Дисертації з теми "Mathematical optimization"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 дисертацій для дослідження на тему "Mathematical optimization".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Keanius, Erik. "Mathematical Optimization in SVMs." Thesis, KTH, Skolan för teknikvetenskap (SCI), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-297492.
Повний текст джерелаZhou, Fangjun. "Nonmonotone methods in optimization and DC optimization of location problems." Diss., Georgia Institute of Technology, 1997. http://hdl.handle.net/1853/21777.
Повний текст джерелаHolm, Åsa. "Mathematical Optimization of HDR Brachytherapy." Doctoral thesis, Linköpings universitet, Optimeringslära, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-99795.
Повний текст джерелаNajafiazar, Bahador. "Mathematical Optimization in Reservoir Management." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for petroleumsteknologi og anvendt geofysikk, 2014. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-27058.
Повний текст джерелаSaunders, David. "Applications of optimization to mathematical finance." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp04/mq29265.pdf.
Повний текст джерелаChang, Tyler Hunter. "Mathematical Software for Multiobjective Optimization Problems." Diss., Virginia Tech, 2020. http://hdl.handle.net/10919/98915.
Повний текст джерелаDoctor of Philosophy
Science and engineering are full of multiobjective tradeoff problems. For example, a portfolio manager may seek to build a financial portfolio with low risk, high return rates, and minimal transaction fees; an aircraft engineer may seek a design that maximizes lift, minimizes drag force, and minimizes aircraft weight; a chemist may seek a catalyst with low viscosity, low production costs, and high effective yield; or a computational scientist may seek to fit a numerical model that minimizes the fit error while also minimizing a regularization term that leverages domain knowledge. Often, these criteria are conflicting, meaning that improved performance by one criterion must be at the expense of decreased performance in another criterion. The solution to a multiobjective optimization problem allows decision makers to balance the inherent tradeoff between conflicting objectives. A related problem is the multivariate interpolation problem, where the goal is to predict the outcome of an event based on a database of past observations, while exactly matching all observations in that database. Multivariate interpolation problems are equally as prevalent and impactful as multiobjective optimization problems. For example, a pharmaceutical company may seek a prediction for the costs and effects of a proposed drug; an aerospace engineer may seek a prediction for the lift and drag of a new aircraft design; or a search engine may seek a prediction for the classification of an unlabeled image. Delaunay interpolation offers a unique solution to this problem, backed by decades of rigorous theory and analytical error bounds, but does not scale to high-dimensional "big data" problems. In this thesis, novel algorithms and software are proposed for solving both of these extremely difficult problems.
ROSSI, FILIPPO. "Mathematical models for selling process optimization." Doctoral thesis, Università degli studi di Genova, 2021. http://hdl.handle.net/11567/1050078.
Повний текст джерелаRossetti, Gaia. "Mathematical optimization techniques for cognitive radar networks." Thesis, Loughborough University, 2018. https://dspace.lboro.ac.uk/2134/33419.
Повний текст джерелаTrescher, Saskia. "Estimating Gene Regulatory Activity using Mathematical Optimization." Doctoral thesis, Humboldt-Universität zu Berlin, 2020. http://dx.doi.org/10.18452/21900.
Повний текст джерелаGene regulation is one of the most important cellular processes and closely interlinked pathogenesis. The elucidation of regulatory mechanisms can be approached by many experimental methods, yet integration of the resulting heterogeneous, large, and noisy data sets into comprehensive models requires rigorous computational methods. A prominent class of methods models genome-wide gene expression as sets of (linear) equations over the activity and relationships of transcription factors (TFs), genes and other factors and optimizes parameters to fit the measured expression intensities. Despite their common root in mathematical optimization, they vastly differ in the types of experimental data being integrated, the background knowledge necessary for their application, the granularity of their regulatory model, the concrete paradigm used for solving the optimization problem and the data sets used for evaluation. We review five recent methods of this class and compare them qualitatively and quantitatively in a unified framework. Our results show that the result overlaps are very low, though sometimes statistically significant. This poor overall performance cannot be attributed to the sample size or to the specific regulatory network provided as background knowledge. We suggest that a reason for this deficiency might be the simplistic model of cellular processes in the presented methods, where TF self-regulation and feedback loops were not represented. We propose a new method for estimating transcriptional activity, named Florae, with a particular focus on the consideration of feedback loops and evaluate its results. Using Floræ, we are able to improve the identification of knockout and knockdown TFs in synthetic data sets. Our results and the proposed method extend the knowledge about gene regulatory activity and are a step towards the identification of causes and mechanisms of regulatory (dys)functions, supporting the development of medical biomarkers and therapies.
Haddon, Antoine. "Mathematical Modeling and Optimization for Biogas Production." Thesis, Montpellier, 2019. http://www.theses.fr/2019MONTS047.
Повний текст джерелаAnaerobic digestion is a biological process in which organic compounds are degraded by different microbial populations into biogas (carbon dioxyde and methane), which can be used as a renewable energy source. This thesis works towards developing control strategies and bioreactor designs that maximize biogas production.The first part focuses on the optimal control problem of maximizing biogas production in a chemostat in several directions. We consider the single reaction model and the dilution rate is the controlled variable.For the finite horizon problem, we study feedback controllers similar to those used in practice and consisting in driving the reactor towards a given substrate level and maintaining it there. Our approach relies on establishing bounds of the unknown value function by considering different rewards for which the optimal solution has an explicit optimal feedback that is time-independent. In particular, this technique provides explicit bounds on the sub-optimality of the studied controllers for a broad class of substrate and biomass dependent growth rate functions. With numerical simulations, we show that the choice of the best feedback depends on the time horizon and initial condition.Next, we consider the problem over an infinite horizon, for averaged and discounted rewards. We show that, when the discount rate goes to 0, the value function of the discounted problem converges and that the limit is equal to the value function for the averaged reward. We identify a set of optimal solutions for the limit and averaged problems as the controls that drive the system towards a state that maximizes the biogas flow rate on an special invariant set.We then return to the problem over a fixed finite horizon and with the Pontryagin Maximum Principle, we show that the optimal control has a bang singular arc structure. We construct a one parameter family of extremal controls that depend on the constant value of the Hamiltonian. Using the Hamilton-Jacobi-Bellman equation, we identify the optimal control as the extremal associated with the value of the Hamiltonian which satisfies a fixed point equation. We then propose a numerical algorithm to compute the optimal control by solving this fixed point equation. We illustrate this method with the two major types of growth functions of Monod and Haldane.In the second part, we investigate the impact of mixing the reacting medium on biogas production. For this we introduce a model of a pilot scale upflow fixed bed bioreactor that offers a representation of spatial features. This model takes advantage of reactor geometry to reduce the spatial dimension of the section containing the fixed bed and in other sections, we consider the 3D steady-state Navier-Stokes equations for the fluid dynamics. To represent the biological activity, we use a 2 step model and for the substrates, advection-diffusion-reaction equations. We only consider the biomasses that are attached in the fixed bed section and we model their growth with a density dependent function. We show that this model can reproduce the spatial gradient of experimental data and helps to better understand the internal dynamics of the reactor. In particular, numerical simulations indicate that with less mixing, the reactor is more efficient, removing more organic matter and producing more biogas
Persson, Mikael. "Cableharness selection for gearboxes using mathematical optimization." Thesis, KTH, Optimeringslära och systemteori, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-209929.
Повний текст джерелаScanias modulsystem gör att tusentals olika växellådsvarianter är möjliga att tillverka. Om varje växellådsvariant skall ha ett eget kablage leder detta till stora lagerhållnings- och produktionskostnader. Det är därför fördelaktigt om man kan hitta en mindre uppsättning kablage som uppfyller kraven för alla växellådor. Två modeller inom matematisk optimering presenteras för att uppnå målet samtidigt som kostnader för lagerhållning och produktion minimeras. Vidare föreslås en metod för att dela upp problemet i delproblem utan att noggrannheten minskar. Vi visar även hur lösningen från den första modellen kan användas som varmstart till den andra modellen. Fokus är på kablage för växellådor till Scanias lastbilar. Resultat från test av modellerna med data från Scanias produktion presenteras. Resultaten visar på att en betydande besparing är möjlig. Rapportens slutsatser kan även användas i liknande situationer, till exempel motorstyrsystem och andra elsystem i fordon.
Andersson, Björn. "Mathematical Optimization of Radiation Therapy Goal Fulfillment." Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-325396.
Повний текст джерелаGambella, Claudio <1988>. "Mathematical Optimization for Routing and Logistic Problems." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amsdottorato.unibo.it/7607/1/gambella_claudio_tesi.pdf.
Повний текст джерелаGambella, Claudio <1988>. "Mathematical Optimization for Routing and Logistic Problems." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amsdottorato.unibo.it/7607/.
Повний текст джерелаColombo, F. "MATHEMATICAL PROGRAMMING ALGORITHMS FOR NETWORK OPTIMIZATION PROBLEMS." Doctoral thesis, Università degli Studi di Milano, 2014. http://hdl.handle.net/2434/234164.
Повний текст джерелаRamachandran, Selvaraj. "Hypoid gear optimization." PDXScholar, 1992. https://pdxscholar.library.pdx.edu/open_access_etds/4419.
Повний текст джерелаGu, Fangqing. "Many objective optimization: objective reduction and weight design." HKBU Institutional Repository, 2016. https://repository.hkbu.edu.hk/etd_oa/315.
Повний текст джерелаZymolka, Adrian. "Design of survivable optical networks by mathematical optimization." Göttingen Cuvillier, 2007.
Знайти повний текст джерелаCOSTA, PEDRO FRANCA FERREIRA DA. "OPTIMIZATION OF THE OFFLOADING LOGISTICS USING MATHEMATICAL PROGRAMMING." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2015. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=25301@1.
Повний текст джерелаThe growth of daily oil production and the high costs involved in oil logistics, specifically the upstream logistics and the production logistics itself, adding to the current downturn in oil prices, are becoming increasingly relevant considering the major economic impacts caused by eventual failure in logistics processes. In this context, a linear programming model was developed. It provides the optimization of offloading platforms operation coupled to the service window of various vessels, so there is no need to interrupt the production of any of those platforms, allowing that all demands are met. In any case, this method seeks to minimize operational costs by reducing the distances traveled and the number of chartered vessels. The mathematical model was applied in a case study consisting of three different scenarios. The result obtained allows effective decision making that will define the number of shuttle tankers to be chartered for a certain period of time.
Craft, David (David Loren) 1973. "Local energy management through mathematical modeling and optimization." Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/28858.
Повний текст джерелаIncludes bibliographical references (p. 217-223).
(cont.) Extensions to the core TOTEM model include a demand charge model, used for making daily optimal control decisions when the electric bill includes a charge based on the monthly maximum power draw. The problem of heating, ventilation, and air conditioning (HVAC) control is treated separately since it strongly violates TOTEM's linearity assumptions. Nonetheless, we describe a solution approach to the HVAC problem which operates in conjunction with TOTEM. We also provide an analysis of storage suitability in stochastic supply and demand networks. The node-based approach lends itself well to a software system that uses a drag- and-drop graphical network creation tool. We present a graphical user interface, the XML data representation, and the communication links to and from optimization software.
We develop an extensive yet tractable framework for analyzing and optimally controlling local energy networks. A local energy network is any set of generation, storage, and end-use devices existing to provide energy fulfillment to a building, a group of jointly operated buildings, or a village power system. The software developed is called TOTEM for Total Energy Management, and provides hourly (or sub-hourly) control over the flows in such energy networks. TOTEM manages multiple energy flows such as electricity, chilled water, heat, and steam together, since such energies are often coupled, particularly for networks containing cogeneration turbines (which produce electricity and steam) and absorption chillers (which use steam for driving refrigeration turbines). Due to the large number of interconnected devices in such networks, the model is kept as a linear mixed integer program, able to be solved rapidly with off-the-shelf mathematical optimization packages. Certain nonlinearities, for example input-output relationships for generators, are handled in this linear framework with piecewise linear approximations. Modeling flexibility is achieved by taking a node-centric approach. Each device in the network is represented as a node, and depending on each node's set membership, proper constraint and objective equations are written. Given the network, TOTEM uses hourly electricity and fuel pricing, weather, and demand projections to determine the optimal operating and scheduling strategy for the day, in both deterministic and stochastic settings. MIT's cogeneration plant is used as a case study, with other examples throughout the thesis demonstrate the use of TOTEM for assessing and controlling renewable resources, storage options, and
by David Craft.
Ph.D.
Cubo, Rubén. "Mathematical modeling for optimization of Deep Brain Stimulation." Licentiate thesis, Uppsala universitet, Avdelningen för systemteknik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-284320.
Повний текст джерела扇之介, 渡辺, and Sennosuke Watanabe. "Studies on mathematical structures of network optimization problems." Thesis, https://doors.doshisha.ac.jp/opac/opac_link/bibid/BB12863906/?lang=0, 2013. https://doors.doshisha.ac.jp/opac/opac_link/bibid/BB12863906/?lang=0.
Повний текст джерела博士(理学)
Doctor of Philosophy in Science
同志社大学
Doshisha University
Romanko, O. "Mathematical modeling and optimization techniques in risk management." Thesis, Видавництво СумДУ, 2010. http://essuir.sumdu.edu.ua/handle/123456789/14411.
Повний текст джерелаAwunganyi, John. "A study of optimization in Hilbert Space." CSUSB ScholarWorks, 1998. https://scholarworks.lib.csusb.edu/etd-project/1459.
Повний текст джерелаDeligiannis, Anastasios. "Mathematical optimization and game theoretic methods for radar networks." Thesis, Loughborough University, 2016. https://dspace.lboro.ac.uk/2134/22732.
Повний текст джерелаAmankwah, Henry. "Mathematical Optimization Models and Methods for Open-Pit Mining." Doctoral thesis, Linköpings universitet, Optimeringslära, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-70844.
Повний текст джерелаJabeen, Zamrooda [Verfasser]. "Approaches to mathematical optimization and its applications / Zamrooda Jabeen." München : GRIN Verlag, 2019. http://d-nb.info/1181794331/34.
Повний текст джерелаBonz, Justus [Verfasser]. "Essays of applied mathematical optimization in logistics / Justus Bonz." Hamburg : Staats- und Universitätsbibliothek Hamburg Carl von Ossietzky, 2021. http://d-nb.info/1229387293/34.
Повний текст джерелаZhu, Ziming. "Mathematical optimization techniques for demand management in smart grids." Thesis, Loughborough University, 2014. https://dspace.lboro.ac.uk/2134/15107.
Повний текст джерелаJadeja, Bhoopatsinh Udaysinh. "Mathematical model and optimization of an interleaving warehouse layout." Thesis, Virginia Polytechnic Institute and State University, 1985. http://hdl.handle.net/10919/91125.
Повний текст джерелаM.S.
Wu, Yu. "Mathematical optimization and game theoretic techniques for multicell beamforming." Thesis, Loughborough University, 2016. https://dspace.lboro.ac.uk/2134/20039.
Повний текст джерелаTrescher, Saskia [Verfasser]. "Estimating Gene Regulatory Activity using Mathematical Optimization / Saskia Trescher." Berlin : Humboldt-Universität zu Berlin, 2020. http://d-nb.info/1218529822/34.
Повний текст джерелаBordin, Chiara <1983>. "Mathematical Optimization Applied to Thermal and Electrical Energy Systems." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2015. http://amsdottorato.unibo.it/6915/1/Bordin_Chiara_tesi.pdf.
Повний текст джерелаBordin, Chiara <1983>. "Mathematical Optimization Applied to Thermal and Electrical Energy Systems." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2015. http://amsdottorato.unibo.it/6915/.
Повний текст джерелаLear, John B. "The effects of uncertainty on the economics of optimising control." Phd thesis, Department of Chemical Engineering, 1992. http://hdl.handle.net/2123/5999.
Повний текст джерелаGreene, James J. "Global optimization of water distribution systems." Thesis, This resource online, 1992. http://scholar.lib.vt.edu/theses/available/etd-10062009-020212/.
Повний текст джерелаVance, Bennet. "Join-order optimization with Cartesian products." Full text open access at:, 1998. http://content.ohsu.edu/u?/etd,586.
Повний текст джерелаMohd, Ismail Bin. "Global optimization using interval arithmetic." Thesis, University of St Andrews, 1987. http://hdl.handle.net/10023/13824.
Повний текст джерелаZhao, Ying, and 趙穎. "Optimization of cooperative material handling systems." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2006. http://hub.hku.hk/bib/B37837710.
Повний текст джерелаManlove, David Francis. "Minimaximal and maximinimal optimisation problems a partial order-based approach /." Thesis, Connect to electronic version, 1998. http://hdl.handle.net/1905/164.
Повний текст джерелаGattupalli, Rajeswar R. "Advances in global optimization /." View online ; access limited to URI, 2008. http://0-digitalcommons.uri.edu.helin.uri.edu/dissertations/AAI3314454.
Повний текст джерелаBattermann, Astrid. "Mathematical optimization methods for the remediation of ground water contaminations." [S.l.] : [s.n.], 2000. http://deposit.ddb.de/cgi-bin/dokserv?idn=963762184.
Повний текст джерелаAllende, Gemayqzel Bouza. "Mathematical programs with equilibrium constraints: solution techniques from parametric optimization." Enschede : University of Twente [Host], 2006. http://doc.utwente.nl/56164.
Повний текст джерелаRahulamathavan, Yogachandran. "Mathematical optimization techniques for resource allocation in cognitive radio networks." Thesis, Loughborough University, 2011. https://dspace.lboro.ac.uk/2134/8982.
Повний текст джерелаRozgic, Marco [Verfasser]. "Mathematical Optimization of Industrial Sheet Metal Forming Processes / Marco Rozgic." Hamburg : Helmut-Schmidt-Universität, Bibliothek, 2018. http://d-nb.info/1165340658/34.
Повний текст джерелаBournaka, Georgia. "Mathematical optimization and signal processing techniques for cooperative wireless networks." Thesis, Loughborough University, 2013. https://dspace.lboro.ac.uk/2134/13629.
Повний текст джерелаSabillón, Antúnez Carlos Francisco. "Mathematical optimization of unbalanced networks operation with smart grid devices." Universidade Estadual Paulista (UNESP), 2018. http://hdl.handle.net/11449/154075.
Повний текст джерелаApproved for entry into archive by Cristina Alexandra de Godoy null (cristina@adm.feis.unesp.br) on 2018-05-24T14:51:28Z (GMT) No. of bitstreams: 1 sabillonantunez_cf_dr_ilha.pdf: 6416516 bytes, checksum: 8832a0c7772aecb5081e9daa768de603 (MD5)
Made available in DSpace on 2018-05-24T14:51:28Z (GMT). No. of bitstreams: 1 sabillonantunez_cf_dr_ilha.pdf: 6416516 bytes, checksum: 8832a0c7772aecb5081e9daa768de603 (MD5) Previous issue date: 2018-03-26
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
As redes de distribuição de energia elétrica devem estar preparadas para fornecer um serviço econômico e confiável a todos os clientes, bem como para integrar tecnologias relacionadas à geração distribuída, armazenamento de energia e veículos elétricos. Uma representação adequada da operação das redes de distribuição, considerando as tecnologias de redes inteligentes, é fundamental para atingir esses objetivos. Este trabalho apresenta formulações matemáticas para a operação em regime permanente das redes de distribuição, que consideram o desequilíbrio de redes trifásicas. Modelos matemáticos da operação de dispositivos relacionados à redes inteligentes presentes em redes de distribuição são desenvolvidos (e.g., dispositivos de controle volt-var, sistemas de armazenamento de energia e veículos elétricos). Além disso, características relacionadas à dependência da tensão das cargas, geração distribuída e limites térmico e de tensão também estão incluídos. Essas formulações constituem um marco matemático para a análise de otimização da operação das redes de distribuição de energia elétrica, o que possibilita modelar os processos de tomada de decisões. Objetivos diferentes relacionados a aspectos técnicos e/ou econômicos podem ser almejados dentro deste marco; Além disso, a extensão para otimização multi-período e multi-cenário é discutida. Os modelos apresentados são construídos com base em formulações de programação linear inteira mista, evitando o uso de formulações não-lineares inteiras mistas convencionais. A aplicação do marco apresentado é ilustrada em abordagens de controle para coordenação de carregamento de veículos elétricos, controle de magnitude de tensão e controle de geração distribuída renovável. Diversos métodos são desenvolvidos, com base no marco de otimização matemática, para otimizar a operação de sistemas de distribuição desbalanceados, considerando não apenas diferentes penetrações de veículos elétricos e fontes de energia renováveis, mas também a presença de sistemas de armazenamento e dispositivos de controle volt-var. A este respeito, o agendamento dinâmico e a otimização multi-período de janela rolante são frequentemente usados para alcançar uma operação ótima na rede. A eficácia e robustez das metodologias, bem como a confiabilidade do marco de otimização matemática, são verificados usando vários sistemas de teste (e.g., 123-node, 34-node e 178-node) com nós de média e baixa tensão, diferentes janelas de controle e várias disponibilidades de controle relacionadas aos dispositivos de rede inteligente.
Electric distribution networks should be prepared to provide an economic and reliable service to all customers, as well as to integrate technologies related to distributed generation, energy storage, and plug-in electric vehicles. A proper representation of the electric distribution network operation, taking into account smart grid technologies, is key to accomplish these goals. This work presents mathematical formulations for the steady-state operation of electric distribution networks, which consider the unbalance of three-phase grids. Mathematical models of the operation of smart grid-related devices present in electric distribution networks are developed (e.g., volt-var control devices, energy storage systems, and plug-in electric vehicles). Furthermore, features related to the voltage dependency of loads, distributed generation, and voltage and thermal limits are also included. These formulations constitute a mathematical framework for optimization analysis of the electric distribution network operation, which could assist planners in decision-making processes. Different objectives related to technical and/or economic aspects can be pursued within the framework; in addition, the extension to multi-period and multi-scenario optimization is discussed. The presented models are built based on mixed integer linear programming formulations, avoiding the use of conventional mixed integer nonlinear formulations. The application of the presented framework is illustrated throughout control approaches for plug-in electric vehicle charging coordination, voltage magnitude control, and renewable distributed generation control. Several methods are developed, based on this framework, to optimize the operation of unbalanced distribution systems considering not only different penetrations of electric vehicles and renewable energy sources but also the presence of storage systems and volt-var control devices. In this regard, dynamic scheduling and rolling multi-period optimization are often used to achieve optimal economic operation in the grid. The effective and robustness of the methodologies, as well as the reliability of the mathematical framework, are verified using many test systems (e.g., 123-node, 34-node, and 178-node) with medium and low voltage nodes, different operation control time frames, and several control availabilities related to the smart grid devices.
Oremland, Matthew Scott. "Techniques for mathematical analysis and optimization of agent-based models." Diss., Virginia Tech, 2014. http://hdl.handle.net/10919/25138.
Повний текст джерелаPh. D.
Rozgi`c, Marco [Verfasser]. "Mathematical Optimization of Industrial Sheet Metal Forming Processes / Marco Rozgic." Hamburg : Helmut-Schmidt-Universität, Bibliothek, 2018. http://d-nb.info/1165340658/34.
Повний текст джерелаHeymann, Benjamin. "Mathematical contributions for the optimization and regulation of electricity production." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLX052/document.
Повний текст джерелаWe present our contribution on the optimization and regulation of electricity produc- tion.The first part deals with a microgrid Energy Management System (EMS). We formulate the EMS program as a continuous time optimal control problem and then solve this problem by dynamic programming using BocopHJB, a solver developed for this application. We show that an extension of this formulation to a stochastic setting is possible. The last section of this part introduces the adaptative weights dynamic programming algorithm, an algorithm for optimization problems with different time scales. We use the algorithm to integrate the battery aging in the EMS.The second part is dedicated to network markets, and in particular wholesale electricity markets. We introduce a mechanism to deal with the market power exercised by electricity producers, and thus increase the consumer welfare. Then we study some mathematical properties of the agents’ optimization problems (producers and system operator). In the last chapter, we present some pure Nash equilibrium existence and uniqueness results for a class of Bayesian games to which some networks markets belong. In addition we introduce an algorithm to compute the equilibrium for some specific cases.We provide some additional information on BocopHJB (the numerical solver developed and used in the first part of the thesis) in the appendix