancy in their selection. The proposed method is generic and minimize an objective function composed with a data fidelity criterion, penalizations and relaxations expressing prior knowledge. Results on synthetic datasets show the efficiency of the proposed method compare to state of the art methods. Two clinical applications on the kidney and on the heart are also adressed
Pham, Viet Nga. "Programmation DC et DCA pour l'optimisation non convexe/optimisation globale en variables mixtes entières : Codes et Applications." Phd thesis, INSA de Rouen, 2013. http://tel.archives-ouvertes.fr/tel-00833570.
Повний текст джерелаJiang, Jia-Yun, and 姜佳昀. "Exists or Not: A Differentially Private Matrix Factorization using Randomized Response Techniques." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/58842084091194723748.
Повний текст джерела國立臺灣大學
資訊工程學研究所
105
Collaborative filtering (CF) is a popular and widely-used technique for recommendation systems. However, it has privacy concerns of data leakage caused by untrusted servers. To address this problem, we propose a privacy-preserving framework for one of the robustest CF-based method, Matrix Factorization (MF). With the advantage of the characteristic of MF, this framework is based on gradient-transmission client-server architecture to preserve value of feedback and trained model. On basis of this architecture, we further preserve the existence of feedback by a two-stage Randomized Response algorithm. The privacy of this framework is proved to be with the guarantee of differential privacy. We also conduct experiments on numerical feedback task and one-class feedback task. The results demonstrate that our framework can successfully achieve privacy with certain utility.
Книги з теми "MATRIX FACTORIZATION TECHNIQUES"
Naik, Ganesh R., ed. Non-negative Matrix Factorization Techniques. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-48331-2.
Повний текст джерелаSymeonidis, Panagiotis, and Andreas Zioupos. Matrix and Tensor Factorization Techniques for Recommender Systems. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41357-0.
Повний текст джерелаSymeonidis, Panagiotis, and Andreas Zioupos. Matrix and Tensor Factorization Techniques for Recommender Systems. Springer London, Limited, 2016.
Знайти повний текст джерелаSymeonidis, Panagiotis, and Andreas Zioupos. Matrix and Tensor Factorization Techniques for Recommender Systems. Springer, 2017.
Знайти повний текст джерелаNaik, Ganesh R. Non-negative Matrix Factorization Techniques: Advances in Theory and Applications. Springer, 2016.
Знайти повний текст джерелаNaik, Ganesh R. Non-Negative Matrix Factorization Techniques: Advances in Theory and Applications. Springer Berlin / Heidelberg, 2015.
Знайти повний текст джерелаNaik, Ganesh R. Non-Negative Matrix Factorization Techniques: Advances in Theory and Applications. Springer, 2015.
Знайти повний текст джерелаЧастини книг з теми "MATRIX FACTORIZATION TECHNIQUES"
Symeonidis, Panagiotis, and Andreas Zioupos. "Related Work on Matrix Factorization." In Matrix and Tensor Factorization Techniques for Recommender Systems, 19–31. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41357-0_2.
Повний текст джерелаSymeonidis, Panagiotis, and Andreas Zioupos. "Related Work on Tensor Factorization." In Matrix and Tensor Factorization Techniques for Recommender Systems, 69–80. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41357-0_5.
Повний текст джерелаBalu, Raghavendran, Teddy Furon, and Laurent Amsaleg. "Sketching Techniques for Very Large Matrix Factorization." In Lecture Notes in Computer Science, 782–88. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30671-1_68.
Повний текст джерелаSymeonidis, Panagiotis, and Andreas Zioupos. "Experimental Evaluation on Matrix Decomposition Methods." In Matrix and Tensor Factorization Techniques for Recommender Systems, 59–65. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41357-0_4.
Повний текст джерелаSymeonidis, Panagiotis, and Andreas Zioupos. "Introduction." In Matrix and Tensor Factorization Techniques for Recommender Systems, 3–17. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41357-0_1.
Повний текст джерелаSymeonidis, Panagiotis, and Andreas Zioupos. "Performing SVD on Matrices and Its Extensions." In Matrix and Tensor Factorization Techniques for Recommender Systems, 33–57. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41357-0_3.
Повний текст джерелаSymeonidis, Panagiotis, and Andreas Zioupos. "HOSVD on Tensors and Its Extensions." In Matrix and Tensor Factorization Techniques for Recommender Systems, 81–93. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41357-0_6.
Повний текст джерелаSymeonidis, Panagiotis, and Andreas Zioupos. "Experimental Evaluation on Tensor Decomposition Methods." In Matrix and Tensor Factorization Techniques for Recommender Systems, 95–99. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41357-0_7.
Повний текст джерелаSymeonidis, Panagiotis, and Andreas Zioupos. "Conclusions and Future Work." In Matrix and Tensor Factorization Techniques for Recommender Systems, 101–2. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41357-0_8.
Повний текст джерелаChen, Liang, and Peidong Zhu. "Matrix Factorization Approach Based on Temporal Hierarchical Dirichlet Process." In Intelligence Science and Big Data Engineering. Big Data and Machine Learning Techniques, 204–12. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23862-3_20.
Повний текст джерелаТези доповідей конференцій з теми "MATRIX FACTORIZATION TECHNIQUES"
Baviskar, Vishal Shekhar, and K. N. Meera. "Recommender systems: Matrix factorization." In 2ND INTERNATIONAL CONFERENCE ON RECENT ADVANCES IN COMPUTATIONAL TECHNIQUES. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0148412.
Повний текст джерелаBalu, Raghavendran, and Teddy Furon. "Differentially Private Matrix Factorization using Sketching Techniques." In IH&MMSec '16: ACM Information Hiding and Multimedia Security Workshop. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2909827.2930793.
Повний текст джерелаBaltrunas, Linas, Bernd Ludwig, and Francesco Ricci. "Matrix factorization techniques for context aware recommendation." In the fifth ACM conference. New York, New York, USA: ACM Press, 2011. http://dx.doi.org/10.1145/2043932.2043988.
Повний текст джерелаHashemi, Soheil, and Sherief Reda. "Generalized Matrix Factorization Techniques for Approximate Logic Synthesis." In 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2019. http://dx.doi.org/10.23919/date.2019.8715274.
Повний текст джерелаMehta, Rachana, and Keyur Rana. "A review on matrix factorization techniques in recommender systems." In 2017 2nd International Conference on Communication Systems, Computing and IT Applications (CSCITA). IEEE, 2017. http://dx.doi.org/10.1109/cscita.2017.8066567.
Повний текст джерелаSiy, Peter W., Richard A. Moffitt, R. Mitchell Parry, Yanfeng Chen, Ying Liu, M. Cameron Sullards, Alfred H. Merrill, and May D. Wang. "Matrix factorization techniques for analysis of imaging mass spectrometry data." In 2008 8th IEEE International Conference on Bioinformatics and BioEngineering. IEEE, 2008. http://dx.doi.org/10.1109/bibe.2008.4696797.
Повний текст джерелаSchachtner, R., D. Lutter, A. M. Tome, E. W. Lang, and P. Gomez Vilda. "Exploring Matrix Factorization Techniques for Classification of Gene Expression Profiles." In 2007 IEEE International Symposium on Intelligent Signal Processing. IEEE, 2007. http://dx.doi.org/10.1109/wisp.2007.4447571.
Повний текст джерелаKalloori, Saikishore, Francesco Ricci, and Marko Tkalcic. "Pairwise Preferences Based Matrix Factorization and Nearest Neighbor Recommendation Techniques." In RecSys '16: Tenth ACM Conference on Recommender Systems. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2959100.2959142.
Повний текст джерелаQian, Yuntao, Sen Jia, Jun Zhou, and Antonio Robles-Kelly. "L1/2 Sparsity Constrained Nonnegative Matrix Factorization for Hyperspectral Unmixing." In 2010 International Conference on Digital Image Computing: Techniques and Applications (DICTA). IEEE, 2010. http://dx.doi.org/10.1109/dicta.2010.82.
Повний текст джерелаKong, Wei, Xiaoyang Mou, and Xiaohua Hu. "Exploring matrix factorization techniques for significant genes identification of microarray dataset." In 2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2010. http://dx.doi.org/10.1109/bibm.2010.5706599.
Повний текст джерелаЗвіти організацій з теми "MATRIX FACTORIZATION TECHNIQUES"
Baca, L. S., and D. E. Salane. Two classes of preconditioners computed using block matrix factorization techniques. Office of Scientific and Technical Information (OSTI), July 1987. http://dx.doi.org/10.2172/5928153.
Повний текст джерела