Дисертації з теми "Mathematical models"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 дисертацій для дослідження на тему "Mathematical models".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Tonner, Jaromír. "Overcomplete Mathematical Models with Applications." Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2010. http://www.nusl.cz/ntk/nusl-233893.
Повний текст джерелаWidmer, Tobias K. "Reusable mathematical models." Zürich : ETH, Eidgenössische Technische Hochschule Zürich, Department of Computer Science, Chair of Software Engineering, 2004. http://e-collection.ethbib.ethz.ch/show?type=dipl&nr=192.
Повний текст джерелаMaggiori, Claudia. "Mathematical models in biomedicine." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/21247/.
Повний текст джерелаMathewson, Donald Jeffrey. "Mathematical models of immunity." Thesis, University of British Columbia, 1990. http://hdl.handle.net/2429/29575.
Повний текст джерелаScience, Faculty of
Physics and Astronomy, Department of
Graduate
Heron, Dale Robert. "Mathematical models of superconductivity." Thesis, University of Oxford, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.296893.
Повний текст джерелаBozic, Ivana. "Mathematical Models of Cancer." Thesis, Harvard University, 2012. http://dissertations.umi.com/gsas.harvard:10220.
Повний текст джерелаMathematics
Luther, Roger. "Mathematical models of kleptoparasitism." Thesis, University of Sussex, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.410365.
Повний текст джерелаMazzag, Barbara Cathrine. "Mathematical models in biology /." For electronic version search Digital dissertations database. Restricted to UC campuses. Access is free to UC campus dissertations, 2002. http://uclibs.org/PID/11984.
Повний текст джерелаNiederhauser, Beat. "Mathematical Aspects of Hopfield models." [S.l.] : [s.n.], 2000. http://deposit.ddb.de/cgi-bin/dokserv?idn=960147535.
Повний текст джерелаKowalewski, Jacob. "Mathematical Models in Cellular Biophysics." Licentiate thesis, KTH, Applied Physics, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4361.
Повний текст джерелаCellular biophysics deals with, among other things, transport processes within cells. This thesis presents two studies where mathematical models have been used to explain how two of these processes occur.
Cellular membranes separate cells from their exterior environment and also divide a cell into several subcellular regions. Since the 1970s lateral diffusion in these membranes has been studied, one the most important experimental techniques in these studies is fluorescence recovery after photobleach (FRAP). A mathematical model developed in this thesis describes how dopamine 1 receptors (D1R) diffuse in a neuronal dendritic membrane. Analytical and numerical methods have been used to solve the partial differential equations that are expressed in the model. The choice of method depends mostly on the complexity of the geometry in the model.
Calcium ions (Ca2+) are known to be involved in several intracellular signaling mechanisms. One interesting concept within this field is a signaling microdomain where the inositol 1,4,5-triphosphate receptor (IP3R) in the endoplasmic reticulum (ER) membrane physically interacts with plasma membrane proteins. This microdomain has been shown to cause the intracellular Ca2+ level to oscillate. The second model in this thesis describes a signaling network involving both ER membrane bound and plasma membrane Ca2+ channels and pumps, among them store-operated Ca2+ (SOC) channels. A MATLAB® toolbox was developed to implement the signaling networks and simulate its properties. This model was also implemented using Virtual cell.
The results show a high resemblance between the mathematical model and FRAP data in the D1R study. The model shows a distinct difference in recovery characteristics of simulated FRAP experiments on whole dendrites and dendritic spines, due to differences in geometry. The model can also explain trapping of D1R in dendritic spines.
The results of the Ca2+ signaling model show that stimulation of IP3R can cause Ca2+ oscillations in the same frequency range as has been seen in experiments. The removing of SOC channels from the model can alter the characteristics as well as qualitative appearance of Ca2+ oscillations.
Cellulär biofysik behandlar bland annat transportprocesser i celler. I denna avhandling presenteras två studier där matematiska modeller har använts för att förklara hur två av dess processer uppkommer.
Cellmembran separerar celler från deras yttre miljö och delar även upp en cell i flera subcellulära regioner. Sedan 1970-talet har lateral diffusion i dessa membran studerats, en av de viktigaste experimentella metoderna i dessa studier är fluorescence recovery after photobleach (FRAP). En matematisk modell utvecklad i denna avhandling beskriver hur dopamin 1-receptorer (D1R) diffunderar i en neural dendrits membran. Analytiska och numeriska metoder har använts för att lösa de partiella differentialekvationer som uttrycks i modellen. Valet av metod beror främst på komplexiteten hos geometrin i modellen.
Kalciumjoner (Ca2+) är kända för att ingå i flera intracellulära signalmekanismer. Ett intressant koncept inom detta fält är en signalerande mikrodomän där inositol 1,4,5-trifosfatreceptorn (IP3R) i endoplasmatiska nätverksmembranet (ER-membranet) fysiskt interagerar med proteiner i plasmamembranet. Denna mikrodomän har visats vara orsak till oscillationer i den intracellulära Ca2+-nivån. Den andra modellen i denna avhandling beskriver ett signalerande nätverk där både Ca2+-kanaler och pumpar bundna i ER-membranet och i plasmamembranet, däribland store-operated Ca2+(SOC)-kanaler, ingår. Ett MATLAB®-verktyg utvecklades för att implementera signalnätverket och simulera dess egenskaper. Denna modell implementerades även i Virtual cell.
Resultaten visar en stark likhet mellan den matematiska modellen och FRAP-datat i D1R-studien. Modellen visar en distinkt skillnad i återhämtningsegenskaper hos simulerade FRAP-experiment på hela dendriter och dendritiska spines, beroende på skillnader i geometri. Modellen kan även förklara infångning av D1R i dendritiska spines.
Resultaten från Ca2+-signaleringmodellen visar att stimulering av IP3R kan orsaka Ca2+-oscillationer inom samma frekvensområde som tidigare setts i experiment. Att ta bort SOC-kanaler från modellen kan ändra karaktär hos, såväl som den kvalitativa uppkomsten av Ca2+-oscillationer.
Sherratt, Jonathan Adam. "Mathematical models of wound healing." Thesis, University of Oxford, 1991. https://ora.ox.ac.uk/objects/uuid:4e3ea7dd-33c6-4696-a2ec-aa3499c8b3f6.
Повний текст джерелаSanz-Alonso, Daniel. "Assimilating data into mathematical models." Thesis, University of Warwick, 2016. http://wrap.warwick.ac.uk/83231/.
Повний текст джерелаCasarin, Stefano. "Mathematical models in computational surgery." Thesis, La Rochelle, 2017. http://www.theses.fr/2017LAROS008/document.
Повний текст джерелаComputational surgery is a new science that aims to intersect surgery and computational sciences in order to bring significant improvements in both fields. With the evolution of new surgical techniques, a close collaboration between surgeons and computational scientists became unavoidable and also essential to optimize surgical care. A large usage of mathematical models is the cornerstone in this new field. The present thesis shows how a systematic approach to a clinical problem brought us to answer open questions in the field of surgery by using mathematical models on a large scale. In general, our approach includes (i) an overview of the problem, (ii) the individuation of which physiological system/s is/are to be studied to address the question, and (iii) a mathematical modeling effort, which has been always driven by the pursue of a compromise between system complexity and closeness to the physiological reality. In the first part, we focused on the optimization of the boundary conditions to be applied to a bioreactor used to re-populate lung tissue from donor. A geometrical model of tracheobronchial tree combined with a solute deposition model allowed us to retrieve the set of pressures to be applied to the pumps serving the bioreactor in order to reach an optimal distribution of nourishment across the lung scaffold. In the second part, we focused on the issue of post-surgical restenosis of vein grafts used to bypass arterial occlusions. We replicated the event of restenosis with several mathematical models that allow us to study the clinical evidences and to test hypothesis with an escalating level of complexity and accuracy. Finally, we developed a solid framework to test the effect of gene therapies aimed to limit the restenosis. Interestingly, we found that by controlling a specific group of genes, the lumen patency is double after a month of follow-up. With the results achieved, we proved how mathematical modeling can be used as a powerful tool for surgical innovation
Campanelli, Mark Benjamin. "Multicellular mathematical models of somitogenesis." Thesis, Montana State University, 2009. http://etd.lib.montana.edu/etd/2009/campanelli/CampanelliM0809.pdf.
Повний текст джерелаLee, Yiu-fai. "Some mathematical models on genetics." Click to view the E-thesis via HKUTO, 2006. http://sunzi.lib.hku.hk/hkuto/record/B3687744X.
Повний текст джерелаArnaout, Ramy A. "Mathematical models of antiviral immunity." Thesis, University of Oxford, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.325989.
Повний текст джерелаWhite, Gordon Sutherland. "Mathematical models of screen printing." Thesis, University of Oxford, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.437003.
Повний текст джерелаYoung, Alan. "Mathematical models for active landfills." Thesis, University of Oxford, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.237833.
Повний текст джерелаHinch, Robert. "Mathematical models of the heart." Thesis, University of Oxford, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.270632.
Повний текст джерелаLee, Yiu-fai, and 李耀暉. "Some mathematical models on genetics." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2006. http://hub.hku.hk/bib/B3687744X.
Повний текст джерелаNedelcu, Sorin. "Mathematical models for financial bubbles." Diss., Ludwig-Maximilians-Universität München, 2014. http://nbn-resolving.de/urn:nbn:de:bvb:19-178610.
Повний текст джерелаFinanz-Blasen sind seit der Entstehung der Finanzmärkte bis zur heutigen Zeit gegenwärtig. Es gilt, dass ein Vermögenswert eine Finanzblase aufweist, sobald dessen Marktwert die fundamentale Bewertung übersteigt. Obwohl dieses Phänomen in der Wirtschaftsliteratur ausgiebig behandelt wurde, ist eine mathematische Martingaltheorie von Blasen, die auf der Abwesenheit von Arbitragemöglichkeiten beruht, erst in letzter Zeit entwickelt worden. Das Ziel dieser Dissertation ist es einen Beitrag zur Weiterentwicklung dieser Theorie zu leisten. Im ersten Abschnitt konstruieren wir ein Model mit Hilfe dessen man die Entstehung einer Finanz-Blase erfassen und deren Verhalten anfänglich als Submartingal in der build-up phase beschrieben werden kann, welches dann in der collapse phase zu einem Supermartingal wird. Zu diesem Zweck entwickeln wir einen Zahlungsstrom im Raum der äquivalenten Martingalmaße und wir untersuchen die zu dem Vermögenswert passende Verschiebung des fundamentalen Werts. Der zweite Teil der Dissertation beschäftigt sich mit der Bildung von Finanz-Blasen bei der Bewertung von Forderungen, die mit Ausfallrisiken behaftet sind, in einer reduzierten Marktumgebung. In unserem Model ist die Entstehung einer Blase die Folge der Heterogenität der Investoren. Des Weiteren zeigen unsere Untersuchungen, inwieweit Veränderungen der Dynamik des Marktpreises einer risikobehafteten Forderung zu einer Veränderung des zur Bewertung verwendeten Martingalmaß es führen kann. Dadurch sind wir in der Lage die klassische Martingaltheorie von Finanz-Blasen mit einem konstruktivem Ansatz zur Untersuchung von Finanz-Blasen zu vereinigen, der auf den Interaktionen zwischen Marktteilnehmern basiert.
Duckworth, Julia Kate. "Mathematical models for real options." Thesis, University of Newcastle Upon Tyne, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.394677.
Повний текст джерелаParsons, R. W. "Mathematical models of chemical reactions." Thesis, Bucks New University, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.371228.
Повний текст джерелаBate, Andrew M. "Mathematical models in eco-epidemiology." Thesis, University of Bath, 2014. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.616875.
Повний текст джерелаHerterich, James George. "Mathematical models in water filtration." Thesis, University of Oxford, 2015. https://ora.ox.ac.uk/objects/uuid:73036408-fbc5-497a-a99f-b8da3dbca0a5.
Повний текст джерелаV, Kushnir O. "Exponential Functions as Mathematical Models." Thesis, National Aviation University, 2021. https://er.nau.edu.ua/handle/NAU/50740.
Повний текст джерелаExponential functions are useful in modeling many physical phenomena, such as populations, interest rates, radioactive decay, and the amount of medicine in the bloodstream. An exponential model is of the form A = A_0×bˆ(t/c) , where we have A_0 is the initial amount of whatever is being modelled, t is elapsed time.
Експоненціальні функції корисні для моделювання багатьох фізичних явищ, таких як популяції, процентні ставки, радіоактивний розпад та кількість ліків у крові. Експоненціальна модель має вигляд A = A_0×bˆ(t/c), де A_0 - це початкова кількість того, що моделюється, t - час, що минув.
Conrad, Emery David. "Mathematical Models of Biochemical Oscillations." Thesis, Virginia Tech, 1999. http://hdl.handle.net/10919/32781.
Повний текст джерелаMaster of Science
Atkinson, Michael Philip. "Mathematical models of terror interdiction /." May be available electronically:, 2009. http://proquest.umi.com/login?COPT=REJTPTU1MTUmSU5UPTAmVkVSPTI=&clientId=12498.
Повний текст джерелаKumbhari, Adarsh. "Mathematical models of cellular dysfunction." Thesis, University of Sydney, 2020. https://hdl.handle.net/2123/23711.
Повний текст джерелаSeacrest, Tyler. "Mathematical Models of Image Processing." Scholarship @ Claremont, 2006. https://scholarship.claremont.edu/hmc_theses/188.
Повний текст джерелаEl-Hachem, Maud. "Mathematical models of biological invasion." Thesis, Queensland University of Technology, 2022. https://eprints.qut.edu.au/232864/1/Maud_El-Hachem_Thesis.pdf.
Повний текст джерелаCuppini, Cristiano <1977>. "Mathematical models of cognitive processes." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2009. http://amsdottorato.unibo.it/1690/1/Cuppini_Cristiano_tesi.pdf.
Повний текст джерелаCuppini, Cristiano <1977>. "Mathematical models of cognitive processes." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2009. http://amsdottorato.unibo.it/1690/.
Повний текст джерелаWares, Arsalan Jones Graham A. Cottrill James F. "Middle school students' construction of mathematical models." Normal, Ill. Illinois State University, 2001. http://wwwlib.umi.com/cr/ilstu/fullcit?p3064487.
Повний текст джерелаTitle from title page screen, viewed March 30, 2006. Dissertation Committee: Graham A. Jones, James Cottrill (co-chairs), Linnea Sennott. Includes bibliographical references (leaves 107-111) and abstract. Also available in print.
Wu, Yilin. "Mathematical Models of Biofilm in Various Environments." Diss., Temple University Libraries, 2019. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/582206.
Повний текст джерелаPh.D.
Microbial biofilms are defined as clusters of microbial cells living in self-produced extracellular polymeric substances (EPS), which always attached to various kinds of surfaces. In this thesis, we studied several mathematical models of biofilm in the human body and marble environment. Some related background of biofilm growth and some basic existing numerical models were introduced in the first chapter. In the first project, we introduced how biofilm affects the local oxygen concentration near the neutrophil cells in the human body with three one-dimensional reaction-diffusion models from different geometries. In nature, microbial biofilm development can be observed on almost all kinds of stone monuments and can also be associated with the problem of monument conservation. In the second part of my research, we built the deliquescence models for biofilm growth environment in the first model and added biomass into consideration in the second one. Also, we analyzed the stability of the equilibria. In the third part, we applied the weather data collected from the weather station on the roof of the Jefferson Memorial to the deliquescence model with biofilm. Furthermore, compared the simulation result for biofilm growth in cold and warm weathers. In the last part of this thesis, we analyzed the biofilm activity with support vector regression. The machine learning model we obtained can be used to find the growth trends of biofilm for any pair of temperature and relative humidity data.
Temple University--Theses
Delgado, San Martin Juan A. "Mathematical models for preclinical heterogeneous cancers." Thesis, University of Aberdeen, 2016. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=230139.
Повний текст джерелаScott, Michael Francis. "Mathematical models of life cycle evolution." Thesis, University of British Columbia, 2016. http://hdl.handle.net/2429/59426.
Повний текст джерелаScience, Faculty of
Botany, Department of
Graduate
Nani, Frank Kofi. "Mathematical models of chemotherapy and immunotherapy." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape15/PQDD_0012/NQ34816.pdf.
Повний текст джерелаAravindakshan, Ashwin. "Advances in mathematical models in marketing." College Park, Md. : University of Maryland, 2007. http://hdl.handle.net/1903/6752.
Повний текст джерелаThesis research directed by: Business and Management: Marketing. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Hall, Fenella T. H. "Mathematical models for class-D amplifiers." Thesis, University of Nottingham, 2011. http://eprints.nottingham.ac.uk/11891/.
Повний текст джерелаHameister, Heike. "Mathematical models for DNA replication machinery." Thesis, University of Aberdeen, 2012. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=186178.
Повний текст джерелаWaugh, Helen Victoria. "Mathematical models of diabetic wound healing." Thesis, Heriot-Watt University, 2007. http://hdl.handle.net/10399/99.
Повний текст джерелаLee, M. E. M. "Mathematical models of the carding process." Thesis, University of Oxford, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.249543.
Повний текст джерелаBooton, Ross D. "Mathematical models of stress and epidemiology." Thesis, University of Sheffield, 2018. http://etheses.whiterose.ac.uk/22549/.
Повний текст джерелаMohd, Jaffar Mai. "Mathematical models of hyphal tip growth." Thesis, University of Dundee, 2012. https://discovery.dundee.ac.uk/en/studentTheses/140f9a81-12ca-4337-a311-2f82441f1ea6.
Повний текст джерелаJones, Hannah Elizabeth Mary. "Mathematical models for red squirrel conservation." Thesis, Heriot-Watt University, 2017. http://hdl.handle.net/10399/3340.
Повний текст джерелаPutyatin, Vladislav Evgenievich. "Mathematical models for derivative securities markets." Thesis, University of Southampton, 1998. https://eprints.soton.ac.uk/50648/.
Повний текст джерелаGuedes, Maria do Carmo Vaz de Miranda. "Mathematical models in capital investment appraisal." Thesis, University of Warwick, 1988. http://wrap.warwick.ac.uk/107492/.
Повний текст джерелаOduro, Bismark. "Mathematical Models of Triatomine (Re)infestation." Ohio University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1458563770.
Повний текст джерелаMoore, Matthew Richard. "New mathematical models for splash dynamics." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:c94ff7f2-296a-4f13-b04b-e9696eda9047.
Повний текст джерела