Дисертації з теми "Matériaux – Modèles mathématiques – Piles à combustible"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-30 дисертацій для дослідження на тему "Matériaux – Modèles mathématiques – Piles à combustible".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Costa, Rémi. "Contribution à l'étude et à la mise en forme d'une cellule de pile à combustible à conduction protonique P. C. F. C." Paris, ENMP, 2009. http://www.theses.fr/2009ENMP0024.
Повний текст джерелаHydrogen and fuel cells are now considered as a potential and credible alternative to the massive use of fossil fuels. In a French project led by EDF, a consortium focused its research on the achievement of a Proton Conducting Fuel Cell (P. C. F. C. ) operating at 600°C for residential use with BaCe0,9Y0,1O3-α as proton conductor. This study was led in this framework and aimed to understand the behaviour of this material during sintering and to assess tape casting and co-sintering as low cost process to shape anode-electrolyte half cells. BaCe0,9Y0,1O3-α can be easily prepared by soft chemistry. However, the refractory behaviour of this material imposes strong sintering parameters which led to its thermal decomposition and the degradation of its transport properties. We propose a model on this thermal damaging. The study of interactions between BaCe0,9Y0,1O3-α and NiO, generally used as nickel precursor in anode cermet, has been particularly complex, and highlighted both benefits (reduction of sintering temperature) and drawbacks (impaired transport properties) of Ni2+ diffusion. About shaping process, sedimentation of powders due to a lack of stability of slurries and interactions with NiO led to prohibitive deformations during co-sintering. As a consequence, a new metal supported approach based on the use of a nickel foam was developed, giving encouraging results
Bouloré, Antoine. "Etude et modélisation de la densification en pile des oxydes nucléaires UO2 et MOX." Grenoble INPG, 2001. http://www.theses.fr/2001INPG4203.
Повний текст джерелаAmongst the many phenomena which take place in the course of the irradiation of UO2 or (U, Pu)O2 nuclear fuels, one of them involves the elimination of a fraction of the as-fabricated porosity. In-pile densification or sintering can reach 2. 5%, i. E. Approximately half the initial volume of pores is likely to disappear. Our literature survey indicates that the amplitude and kinetics of the phenomenon are both heavily dependent on the initial fuel microstructure. Micro-structural characterisation techniques of oxide fuels have therefore been developed in conjunction with quantitative image analysis methods. The ensuing methodology enables a quantitative comparison of micro-structural features in different fuels and has been applied to ascertaining the influence of the local fission rate and temperature on in-pile densification. It is thus revealed that in-pile operation eliminates a significant fraction of pores smaller than 3 microns in diameter. The experimental data generated has been used to set up a semi-empirical and a mechanistic model. The former is based on experimental results and is not essentially predictive. The inability of this model to predict the in-pile densification of oxide fuels is illustrated by the fact that the maximum fraction of pores that disappears is proportional to an empirical function of fission rate, and temperature. The proportionality factor appears to be difficult to correlate quantitatively to any given micro-structural feature. The model has however been applied to the interpretation of an in-pile densification experiment carried out in the Halden reactor (Norway). The latter model is mechanistic, i. E. It is based on the solution to a set of equations that describe the coupled temperature and radiation induced phenomena which occur in-pile. These can broadly be broken down into three categories : the fission fragment-pore interaction, the creation of point defects as the fission fragments slow down, and the diffusion of these point defects to sinks. The model calculates the evolution of the pore size distribution and has successfully been applied to modelling the in-pile densification behaviour of a fuel pellet characterised before and after irradiation
Mathieu-Potvin, François. "Modélisation et optimisation des canaux réactifs de microréacteurs et des piles à combustible à hydrogène." Thesis, Université Laval, 2014. http://www.theses.ulaval.ca/2014/30552/30552.pdf.
Повний текст джерелаPolymer electrolyte membrane fuel cells (PEMFC) are devices that produce electricity by means of a chemical reaction between hydrogen and oxygen. These devices are possible alternatives for the replacement of internal combustion engines. However, they are not yet competitive, because their cost, weight and volume are still too large. A challenge is thus to increase PEMFC efficiency by optimizing their design. The main objective of the present project is to develop mathematical and numerical modeling tools in order to optimize the PEMFC design. First, small-scale transport phenomena in the porous media of PEMFC are formulated mathematically, and then a volume averaging method is used to transform these equations into equations that are valid at a larger scale in the porous media. The new mathematical model obtained with this strategy shows that the mass conservation equation contains an additional term, while the momentum equation remains similar to Darcy’s Law. Second, a numerical model is developed in order to optimize the geometry of catalytic channels in which a fluid undergoes chemical reactions. This kind of flow may represent, for example, the reacting species that move in PEMFC channels. Correlations are developed analytically in order to predict the optimal designs for these channels. These correlations were validated with numerical simulations. The results obtained may be applied to several different devices (e.g., microreactors, monolith, PEMFC). Finally, the mathematical and numerical model of a PEMFC are developed and validated. This model is used to optimize catalyst allocation between the anode and cathode sides of the fuel cell, and also to optimize catalyst distribution within the cathode catalyst layer. The analysis shows that an unequal allocation of catalyst between the anode and cathode sides results in a higher electric current. It was also shown that a non-uniform catalyst distribution within the cathode layer yields higher electric current. Finally, the most influential parameters of the numerical model were identified by a sensitivity analysis.
Levesque, Caillol Noémie. "Elaboration, caractérisation et modélisation de cathode sérigraphiée, La₀. ₈Sr₀. ₂MnO₃, pour pile à combustible SOFC." Saint-Etienne, EMSE, 2006. http://tel.archives-ouvertes.fr/tel-00165173.
Повний текст джерелаThe properties of LSM screen-printed cathodes on YSZ electrolytes and the modelling of oxygen reduction have been studied. A bibliographic review of published works on LSM and LSM/YSZ interface reveals the lack of consensus over the mechanism proposed between oxygen and LSM. The different theoretic models possible and their associated kinetic laws are presented to serve as the basis for the kinetic modelling. Microstructural characterisations proved the adaptability of the screen-printing technique for making electrodes. The layers are stable in time and well reproducible. Their microstructure is homogenous and regular with a porosity of 0. 6. Physico-chemical characterisations were carried out. Infra-red spectrometry analysis and thermo-programmed desorptions have shown the existence of different kinds of oxygen-adsorbed species on LSM powder. A calorimetric study has revealed a change in the quantity of heat released during oxygen adsorption as a function of temperature. By XPS analysis on screen-printed layers, important strontium segregation was observed depending on pressure, temperature and polarisation conditions. From electrochemical characterisations made by impedance spectroscopy, three resistive contributions have been identified. Only the low frequency contribution, which is the only pressure sensitive contribution, was considered to correspond to an electrode phenomenon. Following a methodical study of the different modelling hypothesis, a mechanism for the cathodic reaction was obtained. The proposed model is complex. It is composed of three conductivity paths running in parallel (two surface paths and one bulk path). These paths involve two different oxygen species and their preponderance depends on pressure, temperature and polarisation conditions. A study of water vapour influence completes this work, to understand its impact on the cathode electrical performance. The benefits brought by water vapour are not linked to a direct catalytic effect, as it does not affect the apparent activation energy of the cathode's process. The experiments seem to indicate that the benefits are linked to the strontium segregation at the surface of grains. It seems water vapour helps maintain and regenerate the initial properties of the layer
Friede, Klaus Wolfgang. "Modélisation et caractérisation d'une pile à combustible du type PEM." Vandoeuvre-les-Nancy, INPL, 2003. http://www.theses.fr/2003INPL044N.
Повний текст джерелаIn this work, the behaviour of a fuel cell is described in regard of its integration into a power production system. Its use is difficult as a great number of operating parameters has to be controlled and internal behaviour has to be known. Therefore, the relations between the operating conditions and the electrical parameters are presented. The model describes the internal phenomena in the fuel cell while staying restricted enough to allow a fast resolution in stationary and transient operation. The fuel cell is divided into layers. Each layer consists of a different material. A mono-dimensional approach has been chosen. Following an axis that is perpendicular to the membrane surface, every layer is discretised into several elements. This work is dealing with a mathematical model of a single fuel cell, based on gas and water flow equations. The electrochemical reactions are described while taking into account the mutual influence with other values. The description of the cell impedance is of special interest. The model shows the evolution of electrical values as a function of operating conditions. The resolution of the equations using Matlab-Simuling software allows to localise the internai phenomena and to visualise the transient behaviour. Special attention is given to water management, which is one of the biggest challenges in operating low temperature fuel cells. The presentation of a test hench with a 500 W PEM fuel cell and stationary and transient measurements show the cell's performance and its sensibility to parameter changes. In particular, membrane resistance and impedance values are interpreted to get more information about the internal physical phenomena of the fuel cell
Bouhala, Lyazid. "Endommagement des piles à combustible type SOFC : simulation de la propagation des fissures par EFG étendue." Strasbourg, 2011. http://www.theses.fr/2011STRA6011.
Повний текст джерелаThe thesis objective is the modeling of thermo mechanical failure in Solid Oxide Fuel Cells and the simulation of crack propagation. The study is conducted by extended Element Free Galerkin method (XEFG). After implementing the meshless method for a mechanical problem without crack, we introduced the method by partition of unity principle in fracture mechanics. The second part of this work was devoted to the application of the meshless method to simulate crack propagation in a pre-cracked solid. The problem of cracking in the presence of an interface of a bi-layered material like fuel cell unit was discussed. We then detailed the technique used for calculating stress intensity factors and the criterion for crack propagation. A parametric study is given to illustrate the effect of geometry and mechanical properties of the interface on the crack propagation path. The third part of the thesis extends the concept of the method XEFG to thermo-elasticity according to the crack nature. The last part of the thesis is devoted to extending the meshless method to interfacial fracture
Bencherif, Karim. "Modélisation mathématique d'une pile à combustible et d'un reformeur essence en vue de la commande." Paris 9, 2004. https://portail.bu.dauphine.fr/fileviewer/index.php?doc=2004PA090072.
Повний текст джерелаThe goal of this study is to develop mathematical models for a fuel cell and a gasoline reformer used in a fuel cell vehicle. Mathematical modeling of the physicochemical phenomena involved by the fuel cell and the reformer shows us that a single class of mathematical models can be used : particular reaction-transport-diffusion system of dimension 1 in space. Once this class of models made precise, it is possible to use several methods of reduction : time-scales separation, variables aggregation and particular space in semi-discretization. Some reduced models obtained by this way were used in many applications in simulation, estimation and control
Bernier, Michel. "Modélisation d'un coeur de pile au gaz naturel." Aix-Marseille 1, 1999. http://www.theses.fr/1999AIX11034.
Повний текст джерелаRabih, Samer. "Contribution à la modélisation de systèmes réversibles de types électrolyseur et pile à hydrogène en vue de leur couplage aux générateurs photovoltaïques." Phd thesis, Toulouse, INPT, 2008. http://oatao.univ-toulouse.fr/7731/1/rabih.pdf.
Повний текст джерелаBerrod, Quentin. "Relation structure - transport dans des membranes et matériaux modèles pour pile à combustible." Phd thesis, Université de Grenoble, 2013. http://tel.archives-ouvertes.fr/tel-00981913.
Повний текст джерелаMonaco, Federico. "Analyse de la dégradation des cellules à oxydes solides fonctionnant en mode pile à combustibles et électrolyse : évolution microstructurale et stabilité des matériaux d'électrodes." Thesis, Université Grenoble Alpes, 2020. http://www.theses.fr/2020GRALI034.
Повний текст джерелаThis work was dedicated to the analysis of the degradation of solid oxide cells operated in electrolysis and fuel cell modes. A threefold methodology has been applied by coupling (i) electrochemical tests, (ii) advanced post-test analyses and (iii) multi-scale modeling. Long-term durability experiments have been carried out on standard cells (Ni-YSZ/YSZ/GDC/LSCF) to investigate the performance loss as a function of the operating conditions. Specimens, which have been extracted from the pristine and aged samples, have been characterized to evaluate the microstructural and physico-chemical evolutions occurring at the two electrodes. In parallel, detailed micro-kinetic models for the hydrogen electrode (Ni-YSZ cermet) and for the oxygen electrode (LSCF/LSCF-GDC) have been developed and experimentally validated before being integrated into a macro-scale model for the complete cell. The multi-scale numerical tool has been used to propose a better understanding of the underlying forces driving the degradation. Moreover, the impact on the cell performances has been simulated and discussed as a function of the operating conditions. Based on the results presented in this work, it has been confirmed that the degradation of SOCs is significantly larger in electrolysis mode with respect to fuel cell operation under H2. On the one hand, it has been shown that the difference in durability behavior can be ascribed to the effect of the cathodic overpotential on the nickel instability in the hydrogen electrode. On the other hand, it has been observed and demonstrated that the destabilization of the LSCF is favored by both the anodic current and the high operating temperature
Blunier, Benjamin. "Modélisation de moto-compresseurs en vue de la gestion de l'air dans les systèmes pile à combustible : simulation et validation expérimentale." Besançon, 2007. http://www.theses.fr/2007BESA2037.
Повний текст джерелаThe improvement, the future and the commercialization of fuel cell systems are closely related to the optimization and design of the air system management and particularly to the compression system. The first part of the work consists in establishing a state-of-the-art of fuel cell systems, air management and air compressors. An exhaustive research on the different kinds of compressors and compression systems has been carried out taking into account requirements and constraints of the fuel cell. This work has shown that two kinds of compressors can be used : the centrifugal compressor and the scroll compressor. An analytical modelling of the scroll compressor has been achieved. This analytical model will help, by means of constrained optimisation, to obtain several geometries fitting the requirements for a given application. An experimental rig has been set up to validate the model. This rig is completely automated thanks to a Dspace system for identifying and testing control laws of any compressor in fuel cell power ranges. To determine the influence of the compressor on the air management of the system, a fuel cell stack has been modelled. This model has been built by using an original approach: each part of the cell is modelled separately including multi-physic phenomena inside the same component. The model takes into account the pressure dynamics in the channels, the diffusion phenomena in the gas diffusion layers and the water transport inside the membrane, which permit the influence parameters to be observed on the water management inside the fuel cell. This model has been validated using the 1. 2 kW Ballard Nexa module
Chnani, Moussa. "Modélisation Macroscopique de piles PEFC et SOFC pour l'étude de leur couplage." Phd thesis, Université de Franche-Comté, 2008. http://tel.archives-ouvertes.fr/tel-00422119.
Повний текст джерелаUne approche de modélisation macroscopique a été développée. La complexité d'une pile à combustible réside notamment dans la prise en compte de son caractère multiphysique : elle est le siège des phénomènes électrochimique, fluidiques et thermiques. Cette difficulté a été surmontée en utilisant une analogie avec un circuit électrique équivalent pour unifier ses trois aspects, implanter et coupler ces sous-modèles dans un logiciel unique sous Matlab/Simulink™.
Un modèle de pile SOFC est proposé, appliquant le principe d'analogie électrique pour les circuits anodiques et cathodiques ainsi qu'une méthode nodale pour le comportement thermique. Le combustible considéré est un mélange d'hydrogène, d'azote, de monoxyde de carbone, de dioxyde de carbone et de vapeur d'eau, dont la composition est proche de celle obtenue à la sortie d'un reformeur. Un banc d'essai spécifique a été conçu et réalisé pour le test de petits empilements afin de valider le modèle. Deux types de conception de stack ont été étudiés : une technologie à combustion libre du gaz anodique dans le fluide et une technologie à collecteur de gaz d'échappement anodique.
Un modèle de pile PEFC isotherme a également été développé sur le même principe. La validation expérimentale a été faite sur un banc disponible au laboratoire. Une bibliothèque des éléments fluidique d'un générateur à pile à combustible a été enrichie (électrovanne, régulateur de débit, détendeur...) notamment par un modèle simplifié de compresseur d'air.
Chaabna, Solène Houria. "Passivity-based modeling and power routing of a multi-source power cell for hydrogen production." Thesis, Lille 1, 2020. http://www.theses.fr/2020LIL1I065.
Повний текст джерелаGreen hydrogen is emerging as a powerful solution for the storage of surplus electricity which is generated through renewable energy sources. However, a green hydrogen power cell involves multiphysics phenomena as electrical, fluidic, thermal, etc. and the representation of dynamical power flows therein is quite complex. Furthermore, the power exchange between the different components of the cell (Fuel cell, Electrolyzer, storage units, renewable sources) needs to be thought in terms of global performance while taking care of the energy reserves.This thesis proposes a Bond Graph derived port-Hamiltonian representation of all the components of a green hydrogen power cell. From this representation, it is possible to design passivity-based control algorithms. The notion of passivity margin is introduced to account for the robustness with respect to modeling uncertainties or known disturbances. For each component, the excess or shortage of power feeds an Energy Tank, which behaves as a virtual storage unit. Hence, the set of Energy Tanks is an image of the power reserves in the power cell. Instead of using conventional power routing between each component, we propose to manage power flows between the Energy Tanks, which allows us to control not only the power intensity, but also the level of energy within the tanks. Hence, the methodology enables to control both power and energy at the same time, paving the way to Operating Mode Management triggered by energy levels. An application is given on a platform including a fuel call, renewable energy sources, and a conventional storage unit
Lachaize, Jérôme. "Étude des stratégies et des structures de commande pour le pilotage des systèmes énergétiques à Pile à Combustible (PAC) destinés à la traction." Toulouse, INPT, 2004. http://ethesis.inp-toulouse.fr/archive/00000036/.
Повний текст джерелаChapuis, Olivier. "Influence des conditions de mouillage sur les déplacements quasi-statiques eau-air et l'évaporation en milieux poreux modèles : application à la gestion de l'eau dans les piles à combustibles PEMFC." Phd thesis, Toulouse, INPT, 2006. http://ethesis.inp-toulouse.fr/archive/00000556/.
Повний текст джерелаThis study is motivated by the water management problem of a proton exchange mass fuel cell. Experimental studies have been carried out and numerical tools have been designed in order to improve the knowledge on water-air quasi-static displacements with or without phase change in porous medium. Wettability impact of the porous medium on invasion rules and evaporation rate is particularly investigated. Results are then discussed within the framework of fuel cell water management issue
Rouss, Vicky. "Expérimentation en dynamique des systèmes mécaniques complexes pour le transport." Besançon, 2008. http://www.theses.fr/2008BESA2008.
Повний текст джерелаThis work was accomplished within the framework of FCLAB, national research institute for fuel cell systems, with for objective to develop, in an experimental approach, a procedure for identification complex mechanical systems as the recognition of their dynamical behaviour. Practically, this work contributes in modelling the mechanical behaviour of PEM fuel cells. The first part of this memo develops the subject of the thesis. It includes three sub-parts: a presentation of the test bench which includes the vibration platform of the UTBM, an introduction to the complex mechanical systems as well as their identification procedure and a description of the PEM fuel cells especially its nonlinear mechanical aspect. The procedure of identification of complex mechanical systems includes three stages which are going to define the parts two, three and four successively. The first stage is the realization of the vibration tests. For that purpose, a procedure for complex mechanical systems vibration tests is developed in the second part. This procedure is fundamental for the good progress and exploitation of the tests. The acquisition data are used for the two following stages. The second stage of the identification procedure, developed in the third part, consists in characterizing non-linearities from the experimental data. The characterization contains detection, classification and localization of non-linearities. The third and last stage of the identification procedure develops modelling the complex mechanical systems with neural networks. It explains the steps for creating a neuronal model. The neural networks are developed in the fourth part. To conclude this memo, the identification procedure of a complex mechanical system is applied to a PEM fuel cell. Results are exposes and discussed in the fifth part
Benbouzid, Salim. "Synthèse d'un contrôleur multivariable pour un système de traction pile à combustible." Ecole Centrale de Lille, 2005. http://www.theses.fr/2005ECLI0010.
Повний текст джерелаNew scientific and technical breakthroughs as global energetic constraints show the way for fuel cells (fc) as a potential candidate for on-board electric generators supplying energy for automotive traction. Fc appear as a fine system with high theoretical efficiency as well as a direct electricity power production from hydrogen with zero local emission (water production only). Nevertheless, ancillaries’ components have to be added and controlled in order to follow the fc to work properly, thus reducing the overall system efficiency. Hence, this thesis proposes a control approach to optimize the fc system efficiency for vehicle traction ensuring system and environment safety. The first step addresses dynamical modelling of the fc itself governed by coupled nonlinear physical laws and the ancillaries’ components in order to build a representative model for the system. Multi domain bond graph is used for this purpose. Secondly, a hierarchical control approach is proposed. The high level consists in optimizing the system efficiency and giving references for the low level (component). At this low level, several sliding modes controls are synthesised to regulate the fc operative conditions despite model uncertainties. The interest of this work is then shown by simulation tests using the overall system model
Zhang, Dacheng. "Contribution to prognostics of proton exchange membrane fuel cells : approaches based on degradation information at multiple levels." Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAT003/document.
Повний текст джерелаIn the context of the energy transition, fuel cell becomes one of the promising alternative energy sources. Recently the spotlight is on fuel cell systems research, and more particularly on Proton Exchange Membrane Fuel Cell (PEMFCs) which is one of the best candidates for both stationary and transportation applications. Even if this technology is close to being competitive, it is not yet ready to be considered for a large scale industrial deployment because of its limited durability and reliability. Prognostics and Health Management (PHM) is a recent approach to manage and possibly extend life duration of technological systems. Prognostic techniques can provide an estimation of fuel cell State Of Health (SOH) and a prediction for their Remaining Useful Life (RUL) to help the manufacturers improving fuel cell performance and managing its lifespan.The objective of this work is to develop prognostic methodologies for the RUL prognosis adapted to the complexity of PEMFCs. Indeed, the PEMFC is a multi-scale and multi-physics system, and various challenges are faced:1. The definition of SOH to build a degradation indicator.2. The coexistence of both reversible and irreversible degradation phenomena.3. Taking into account different deterioration causes and effects of operating conditions.In the first part of our work, we conduct a state of the art analysis on PHM for PEMFCs, with the aim of proposing a SOH definition and building a degradation indicator for PEMFC prognosis purposes. And since PEMFC measurements are scarce, the state of the art on Lithium batteries, other electrochemical cells, is also explored.In the second part, we develop a particle filtering based prognostic algorithm for PEMFC, based on output power measurements. The first results show that the prognosis algorithm is disturbed by the existing reversible degradation. However, the irreversible degradation can be estimated thanks to characterization tests, such as Electrochemical Impedance Spectroscopy (EIS), which is applied from time to time. We propose thus an adapted & extended prognostic algorithm to take into account both health indicators: the output power degradation and the SOH degradation estimated from EIS characterization. The performance of the proposed algorithm is evaluated by different prognostic performance metrics, and the results show the interest of this approach.In the third part, the problem is addressed from a more theoretical point of view. Indeed, a system's degradation behavior is often correlated with internal and external covariates which are usually difficult to access owing to expensive measurement cost. Therefore, we first developed a prognostic approach with online inspections on the degradation covariate at a different level, and then we propose an approach for RUL prognosis based on an ensemble of models using different sources at different levels. The RUL predictions of both models are dynamically aggregated on the basis of prognostic performance evaluated on a set of historical data. Consequently, the prediction accuracy is improved by overcoming both models' drawbacks and leveraging their strengths. In the last part, we extend the problem to multi-level prognostics and explore new possibilities, which open new aspects for future research on PEMFC lifetime prognosis and management
Julien, Jérôme. "Modélisation multi-échelles du couplage physico-chimie mécanique du comportement du combustible à haute température des réacteurs à eau sous pression." Aix-Marseille 1, 2008. http://theses.univ-amu.fr.lama.univ-amu.fr/2008AIX11077.pdf.
Повний текст джерелаIn the Pellet-Cladding Interaction (PCI) problems of a fuel rod, it is necessary to adopt a good description of the thermomecanical behaviour of the fuel. When the fuel is subject to fluctuations in power, one of the main strains is due to the phenomenon of gaseous swelling induced by irradiation. Indeed, fuel is a porous ceramic of U02 containing several types of cavities and the accumulation of fission products in gaseous form in these cavities causes swelling of the pellet. However, this gaseous swelling has an influence on the mechanical behaviour of the pellet and particularly the viscoplastic behaviour. To improve the description of this behavior, it was necessary to develop a micromechanical model capable of coupling two phenomena modelled independently : the transfer of gas between the various cavities and the estimation of mechanical viscoplastic strains of the fuel. This thesis is to link these two disciplines from the cavities present in the fuel: mechanics calculates changes in the volume fraction of cavities according to their pressure and physical reflects the evolution of the volume fraction of cavities to calculate an internally consistent pressure. In order to describe a microstructure much richer, a new micromechanics model was developed using a multi-scale to describe the viscoplastic behavior of nuclear fuel
Flandre, Xavier. "Nouvelles électrodes pour pile à combustible à oxyde solide et électrolyseur à haute température." Thesis, Lille 1, 2016. http://www.theses.fr/2016LIL10182/document.
Повний текст джерелаIn the current context, fossil energy resources decrease and become more expensive, in addition to environmental concern. In this frame, solid oxide fuel cells (SOFC) are a promising green alternative energy source. Reversibly used, this system can also allow storage of electricity produced intermittently through the electrolysis of water. However, several bottlenecks still remain in terms of performances and stability of materials currently used to improve their lifetime and decrease their working temperature. In this doctoral thesis, our contribution focused on two cathode materials for SOFCs, Ba2Co9O14 and Ca3Co4O9+δ, and compounds derived from La4Ti2O10 which may be relevant as anode material. Our study mainly focused on the understanding of the physicochemical mechanisms involved in these materials by using impedance spectroscopy. For cobaltites, this study has led to the identification of the limiting parameters and will help the future optimization of complete stacks with better performances. For the La4Ti2O10 derived phases with the cuspidine structure, a neutron scattering study confirmed the oxygen diffusion mechanisms in these materials. However, their conductivity and catalytic properties remain insufficient to hope to use these compounds as SOFC’s anode, unlike other lanthanum titanates which display a layered perovskite structure
Hankache, Walid. "Gestion optimisée de l'énergie électrique d'un groupe électrogène hybride à pile à combustible." Phd thesis, Institut National Polytechnique de Toulouse - INPT, 2008. http://tel.archives-ouvertes.fr/tel-00567577.
Повний текст джерелаRomdhane, Jaouher. "Optimisation énergétique d'un système de micro-trigénération à pile à combustible." Thesis, Normandie, 2018. http://www.theses.fr/2018NORMC242.
Повний текст джерелаThe objective of this thesis is the energy optimization of the micro-cogeneration and micro-tri-generation fuel cell system. First, a mathematical modeling of all the components of the fuel cell cogeneration system was conducted. The influence of several parameters such as pressure and current density on micro-CHP system performance is examined. The energy and environmental relevance of the system for the French context is studied. Then, a numerical study of a tri-generation system consisting of a fuel cell and a single-acting H2O / Li-Br absorption machine was conducted. The micro-tri-generation unit is coupled to a single-family house and the energy performance of the system is evaluated. Finally, in order to evaluate the potential of coupling the tri-generation system with renewable energies, a hydrogen production system with photovoltaic panels «PV-H2» has been studied. A modeling of the various components of the "PV-H2" system has been carried out. The simulation results of the coupling of the «PV-H2» system with an individual house in the eco-district of La Glacerie are presented
Nguyen, Van-Tri. "Thermal and thermo-mechanical behavior of energy piles." Thesis, Paris Est, 2017. http://www.theses.fr/2017PESC1160/document.
Повний текст джерелаThe thermal and thermo-mechanical behavior of energy piles is investigated by various approaches: laboratory measurement on small soil samples, physical modeling on small-scale pile, experiments on real-scale pile, and analytical/numerical calculations. First, the thermal conductivity of unsaturated loess is measured simultaneously with moisture content and suction. The results show a unique relationship between thermal conductivity and moisture content during a wetting/drying cycle while a clear hysteresis loop can be observed on the relationship between thermal conductivity and suction. Second, thermal tests are performed on a full-scale experimental energy pile to observe heat transfer at the real scale. Third, an analytical solution is proposed to simulate conductive heat transfer from an energy pile to the surrounding soil during heating. The above-mentioned tasks related to the thermal behavior are then completed by studies on the thermo-mechanical behavior of energy piles. On one hand, experiments are performed on a small-scale pile installed either in dry sand or in saturated clay. Thirty thermal cycles, representing thirty annual cycles, are applied to the pile under various constant pile head loads. The results show irreversible pile head settlement with thermal cycles; the settlement is higher at higher pile head load. In addition, the irreversible thermal settlement is the most significant during the first cycles; it becomes negligible at high number of cycles. On the other hand, the experimental work with small-scale pile is completed with numerical calculations by using the finite element method. This approach is first validated with the results on small-scale pile prior to be used to predict the results of full-scale experiments
Aiteur, Imad-Eddine. "Modélisation, commande et optimisation d’un réseau multi-sources. Application à la traction de véhicules électriques." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLC047.
Повний текст джерелаThis thesis focuses on the investigation of control approaches to treat the issue of energy management of multi-source electrical networks. The considered electric motor supply system consists on a fuel cell as a main energy source and an additional element that supplies peak power and charges by regenerative braking. At first, three energy management strategies have been applied to the sypply system aiming to minimize the fuel cell hydrogen mass consumption while satisfying the system physical constraints. First, the optimization is realized using dynamic programming,an off-line optimization method that requires the knowledge of the entire power load profile. Secondly, twoon-line optimization approaches are used : ECMS and MPC strategies, for which only the current power demand is demanded.The second part of this thesis presents a decentralized control strategy applied to the power system. The dedicated control structure aims to assure an optimal operation of the FC system while respecting the compressor physical limits and to control the converter current sand network output voltage. To attain these objectives, a dynamic model of the FC system is used,in addition to the SSE and electric network dynamics. The FC system regulation and the control of the SSE state of energy are performed separately with two different controllers, both designed using (MPC-LTV) approach. The third and fourth levels of the decentralized control structure consists on inner control loops for fuel cell/supercapacitor currents and a DC bus voltage control loop, designed using PI controllers. The validation of the control structure is performed in simulation using a nonlinear models of the FC system and the SSE. To validate and compare the performance of different control methods based on a fuel cell static model, these approaches have been applied to the dynamic model of the FC and compared to the results obtained by applying the approched designed and based on an FC dynamic model. A comparison in terms of network efficiency and hydrogen consumption has been done
Chatti, Nizar. "Contribution à la supervision des systèmes dynamiques à base des bond graph signés." Thesis, Lille 1, 2013. http://www.theses.fr/2013LIL10124/document.
Повний текст джерелаThe work presented in this paper deals with the diagnosis of single and multiple faults for continuous dynamic systems. It consists on developing a global diagnosis strategy for the operating modes management in both normal and abnormal situations. We first developed a new graphical formalism for dynamic system modelling. This formalism is emanating from the BG methodology and it is called Signed Bond Graph (SBG). This latter is easily understandable by a number of properties and definitions that we have established. The development of such formalism allows to use structural and causal properties of the BG and to expand its scope to include qualitative reasoning. Furthermore, we proposed a generic model for integrating functional Generic Component Models(GCM) and SBG models for the management of operating modes and reconfiguration conditions of an autonomous system using a finite automaton. Finally, we proposed a method for diagnosing both single and multiple faults using an abduction approach based on the faults propagation within the SBG by starting from a set of observations. The proposed methodology is validated by two different systems namely a proton exchange membrane fuel cell and an electromechanical system of an electric vehicle
Agaesse, Tristan. "Simulations of one and two-phase flows in porous microstructures, from tomographic images of gas diffusion layers of proton exchange membrane fuel cells." Phd thesis, Toulouse, INPT, 2016. http://oatao.univ-toulouse.fr/17789/1/Agaesse.pdf.
Повний текст джерелаAbdallah, Bassam. "Analyse morphologique et modélisation pour l'optimisation structurelle d'électrodes." Thesis, Paris, ENMP, 2015. http://www.theses.fr/2015ENMP0031/document.
Повний текст джерелаThis work, which combines image analysis, Fourier methods and morphological models, focuses on the prediction and optimization of the transport properties of fuel cell materials in the classical framework of the homogenization of random media. The materials under study are critical layers found in fuel cells.These devices produce clean electrical energy (and water) from chemical fuel oxidation.The materials studied here are novel types of fuel cells that combine several preexisting architectures. Their performance is determined by the ionic and electronic conductivity, on the one hand, and by permeability and specific surfaces exchange between the solid and porous phases. For materials with highly-contrasted properties (pores and solid, isolating and conducting media), the effective properties strongly depend on the spatial arrangement (morphology) of the various phases.Fuel cell layers are first described and modeled using 2D scanning electron microscopy images and image analysis.Microstructures are characterized by morphological descriptors and realistic random 3D media, based on Boolean and Gaussian fields, are developed to represent the materials. The latter are parametrized by simple geometrical characteristics including volume fractions and covariances.They are visually and quantitatively validated using morphological data.Second, the transport properties are predicted numerically using Fourier methods. In conductivity, a modified algorithm is proposed to suppress the Gibbs artifacts. For permeability, the scheme of Wiegman (2007) is used.The permeability of ideal Boolean models is computed and compared with various analytical estimates.The Berryman-Milton bound, previously known for the Boolean model of spheres, is computed for a Boolean model of flat cylinders, using an analytical expression for cylinder covariogramm. The ionic and electronic conductivity of anode layers, and their permeability are predicted using previously developed models. The permeability, which strongly depends on the morphology, is computed for various values of the models' parameters, including the specific surface area between solid and phases.Several virtual materials with improved properties are proposed
Pacull, Julien. "Modèle numérique micro-mécanique d'agrégat polycristallin pour le comportement des combustibles oxydes." Phd thesis, Université de Provence - Aix-Marseille I, 2011. http://tel.archives-ouvertes.fr/tel-00720837.
Повний текст джерелаCe travail concerne le développement d'une modélisation du comportement thermo-mécanique de l'UO2 à l'échelle du polycristal. Deux descriptions de l'agrégat sont envisagées : une approche à champ moyens (via une formulation auto-cohérente) et une approche par éléments finis, pour laquelle la géométrie du Volume Elémentaire Représentatif (VER) est décrite comme une mosaïque de Voronoï 3D-périodique.
Les mécanismes de viscoplasticité spécifiques au combustible UO2 sont modélisés à l'échelle du monocristal, en introduisant des caractéristiques de la microstructure (systèmes de glissement, densités de dislocation, décohésion aux joints de grains) dans la mise en équations du modèle.
Le comportement du VER est par la suite analysé à la fois en termes de réponse effective, qui est comparée aux données expérimentales disponibles et aux modèles mécaniques utilisés à l'échelle de la pastille, et en termes de phénomènes de localisation. En particulier, nous nous intéressons aux distributions de pression hydrostatique inter- et intragranulaire, qui pilotent le transport des produits de fission.
La robustesse des résultats obtenus en fonction du choix du maillage éléments finis est étudiée. Une série de calculs est présentée afin de trouver un compromis satisfaisant en termes de discrétisation pour une estimation correcte des contraintes locales.
Enfin, l'exploitation du modèle se déroule en deux temps. Une première étude propose de retrouver des mesures expérimentales de décohésion intergranulaire sur le combustible en introduisant des modèles de zones cohésives dans le VER.
Afin de quantifier l'effet de la microstructure sur le comportement mécanique de l'UO2 en irradiation, un chargement de type rampe de puissance similaire aux essais expérimentaux menés sur des crayons combustible est appliqué au polycristal. L'analyse des distributions locales de contraintes donne lieu à une discussion sur l'effet de l'incompatibilité de déformation entre grains voisins sur le comportement des produits de fission.
Aubras, Farid. "Contribution à l’étude de l’influence des régimes bi-phasiques sur les performances des électrolyseurs de type PEM basse pression : approche numérique, analytique et expérimentale." Thesis, La Réunion, 2018. http://www.theses.fr/2018LARE0011/document.
Повний текст джерелаBased on proton conduction of polymeric electrolyte membrane (PEM) technology, the water electrolysis (PEMWE) offers an interesting solution for efficiency hydrogen production. During the electrolysis process of water in PEMWE, the anodic side is the place where the water is splitting into oxygen, protons and electrons. The aim of this study is to recognize the link between two-phase flows (anode side) and cell performance under low pressure conditions. We have developed three approaches: the analytical approach and the numerical approach validated by the experimental data. For the numerical model, we have developed a two-dimensional stationary PEMWE model that takes into account electro-chemical reaction, mass transfer (bubbly flow), heat transfer and charges balance through the Membrane Electrodes Assembly (MEA). In order to take into account the changing electrical behavior, our model combines two scales of descriptions: at microscale within anodic active layer and MEA scale. The water management at both scales is strongly linked to the slug flow regime or the bubbly flow regime. Therefore, water content close to active surface areas depends on two-phase flow regimes. Our simulation results demonstrate that the transition from bubble to slug flow in the channel is associated with improvement in mass transport, a reduction of the ohmic resistance and an enhancement of the PEMWE efficiency. Regarding the analytical model, we have developed a one-dimensional stationary isothermal PEMWE model that takes into account electro-chemical reaction, mass transfer and charges balance through the Membrane Electrodes Assembly (MEA). The analytical approach permit to obtain mathematical solution of the activation overpotential, the ohmic losses and the bubbles overpotential respectively for the low current density, the middle current density and the high current density. This approach quantify the total overpotential of the cell, function of the operational and intrinsic numbers. In terms of perspective, the analytical model could be used for the diagnostic of the electrolyzer PEM