Дисертації з теми "Matériau équivalent"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-47 дисертацій для дослідження на тему "Matériau équivalent".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Chiambaretto, Pierre-Louis. "Modèle vibratoire de réservoir cryotechnique de lanceur : définition d’un méta-matériau équivalent." Thesis, Toulouse, ISAE, 2017. http://www.theses.fr/2017ESAE0022/document.
Повний текст джерелаLiquid hydrogen is a propellant alternatively used with liquid oxygen for the propulsion of many launchers, especially those of the Ariane family. However, its dangerousness prohibits vibration tests on filled tank. The aim of this PHD is to explore the possibility to carry out such vibration tests by filling these tanks with a substitute material : a set of pre-stressed balls. As further argued and developed in the report, the objective is to obtain a modal behavior similar in term of mode shapes and natural frequencies to those of the tank filled with liquid hydrogen for the first modes. In the first part, an analytical approach based on a method using frequency equivalences is detailed. After presenting the outlines of the methodology used and all the models developed, the methodology is applied to the experimentally studied case in order to highlight the influence of the different parameters as well as then to propose a first method to choose a set of well adapted balls. The second part deals mainly with experimental and numerical aspects. Firstly, the balls used in the thesis are characterized. Then, the experimental set-up designed and realized to carry out vibration tests on a tank filled with pre-stressed balls is presented. The different results obtained are compared with both analytical results and numerical based on discrete-elements and finite-elements results
Parizot, Gérald. "Étude d'un procédé de fabrication de pièces en composite verre-époxyde réticulées par haute fréquence." Nancy 1, 1999. http://www.theses.fr/1999NAN10035.
Повний текст джерелаJamois, Alexis. "Modélisation et réalisation d'absorbants acoustiques par impression 3D : étude en incidence normale et application au traitement d'un conduit." Electronic Thesis or Diss., Ecully, Ecole centrale de Lyon, 2024. http://www.theses.fr/2024ECDL0010.
Повний текст джерелаConventional rigid porous materials such as wools or foams do not provide effective absorption at low frequencies in complex industrial environments. For these applications, the structures developed are generally quarter-wave resonators or Helmholtz resonators. In recent years, 3D printing techniques have made it possible to produce resonator geometries that were previously difficult to produce. The ease of use and affordability of these techniques means that it is now possible to create tailor-made absorbing devices to meet specific requirements very quickly. This long-term objective requires, on the one hand, validation of the reliability of the dimensions obtained during the production of absorbent structures and, on the other hand, the ability to effectively model a variety of geometries in different contexts. In this thesis, stereolithography was chosen to print the samples based on literature results. Studies have concluded that it is more accurate for acoustic devices than other techniques. The geometry chosen for this study consists in a stack of volumes (spherical or cubic), connected in the three directions of space by channels in the image of cubic crystals. A large number of samples were manufactured varying the production parameters in order to measure the variability of the characteristic dimensions of the samples. Among the various modelling approaches presented, the numerical tests carried out led to the choice of equivalent fluid modelling based on the identification of JCAPL parameters. They are identified in a representative volume homogenised throughout the sample. This homogenisation of behaviour is suited to the geometries studied because of their periodic nature. The reaction of the geometries we are considering makes impedance modelling impossible. The samples are first studied at normal incidence, in order to link the variability of realisation to the measured acoustic behaviour. The measurement results and the predictions are in good agreement. Some samples were made specifically for duct wall measurement, in order to validate the use of the equivalent fluid approach. These tests were also used to confirm the conclusions drawn for normal incidence. The variability of the geometry has a real impact on the acoustic behaviour, but the main problem with rigid 3D printed samples is their adaptation to the measurement benches
Ouedraogo, Boureima. "Modélisation du rayonnement acoustique dans les guides traités par des matériaux absorbants à réaction localisée ou non localisée en présence d'écoulement par la méthode des éléments finis." Phd thesis, Université de Bourgogne, 2011. http://tel.archives-ouvertes.fr/tel-00674031.
Повний текст джерелаTédenac, Bruno. "Modélisation des propriétés diélectriques de matériaux composites : méthode des réseaux électriques équivalents." Aix-Marseille 1, 1995. http://www.theses.fr/1995AIX11052.
Повний текст джерелаGuy, Philippe. "Contribution à l’étude et à la caractérisation des propriétés mécaniques de structures lattices métalliques obtenues par Fabrication Additive (fusion sur lit de poudre)." Electronic Thesis or Diss., Toulouse, ISAE, 2025. http://www.theses.fr/2025ESAE0005.
Повний текст джерелаAdditive manufacturing technology has created new possibilities in design for aerospace components, particularly using lattice structures. The industrial challenge remains to size these structures within a reasonable lead time.This research aimed to improve the understanding and prediction of the mechanical performance of lattice structures that are increasingly used in spacecraft components.Thales Alenia Space – France provided lattice core sandwich beams manufactured by the powder bed laser beam melting process. The mechanical properties of two types of cell, BCC and Dode-Thin, were investigated for two metal alloys, AS7G06 aluminium and TA6V titanium. We performed a number of static and vibration tests and predicted the mechanical behaviour of the specimens using both analytical and numerical calculations.Various Finite Element (FE) models were developed to calculate the effective mechanical properties of a defect-free structure and compared with the beam theory. In particular, we established a theory of cross-sectional properties for the specific Dode-Thin strut. This allowed the Dode-Thin lattice cell to be modelled as a set of 1D beam elements or an equivalent 3D-orthotropic homogenised material. Tests were also carried out to measure the stiffness of the sandwich beams. Optical and SEM observations and X-ray computed tomography (CT) determined the actual cross-sectional properties of the struts.The experiments in this study generally showed that theoretical and numerical predictions significantly overestimated the stiffnesses. Porosity rate and geometrical imperfections were the main causes of the discrepancy between the prediction and the as-built parts. In addition, the 3D-printed materials exhibited a lower Young’s modulus. An in-house code was developed to calculate the cross-sectional properties directly from the CT data and compare them with the nominal properties. These observations and results helped to explain the differences in stiffness and mass and were used to update the predictive models, resulting in a better correlation with the experimental results for static and dynamic behaviour.Finally, this study provided the engineer with a simple method for replacing BCC and Dode-Thin cells with equivalent beams of solid circular cross-section, or with homogenised mechanical properties. This study also deepened the knowledge of the as-built lattice structures and their mechanical behaviour.Further research should explore the effect of strut waviness and the misalignment of the junction centres. Additional tests with other samples manufactured more recently and benefiting from developments in the SLM technique could be conducted. The in-house code we have started to develop for post-processing digital CT images could be enhanced with new functions. We could envisage the construction of a full FE tetrahedral volumetric mesh capturing the geometric imperfections of each strut. This could make it possible to identify the true effective stiffness of the strut geometry. This approach could pave the way for the creation of a digital twin consisting of a FE lattice model constructed directly from CT data
Zeng, Lingli. "Contribution à l'étude du foudroyage en travaux miniers par modélisation physique en matériaux équivalents." Vandoeuvre-les-Nancy, INPL, 1990. http://www.theses.fr/1990INPL079N.
Повний текст джерелаBerot, Maxime. "Modélisation simplifiée d'assemblages par éléments équivalents." Phd thesis, École Nationale Supérieure des Mines de Paris, 2009. http://tel.archives-ouvertes.fr/tel-00443533.
Повний текст джерелаEl, Assami Yassine. "Homogénéisation en viscoélasticité linéaire non-vieillissante par la méthode de l'inclusion équivalente : application aux matériaux cimentaires." Thesis, Paris Est, 2015. http://www.theses.fr/2015PEST1051/document.
Повний текст джерелаThe prediction of long-term behaviour of cementitious materials is a major concern which contributs to the study of the durability of prestressed structures. This work focuses on the use of the equivalent inclusion method, simplified multi-scale homogenization approach, for the prediction of creep in these materials. Creep is modelled by the non-ageing linear viscoelasticity. The equivalent inclusion method overcomes certain difficulties and limitations posed by conventional approaches. For cementitious materials (highly heterogeneous), conventional multi-scale approaches are, either digitally heavy and complex to implement, or not sufficiently detailed to take into account the specificities of a microstructure. The equivalent inclusion method presents a middle way and allows the calculation of simplified matrix-inclusion type microstructures and to provide estimates or bounds on the homogenized behaviour.Under its variational form, the equivalent inclusion method has, up to now, been implemented only for spherical inclusions. This work proposes to extend this method to ellipsoidal inclusions whose variation of slenderness allows the modelling of new aspheric elements such as cracks, fibers and portlandite crystals. Such enrichment of the geometry has an impact on the computation time, that is amplified in the context of creep. The second aspect of the work then applies to the extension of the equivalent inclusion method to the non-ageing linear viscoelasticity by means of the Laplace-Carson transform. An effective methodology (both from the viewpoint of precision and calculation time) is finally proposed to perform the numerical inversion of this transform
Abdelli, Wassim. "Modélisation du rayonnement électromagnétique de boîtiers de blindage par sources équivalentes : application aux matériaux composites." Thesis, Paris 11, 2015. http://www.theses.fr/2015PA112093.
Повний текст джерелаThe modeling of composite materials is a domain of study which benefits of increasingly interest. Indeed, the popularization of the use of such materials requires the development of new models in order to better understand their behavior. The automotive and aerospace industry strives to optimize material selection based on the specificities of each application in order to reduce the weight of the equipment and to provide better mechanical and thermal characteristics. Composite materials have been also presented as a potential alternative to metals for the role of electromagnetic shielding. Their generalization in this context is nevertheless hampered by a relative lack of knowledge of their electromagnetic behavior. For this purpose, it is necessary to have methodologies to evaluate the shielding effectiveness of composite enclosures and identify the different corresponding mechanisms and parameters.Moreover, the deployment of these alternative materials on a larger scale is hindered by other constraints related mainly to the difficulty of complete 3D analysis of complex systems including composite enclosures. In fact, the topological complexity of certain components greatly complicates their integration into existing electromagnetic simulation tools. Moreover, the scale ratio between the different levels (system, composite enclosures, electronic card, circuit, component) is too large ; This disparity of scale complexifies considerably the geometrical discretization of the entire system. The combination of these different constraints leads to real difficulties to which EMC engineers face. That is why it is necessary to develop efficient models to facilitate the 3D analysis of the complete host system.This work is therefore divided in two sections :- In a first time, we present a methodology to calculate shielding effectiveness of composite enclosures of electronic equipment. The goal is to evaluate the potential of these materials in terms of electromagnetic shielding and to identify the main contributing factors.- In a second time, and in order to ensure compliance of complex electronic systems incorporating composite shielding enclosures with the stringent requirements of EMC, we propose a modeling methodology of electronic devices radiation. This modeling (based on genetic algorithms) allows to replace the radiating devices and enclosures (especially composites) by a set of elementary dipoles. The equivalent model, "black box" type, is thus representative of the entire structure in terms of high frequency electromagnetic radiation and is easily integrable in the mesh of host structures. This multipolar model provides spatial and frequency predictions of the electric and magnetic field, enabling among others to calculate the shielding effectiveness of the radiating enclosure in space, thereby giving a way to quantify its disruptive impact on its environment. Moreover, this approach allow to simplify the 3D analysis of a complete system comprising composite enclosures by controlling the EM behavior at all levels: system, enclosures, cards, circuits and components
Ponchel, Freddy. "ELFI : calculateur électromagnétique pour l'établissement de schémas électriques équivalents aux interconnexions "cuivre" couplées et pour la caractérisation des matériaux." Lille 1, 2007. https://pepite-depot.univ-lille.fr/LIBRE/Th_Num/2007/50376-2007-221.pdf.
Повний текст джерелаNguyen, Thuong Anh. "Analyse systématique du concept de comportement linéaire équivalent en ingénierie sismique." Thesis, Paris Est, 2017. http://www.theses.fr/2017PESC1032/document.
Повний текст джерелаIn earthquake engineering, it is common that the behaviour of a structure undergoing a strong motion is characterized by wise or narrow hysteresis loops depending on the type of behaviour of the structure. Considering this non-linear behaviour in a transient calculation requires a huge need of resources in terms of calculation time and memory. In this context, the method of equivalent linearization, consisting in the evaluation of the non-linear response of the structure has been introduced by geotechnical engineers In the 1970s. Despite efforts of many authors, this method is still not used in structural field. The goal of this research is to examine the linear equivalent behaviour in the context of the simplified method of evaluating the non-linear response of a structure in earthquake engineering. We review the criteria of equivalence adopted by many methods searching for the equivalence of (1) the maximum of displacement or (2) quantity of dissipated energy or (3) the restore force. Our argumentative analyses carry out that these three criteria are not pertinent and/or efficient. This leads, in some cases, to some unexplained results. We show the important role, which is mostly neglected in existing method, of frequency content while evaluating the ductile demand. Based on this recognition, we introduce a new method of equivalent linearization based on the transfer function. We use this method in order to explore a numerical experimental plan in which we calculate the equivalent characteristics (frequency and damping) versus the ductile demand for different configuration characterized by (a) the ratio between the frequency of the oscillator and the central frequency of the input signal, (b) the hardening and (c) the behaviour which covers the elastoplastic and damaged ones. We propose two new approaches of the linear equivalent behaviour. The first one, aiming to improve the non-linear static procedure of ATC40, use the secant stiffness and the maximal displacement. This approach consists in an estimation of damping which is different to ATC40. Its pertinence is established by evaluating with accuracy the maximal displacement of the canonical non-linear systems. The second approach consists in restitution of the dynamic of the response of a non-linear oscillator by using the transfer function. The pertinence of this proposition is shown through the criteria of Anderson, especially in terms of transferred motion. In this effect, the linear equivalent behaviour based on the transfer function allows to cope the transferred motion through the non-linear oscillator without performing the non-linear transient calculation. The validation of the linear equivalent behaviour based on the transfer function has been examined on real structures through some experimental tests such as the reinforced concrete wall (SAFE) or piping systems (BARC and EPRI)
Kfoury, Moussa. "Changement d'échelle séquentiel pour des milieux fracturés hétérogènes." Phd thesis, Toulouse, INPT, 2004. http://oatao.univ-toulouse.fr/7386/1/kfoury.pdf.
Повний текст джерелаLeroux, Julien. "Modélisation numérique du contact pour matériaux composites." Phd thesis, INSA de Lyon, 2013. http://tel.archives-ouvertes.fr/tel-00961209.
Повний текст джерелаFaye, Mactar. "Structure interne et propriétés thermiques macroscopiques, application aux matériaux de construction." Thesis, Toulouse 3, 2016. http://www.theses.fr/2016TOU30032/document.
Повний текст джерелаThe objective of this thesis is to study the impact of the internal structure of isotropic granular materials on the macroscopic thermal properties. We have developed a model to solve the heat transfer problem within a heterogeneous three-dimensional material. This code is coupled with an algorithm generating random structure. After an experimental validation, we first generated granular materials and we characterized their internal structure; then we studied the impact of this structure on the thermal conductivity. We also developed a new experimental method for measuring the heat capacity area of a wall element with complex internal structure. The originality of this method is the coupling of an analytical model of heat capacity area, which is independent of the thermal properties of the constituents, and an experimental study
D'Aloia-Schwartzentruber, Laetitia. "Détermination de l'énergie d'activation apparente du béton dans le cadre de l'application de la méthode du temps équivalent à la prévision de la résistance en compression au jeune âge : approches expérimentales mécanique et calorimétrique, simulations numériques." Lyon, INSA, 1998. http://www.theses.fr/1998ISAL0018.
Повний текст джерелаThe concept of maturity or equivalent age enables the combined effects of time and temperature, on the concrete strength development at early ages, to be accounted for. It is based on the Arrhenius' law which has revealed itself to be the most accurate in order to describe the temperature influence on cement hydration (exothermic reaction). A proper estimation of the concrete strength at early ages by the method of equivalent age is directly related to a correct determination of the Apparent Activation Energy: Ea. This is the unique parameter which characterizes the whole concrete mixture and which can be found in the Arrhenius' law. The major aim of this study is to show how calorimetric tests under semi-adiabatic conditions can be an alternative to unwieldy compressive tests procedures in order to determine Ea. The validity of the obtained Ea values has been verified by means of several mechanical tests. Moreover, the possibility of using either mortar or concrete is partially dealt with. The water to cement ratio appears to naturally be considered as a constant in proportioning an equivalent mortar. Finally, the evolution of the Apparent Activation Energy in relation to the degree of hydration is given. Hence, the widespread opinion that Ea depends on the degree of hydration is confirmed and a field of definition can be brought to the fore. Besides, a numerical tool: CHAL is developed. This enables rates of heat flow under adiabatic conditions to be simulated, by taking into account, the cement composition and the coupling which operates by the temperature. Hence, the influence of the polymineral characteristic of cement, on the determination of Ea can be underlined. Finally, the redefinition of the hydration degree which enables the detriment al effect of high temperature at earl y ages on the long term strength of concrete to be accounted for, and the definition of the setting time, make it possible to improve the method of equivalent age
Thérèse, Laurent. "Plasmas radiofréquence pour l'analyse des matériaux : étude expérimentale, analytique et numérique." Toulouse 3, 2005. http://www.theses.fr/2005TOU30027.
Повний текст джерелаThe work presented in this thesis is a contribution to the comprehension of the discharge and the plasma used in radiofrequency optical emission spectroscopy at 13,56 MHz for the analysis of materials. The study is based on an experimental characterization of the discharge and the plasma. We have developed experimental diagnoses devices (electric and optical) allowing to measure the voltage, the discharge current, the power injected into the plasma in the case of conducting materials, and to measure the emission intensity of the argon line at 750,4 nm. We have developed a simple analytical model which starting from the electrical measurements gives access to informations on the fundamental properties of the plasma (maximum electric field, thickness of sheath, densities) and with which we also could determine an equivalent electric circuit of the discharge. This model enables us to characterize the evolution of the basic parameters of plasma according to the power, the pressure, the nature of material of cathode or anode. We have also used a hybrid digital model fluid Monte Carlo two-dimensional of the discharge which enabled us to validate the experimental and analytical results
Marouf, Nabil. "Réponse d'un contact équivalent aube/disque Udimet 720-MC2 vis-à-vis des processus de fretting fissuration : Influence de la microstructure et comportement de contraintes résiduelles de grenaillage." Thesis, Ecully, Ecole centrale de Lyon, 2013. http://www.theses.fr/2013ECDL0022.
Повний текст джерелаNo abstract
Preault, Valentin. "Méthodes d'homogénéisation pour la modélisation électromagnétique de matériaux composites. Application au blindage de boîtiers d'équipement électronique." Phd thesis, Université Paris Sud - Paris XI, 2013. http://tel.archives-ouvertes.fr/tel-00924648.
Повний текст джерелаLei, Lei. "Étude des matériaux poreux thermo compressés pour la modélisation des écrans acoustiques automobiles." Thesis, Compiègne, 2018. http://www.theses.fr/2018COMP2428/document.
Повний текст джерелаThis work was carried out in the framework of the project EcOBEx, whose main objective was to reduce the passby noise by mean of acoustic shields in the engine compartment of the vehicle. The acoustic shields are manufactured by thermocompression of uniform porous materials. The material’s properties and thickness evolve according to the degree of compression experienced by the material. The objective of this work is to propose some laws to predict the evolution of the materials properties from their initial non compressed values and the compression rate. Firstly, we focus on the parameters of the Johnson-Champoux-Allard-Lafarge (JCAL) equivalent fluid model : porosity, air-flow resistivity, tortuosity, viscous characteristic lengths, thermal characteristic length, static thermal permeability. Some analytical expressions are proposed to predict the variation of these parameters as a function of compression. They are derived from a physical model of cylindrical fibres where the fibre orientation variations induced by the thermocompression can be taken into account. The results are in good agreement with the measurements made two types of materials (open cell foam and fibrous). A generalized empirical model is finally proposed for the air-flow resistivity.In a second part, we focus on the elastic parameters, which are necessary to take into account the vibration of the skeleton. The quasi-static experimental method is first applied to study the evolution of the Young’s modulus along the compression rate for fibrous and open cell foams. A power law is then proposed to predict these variations. Finally, an inverse method for estimating the elastic properties of an orthotropic poro-elastic material from a vibratory measurement of a thermocompressed three layer sandwich structure is proposed. This method allows us to characterize the elastic properties of a porous material in a situation close to its actual application
Koumi, Koffi Espoir. "Modélisation du contact entre matériaux hétérogènes : Application au contact Aube/Disque." Thesis, Lyon, INSA, 2015. http://www.theses.fr/2015ISAL0120/document.
Повний текст джерелаThe present PhD thesis deals with contact problems between heterogeneous materials. Nowadays heterogeneous materials are extensively used in several industrial domains (automotive, aeronautics, aerospace, ...). Heterogeneous materials involve porous materials, aluminum alloys, composites materials (woven composites, interlocks 3D, interlocks 2D), metallic or ceramics materials containing impurities (porosities/precipitates). In this work, a contact model based on semi-analytical method is proposed. A conjugate gradient algorithm is used for a fast resolution of contact equations. The model can account for one or more isotropic/anisotropic inhomogeneities. An approach taking inspiration from the Eshelby equivalent inclusion method is used in the contact solver to account for the effect of inhomogeneities. 2D and 3D Fast Fourier Transforms (FFT) are used to speed up the computation. A numerical method is implemented in order to take into account interactions between many heterogeneities. The semi-infinite space/ matrix can be either elastic or visco-elastic. The model developed in the present PhD thesis can solve indentation, rolling/sliding or fretting contact problems between heterogeneous elastic materials, homogeneous or heterogeneous visco-elactic materials. In the case of visco-elastic materials, the model permits to get the solution in terms of contact pressure distribution, subsurface stresses, apparent friction coefficient, both in the transient and then steady-state regimes. The model has been validated by performing a comparison with the results of a finite element model. The CPU time and memory necessary are greatly reduced in comparison with the classical finite element method. The model developed is fast, robust and extremely easy to use. An original experimental approach was proposed in order to measure the displacement fields at interface of two contacting bodies. A good agreement between experimental results and numerical simulations is obtained. Finally, the model is applied on some industrial applications. A coupling between a finite element model and the semi-analytical code allow to take into account the effects of structure on contact problem
Kehal, Ibtissam. "Développement et caractérisation de nouveaux matériaux d’électrodes pour pile à combustible à oxyde solide (SOFC) : des titanates de lanthane de structure cuspidine aux cobaltites." Electronic Thesis or Diss., Lille 1, 2015. http://www.theses.fr/2015LIL10005.
Повний текст джерелаIn the current energy context, solid oxide fuel cells hold great promise as an alternative energy source for electricity generation. However, bottlenecks remain to improve their sustainability, particularly in terms of electrode materials. This work focused on the characterization of new anode and cathode materials. The partial substitution of titanium by vanadium in the lanthanum titanate La4Ti2O10 of cuspidine structure has led to promising anode materials with Aera Specific Resistance (ASR) of the order of 0.2 W.cm2 at 750 ° C under hydrogen. At the cathode, our research has focused on two types of cobaltites: a perovskite Ba1-xCo0,9Fe0,2Nb0,1O3-d with x = 0 and 0.1 and an innovative material Ba2Co9O14. In either case, after optimization of the microstructure of the electrodes, ASR less than 0.1 W.cm2 at 700 ° C were obtained
Préault, Valentin. "Méthodes d'homogénéisation pour la modélisation électromagnétique de matériaux composites. Application au blindage de boîtiers d’équipement électronique." Thesis, Paris 11, 2013. http://www.theses.fr/2013PA112302/document.
Повний текст джерелаThe number of electronic devices and wireless communication systems has significantly increased over the past 20 years. Shielding enclosures used to protect electronic devices against radiated waves and to limit their emissions are usually designed in aluminum alloys. But the need to reduce the weight of aircraft incites the aerospace industry to the use of composite materials.Modeling shielding enclosures composed of homogeneous materials is possible by the use of numerical tools such as the finite element method. But considering every details of the microstructure would involve a excessive number of unknowns preventing numerical modelings. The use of semi-analytical homogenization methods is a possibility to overcome this restriction. The equivalent homogeneous mediums obtained with these methods can be inserted into numerical tools to simulate the electromagnetic behavior of complex shielding enclosures. But classical homogenization models such as Maxwell-Garnett model, are limited to quasi-static applications.Calculating the effective properties of composite materials illuminated by electromagnetic waves is the main objective of this work. This leads to two dynamic homogenization methods. The first one introduces a size effect between the fibers and the wavelength. It allows to extend a method based on inclusion problems to microwave frequencies. However it is limited by the occurrence of the skin effect in conductive inclusions. The second consider Joule losses and extends the first method after the occurrence of the skin effect. This second homogenization method is finally used to model the behavior of a realistic shielding enclosure
Andriamananjara, Koloina. "Modélisation numérique des procédés LCM à l’échelle des milieux homogènes équivalents en cours de déformation – intégration de la pression capillaire lors de l’infusion et équilibrage post-infusion." Thesis, Lyon, 2019. https://tel.archives-ouvertes.fr/tel-02921453.
Повний текст джерелаThe LRI process consists in impregnating a fibrous preform through its thickness, under the pressure gradient created by pulling the vacuum. This out-of-autoclave process was developed to reduce manufacturing costs and ensure proper filling of large parts; hence the increasing interest of the aeronautical industry in this technique. This work, within the framework of the Hexcel-Mines Saint-Etienne Chair, aims to establish a predictive numerical tool to simulate the main physical phenomena occurring during the process at macroscale. In order to properly model the complex and multi-scale phenomena during the infusion process, a numerical approach based on finite-element method is developed to model the capillary effects during the filling stage and to model the post-filling stage. Capillary effects are represented by a capillar stress tensor acting at the bi-fluid interface of the flow modelled by Darcy's equations. By generating a pressure jump, it requires a local pressure enrichment of the elements crossed by the fluid front. The results are validated with a convergence analysis and a confrontation with experimental data. The model is adapted to the mesoscale to simulate the flow through the tows. A first approach of post-filling stage modeling is proposed, which describes the interaction between the preform deformation and the resin flow after the filling. Modeling this stage allows to study the influence of fluid-solid coupling on the final part regarding the dimensional tolerances, and to predict the evolution of the fibre volume fraction which determines the part mechanical properties. The first simulation tests reveal a high potential for industrial simulators
San, Nicolas Rackel. "Approche performantielle des bétons avec métakaolins obtenus par calcination flash." Phd thesis, Toulouse 3, 2011. http://thesesups.ups-tlse.fr/1686/.
Повний текст джерелаThe main objective of this thesis was to show the metakaolin, manufactured by the company Argéco DEVELOPMENT with the flash calcination process, is an eco-material that improves structural properties and durability of concrete. The approach choosen, based on the equivalence of performance concerning several types of concrete (buildings, structures, self-compacting and high performance concretes. . . ). The metakaolin was first characterized (physico-chemical and reactivity) and its effect as Portland cement replacement have been studied. Then performances of concretes were evaluated by measuring various durability indicators. Finally, life of concretes in marine environment has been predicted by a probabilistic model
San, Nicolas Rackel. "Approche performantielle des bétons avec métakaolins obtenus par calcination flash." Phd thesis, Université Paul Sabatier - Toulouse III, 2011. http://tel.archives-ouvertes.fr/tel-00756481.
Повний текст джерелаMnasri, Faiza. "Étude du transfert de chaleur et de masse dans les milieux complexes : application aux milieux fibreux et à l’isolation des bâtiments." Thesis, Université de Lorraine, 2016. http://www.theses.fr/2016LORR0169/document.
Повний текст джерелаInternational energy context requires a new orientation to the building sector as in construction or in renovation. Any new solution must be technically efficient and environmentally acceptable. In this thesis, the object is to achieve a numerical and experimental analysis of a building biobased materials. Some of these materials are included from the study of a transborder project to the Lorraine region (France, Belgium and Luxembourg). Indeed an Ecotransfaire project was included in this work. This project has been oriented to the development of a sustainable eco materials chain. A process of analysis has been established in order to select the materials candidates on the basis of scientific, geographical and environmental criteria. The answers are moving towards the integration of bio-based materials. These materials are subject of several heat and mass transfers phenomena. So understanding these mechanisms within a building material has been achieved firstly. This resulted on a coupled model of heat transfer, air, moisture experienced by the HAM model. This model is applied to a wooden building material whose its structure is assumed homogeneous. Then, this model was implemented and solved by the finite element method. Its numerical solution is validated by analytical results available in the literature. The study of sensitivity of the model coupling, dimensions in space, the boundary conditions and the variability of input parameters is also presented. One of the difficulties of using this model is the case of heterogeneous materials. Thus, in this work, we propose an approach of characterization of a heterogeneous lignocellulosic composite material with a porous structure. In fact, this material is composed of two components: Wood and cement. The wood is presented by a shapes aggregates with irregulars sizes and the cement is considered as the binder in the composition. The object was to predict its equivalent intrinsic properties (thermal conductivity and vapor permeability) by using the micro-tomography techniques.The methodology consists to determine the structure of the sample by taking images at the microscopic scale. Once the structure of the sample is generated, we will conduct from a reconstruction of the two-dimensional representation to a three dimensional structure by using a numerical tool which determines the equivalent properties of the 3D reconstructed domain. The permeability as well as the equivalent thermal conductivity are the two properties evaluated in this configuration. These two properties are strongly depend to the porosity and to pore distribution in the continuous phase (the solid one). Moreover the composition of the material and the volume fractions of each components influence the formation of microstructure and consequently the thermal and hydric transfers
BARRE, Olivier. "Contribution à l'étude des formulations de calcul de la force magnétique en magnétostatique, approche numérique et validation expérimentale." Phd thesis, Université des Sciences et Technologie de Lille - Lille I, 2003. http://tel.archives-ouvertes.fr/tel-00005921.
Повний текст джерелаKehal, Ibtissam. "Développement et caractérisation de nouveaux matériaux d’électrodes pour pile à combustible à oxyde solide (SOFC) : des titanates de lanthane de structure cuspidine aux cobaltites." Thesis, Lille 1, 2015. http://www.theses.fr/2015LIL10005/document.
Повний текст джерелаIn the current energy context, solid oxide fuel cells hold great promise as an alternative energy source for electricity generation. However, bottlenecks remain to improve their sustainability, particularly in terms of electrode materials. This work focused on the characterization of new anode and cathode materials. The partial substitution of titanium by vanadium in the lanthanum titanate La4Ti2O10 of cuspidine structure has led to promising anode materials with Aera Specific Resistance (ASR) of the order of 0.2 W.cm2 at 750 ° C under hydrogen. At the cathode, our research has focused on two types of cobaltites: a perovskite Ba1-xCo0,9Fe0,2Nb0,1O3-d with x = 0 and 0.1 and an innovative material Ba2Co9O14. In either case, after optimization of the microstructure of the electrodes, ASR less than 0.1 W.cm2 at 700 ° C were obtained
Tayong, Boumda Rostand. "Propriétés acoustiques de systèmes incorporant des plaques micro-perforées et des matériaux absorbants sous forts niveaux d'excitation." Thesis, Dijon, 2010. http://www.theses.fr/2010DIJOS066/document.
Повний текст джерелаThis work deals with the acoustical properties of systems incorporating Micro-Perforated Panels (MPP) and absorbing materials under high level of excitation.In the first chapter, absorbent systems composed of an air-cavity backed MPP are studied at high level of excitations. An analytical model involving two dimensionless parameters and an optimum Mach number is proposed. This model describes the behavior of the maximum of absorption coefficient (absorption coefficient at the resonance) with respect to the Mach number inside the perforations. A formula is proposed that predicts the variations of the absorption peak with the acoustical Mach number.In the second chapter, the holes interaction effects are studied theoretically and experimentally under high levels of excitations. Following an equivalent fluid approach, a model for which the tortuosity is corrected to account for the holes interaction effects coupled to the jet-like effects is developed. Multi-layered absorbents composed of MPP and porous materials are then studied under high level of excitations. The case where the multi-layers are directly attached to a rigid wall and the case where there is an air cavity before the rigid wall are examined. Forchheimer's law is used to model each medium of the multi-layer and the use of the transfer matrix method is made to account for these media.Sound transmission study under high level of excitation is introduced. The perspectives of this work are numerous and promising in the acoustics of transportation systems applications
Sellier, Alexandre. "Absorbants à métamatériaux : étude théorique et expérimentale." Phd thesis, Université Paris Sud - Paris XI, 2014. http://tel.archives-ouvertes.fr/tel-01060182.
Повний текст джерелаLavergne, Thomas. "Modélisation analytique et caractérisation expérimentale de microphones capacitifs en hautes fréquences : étude des couches limites thermiques, effets des perforations de l’électrode arrière sur la déformée de membrane." Thesis, Le Mans, 2011. http://www.theses.fr/2011LEMA1020/document.
Повний текст джерелаCondenser microphones are reciprocal transducers whose properties (sensitivity, bandwidth and reliability) make them powerful measurement tools. So far, they have been commonly used as receivers in the audible frequency range, in air at atmospheric pressure and ambient temperature, they have been appropriately characterised in this context for nearly thirty years. But nowadays, their miniaturisation (using MEMS processes) and their new use for metrological purposes (as receivers as well as transmitters) require much deeper theoretical and experimental characterisations because they require an accurate knowledge of their behaviour in high frequency ranges (up to 100 kHz), in gas mixtures, whose properties differ from those of air, and under pressure and temperature conditions much higher or much lower than standard conditions. Thus, here, -i/ the effects of the thermal boundary layers are introduced in the model (only viscous boundary layers are usually accounted for), leading, in the first chapter, to an analysis of the thermal diffusion of thin bodies (whose scope is beyond the strict frame of capacitive transducers), ii/ the influence of the holes in the backing electrode on the dynamic behaviour of the membrane is initially handled with an original analytical method which allows expressing the non-uniform boundary conditions at the surface of the backing electrode as fictitious localised sources associated to uniform boundary conditions (second chapter), -iii/ new analytical solutions, depending both on the radial and azimuthal coordinates, for the pressure field and for the displacement field inside the cavities behind the membrane are expressed using modal theories in agreement with the strong couplings which occur between the different parts of the transducer (chapter three), -iv/ "lumped element circuits", which are more or less approximated (presented in the Appendix), more particularly result in expressing and assessing the sensitivity and the thermal noise (end of chapter three), -v/ experimental results, obtained from measurements of the displacement field of the membrane using a laser scanning vibrometer, both highlight and quantify for the first time the complex behaviour of the membrane in the highest frequency range, and finally lead to the validation of the theoretical results and therefore, the models presented here (even if the latter may still be improved as outlined in the conclusion)
Zarzour, Noura. "Modélisation, identification structurelle et estimation du facteur de comportement pour les bâtiments en maçonnerie géo-sourcée dans les zones sismiques." Electronic Thesis or Diss., Université Côte d'Azur, 2024. http://www.theses.fr/2024COAZ5056.
Повний текст джерелаThe use of new low-carbon construction materials in seismic areas requires the assessment of the structure ductility in order to properly design the building. The lack of accurate structural performance estimation limits the use of green construction materials.A reliable methodology is established for the seismic design of buildings constructed using geo-sourced materials. In particular, a pilot project of compressed earth block (CEB) masonry building in a medium-high seismic hazard zone in Southern France is developed. Starting from the experimental characterization of material mechanical parameters, the seismic design approach focuses on the modal characteristics of the structure, the expected building ductility, and seismic performance assessment in terms of both displacement and force.The equivalent frame model adopted for structural design of load-bearing masonry is validated for two case studies: a rubble stone masonry building and a CEB masonry building. The model validation process consists of the comparison of natural frequencies and mode shapes obtained by both numerical and operational modal analysis. In this context, a measurement campaign provides the structural response to ambient vibrations and then, the modal parameters and structural damping are obtained by structural identification tools. The modal analysis highlights the impact of timber slab stiffness on the dynamic response of masonry buildings. It is shown that a stiffer timber slab with a reinforced topping improves the structural behavior of the masonry structure under seismic loading, yielding to global mode shapes.The stability verification of the building structure at the near collapse limit state is performed in terms of target to capacity displacement ratio, but it is suggested to verify also in terms of force, since it can be more restrictive in some instances and less dependent on the convergence of numerical procedures.The behavior factor in seismic codes for building design is defined for typical construction materials based on damage observation and numerical models. A specific assessment is needed when new construction materials are adopted because building codes provide only boundary values. This thesis proposes a procedure for estimating the behavior factor that is applied to geo-sourced masonry buildings, but it could be adopted for any construction material. The methodology proposed to estimate the force reduction factor, and then the behavior factor, integrates both the seismic demand and building capacity. For this reason, this methodology can be considered as a capacity-demand-based approach. A nonlinear quasi-static analysis is coupled with dynamic analyses and the behavior factor is obtained on a statistical basis. The results are compared with the estimations obtained using demand-based, capacity-based and N2-based approaches. The impact of adopting a three-dimensional building model or an equivalent single-degree-of-freedom system with these methodologies is analyzed.The proposed capacity-demand-based-method provides, with a reduced computation time, a reliable estimation of the force reduction factor, close to the values obtained using the capacity-based-approach applied to a three-dimensional building model that is considered as a reference. Consequently, considering their reliability and efficiency, the proposed methodology for the behavior factor estimation is suitable for professional practice
Berbiche, Amine. "Propagation d'ondes acoustiques dans les milieux poreux fractals." Electronic Thesis or Diss., Aix-Marseille, 2016. http://www.theses.fr/2016AIXM4758.
Повний текст джерелаThe action integral minimization method (variational principle) provides the wave propagation equations. This method has been generalized to fractal dimensional porous media to study the acoustic propagation in the time domain, based on the equivalent fluid model. The resulting equation rewritten in the frequency domain represents a generalization for the Helmholtz equation. As part of the Allard-Johnson model, the propagation equation was solved analytically in the time domain, for both high and low frequencies fields. The resolution was made by the method of the Laplace transform, and focused on a semi-infinite porous medium. It was found that the wave velocity depends on the fractal dimension.For a fractal porous material of finite thickness which receives an acoustic wave at normal incidence, the Euler conditions were used to determine the reflected and transmitted fields. The resolution of the direct problem was made in the time domain by the method of the Laplace transform, and through the use of the Mittag-Leffler functions. The inverse problem was solved by the method of minimizing the least squares sense. Tests have been performed successfully on experimental data; programs written from the formalism developed in this work have allowed finding the acoustic parameters of porous foams, in the fields of high and low frequencies
Castel, Alexis. "Comportement vibratoire de structures composites intégrant des éléments amortissants." Phd thesis, Université de Bourgogne, 2013. http://tel.archives-ouvertes.fr/tel-00983378.
Повний текст джерелаCuellar, Quispe Carlos Enrique. "HF characterization and modeling of magnetic materials for the passive components used in EMI filters." Thesis, Lille 1, 2013. http://www.theses.fr/2013LIL10061/document.
Повний текст джерелаThe switching semiconductor devices in static-converters are the main source of electromagnetic interference (EMI). Reduction of these emissions can be achieved by different techniques including the use of EMI filters which design requires the use of magnetic cores. These must have adequate physical properties allowing the EMI filter to fulfill its task within a specified frequency range whatever the operating conditions (saturation, temperature…). Therefore, in the present work, some methodologies and models are developed in order to be able to design the EMI filter within its real conditions of operation. First, the magnetic core is considered in small-signal conditions and a method is proposed to measure the complex magnetic permeability in high frequency (HF). Two models, analytical and lumped-circuit network, are developed to account for the HF characteristics. In a second step, the material is considered saturable as the EMI filter can be subjected to more important currents, leading to the modification of its main characteristics. Then, a non-linear modeling approach, with and without hysteresis effect, including a material capacitance is considered for modeling the magnetic core. Additionally, a technique is proposed to characterize in HF the magnetic hysteresis loop from a single turn flat coil configuration.Finally, an improved current injection method, with new designed current probes, is used to characterize the input impedance of a converter. The impedance, combined with the developed small-signal and high-signal material models, is used to predict the insertion loss of an EMI filter. Simulation results are validated by the experiment
Gnimpieba, Tonnang Edouard. "DROIT MATERIEL ET INTEGRATION SOUS REGIONALE EN AFRIQUE CENTRALE : CONTRIBUTION A L'ETUDE DU DROIT COMMUNAUTAIRE DE LA COMMUNAUTE ECONOMIQUE ET MONETAIRE DE L'AFRIQUE CENTRALE (CEMAC)." Phd thesis, Université de Nice Sophia-Antipolis, 2004. http://tel.archives-ouvertes.fr/tel-00441405.
Повний текст джерелаBerbiche, Amine. "Propagation d'ondes acoustiques dans les milieux poreux fractals." Thesis, Aix-Marseille, 2016. http://www.theses.fr/2016AIXM4758.
Повний текст джерелаThe action integral minimization method (variational principle) provides the wave propagation equations. This method has been generalized to fractal dimensional porous media to study the acoustic propagation in the time domain, based on the equivalent fluid model. The resulting equation rewritten in the frequency domain represents a generalization for the Helmholtz equation. As part of the Allard-Johnson model, the propagation equation was solved analytically in the time domain, for both high and low frequencies fields. The resolution was made by the method of the Laplace transform, and focused on a semi-infinite porous medium. It was found that the wave velocity depends on the fractal dimension.For a fractal porous material of finite thickness which receives an acoustic wave at normal incidence, the Euler conditions were used to determine the reflected and transmitted fields. The resolution of the direct problem was made in the time domain by the method of the Laplace transform, and through the use of the Mittag-Leffler functions. The inverse problem was solved by the method of minimizing the least squares sense. Tests have been performed successfully on experimental data; programs written from the formalism developed in this work have allowed finding the acoustic parameters of porous foams, in the fields of high and low frequencies
Perret, Olivier. "Strength and Stability of Cross-Laminated-Timber Walls at Short and Long Term." Thesis, Paris Est, 2017. http://www.theses.fr/2017PESC1246/document.
Повний текст джерелаThis PhD thesis addresses the issue of CLT wall buckling. These wooden panels, made of boards which are glued cross-wise, are more and more used in construction. The current trend of the market is to design high-rise buildings which raises the issue of the compressive strength of such walls. It turns out that wood is a highly anisotropic material. Especially, the shear stiffness and strength perpendicular to the grain (rolling shear) are much weaker than in the direction parallel to the grain. This high contrast requires more elaborate design criteria than classical tools used in timber engineering. This work is organized in two main parts. First, the equivalent rolling-shear behavior of a CLT layer is investigated. Bounds are established for the stiffness of an equivalent layer using a theoretical approach. These bounds are validated by means of a new experimental set-up which allows the measurement of the rolling shear stiffness with less variability than the classical single lap shear test. In the second part, this data is used in the buckling analysis of CLT walls with increasing refinements. First, the linear buckling load of a thick plate without imperfection is established. This load is based on a new higher-order plate theory and reveals that the critical load based on a thin plate theory (Kirchhoff-Love) cannot predict correctly the strength of CLT walls. Then, the influence of imperfections is introduced adapting the classical approach from Ayrton and Perry to the case of a Timoshenko beam. This extension reveals that a new design criterion has to be satisfied under buckling which is specific to CLT. Finally, this analysis is extended to long term loads assuming a simple creep law and leading to a new simple design criterion which may be easily introduced in current design codes
Sanghavi, Chaitanya. "FETI methods for acoustic problems with porous materials." Thesis, Le Mans, 2020. http://www.theses.fr/2020LEMA1021.
Повний текст джерелаSound absorbing materials such as foams are widelyused in many industrial and domestic applications toabsorb undesirable sound. One needs to perform many calculations to get desirable properties of thetreatment using optimization strategies.The state-of-the-art computational models requireprohibitively high computational time. Theproblematic of this PhD is to reduce thecomputational time for such models to speed updesign calculations.This document is a synthesis of the work carried outin this direction. The problem is addressed usingDomain Decompostion methods (DDM). It consists ofsplitting the original problem into small parts referredto as subdomains. A partial solution is computed onthese subdomains to match the global continuity inthe domain of interest. Different DDM methods are benchmarked in termsof performance and scalability , specific for porousmaterials. Any DDM consists of two major costs, thefactorization of the subdomains and iterative part forthe global convergence. A novel factorizationstrategy is implemented and applied in 2D and 3Dto demonstrate savings in time compared toconventional approaches. In the second part, themethod is further improved to reduce the iterativecosts for a series of calculations.A final workflow is proposed to make thecomputationa cost of these models afforable withinindustrial timeframes
Boulaud, Romain. "Etudes et modélisations du comportement d’un écran de filet pare-blocs à différentes échelles." Thesis, Paris Est, 2020. http://www.theses.fr/2020PESC2017.
Повний текст джерелаRockfall barriers are flexible structures that mitigate the risk of rockfall and thus protect people living in risk areas, as well as their property. These structures, placed on the trajectories of the moving blocks, are made of a steel net held on the natural ground by rigid posts. When they are impacted, they undergo large deformations that require modelling their behaviour by taking into account both geometric and material non-linearities. Their components are therefore represented in this work with discrete elements and the mechanical problem is thus solved with a calculation tool adapted to the large déformations problem. This algorithm is also used to assess the influence of different net modelling strategies, from the scientific literature, on the overall behaviour of a rokfall barrier. The conclusions of this study as well as experimental observations pave the way to new discrete modelling strategies, for which the net is represented by a limited number of degrees of freedom. The family of simplified models developed in this work makes it possible to simulate the behaviour of a structure with a low computation time costs, thus offering the opportunity of implementing complex parametric studies or probabilistic dimensioning methods
Lu, Fang. "Caractérisation et modélisation du comportement cyclique en fatigue uniaxiale/multiaxiale des composites à fibres courtes : Thermoplastiques (PA66) renforcés de fibres de verre." Thesis, Paris Sciences et Lettres (ComUE), 2019. http://www.theses.fr/2019PSLEM072.
Повний текст джерелаAimed at better understanding the mechanical behavior of short fiber reinforced thermoplastics (SFRP), our study focused on the characterization and modeling of the cyclic fatigue behavior of polyamide 6,6 reinforced by 30 wt% of short glassfibers (PA66GF30). From the experimental point of view, uniaxial/biaxial tension-tension fatigue tests and 3-point bending fatigue tests were carried out, in order to extend the fatigue lifetime criterion based on the restored strain energy and validated in uniaxialcase. The mechanical analyses of these tests show that, this criterion accounts not only for the effects of fiber orientation,temperature and water content, but also for the type of loading. From the numerical modeling point of view, the behavior of PA66GF30 in linear regime is modeled by the homogenization model of Mori-Tanaka and Advani-Tucker for the elastic case, and is modeled by the generalized Maxwell model extended to the anisotropic case for the viscoelastic case. In addition, the triple equivalence Time-Temperature-Humidity is introduced into the model. For nonlinear regime behavior, a damageable anisotropic visco-elasto-plastic phenomenology model is proposed to caracterize the cyclical fatigue behavior. The identified parameters of new anisotropic visco-elasto-plastic damage model are validated on these 3 types of specimen and the industrial structural parts. By applying the fatigue lifetime criterion via a post-processing, the mapping of energy and lifetime allows us to locate the fracture area and to estimate the lifetime of structural parts. A conservative factor lower than 5 for estimated lifetime shows the accuracy of prediction for these first validations. As a result, our study provided a fatigue design tool for the dimensioning of SFRPs, which makes it possible to optimize the geometry of the parts or their process-induced microstructure in relation to their stiffness and fatigue behavior
Nguyen, Kien Trung. "Etude expérimentale du comportement instable d'un sable silteux : application aux digues de protection." Thesis, Aix-Marseille, 2014. http://www.theses.fr/2014AIXM4709/document.
Повний текст джерелаThe constitutive materials of dikes are often silty sands whose mechanical behavior can become unstable at stress states located well under the Mohr-Coulomb plasticity limit criterion. This failure mechanism could explain several dike breaches whose occurrence has not been assigned to conventional mechanisms of dike failure such as internal erosion. The objective of this thesis is to better understand, with respect to the instability phenomenon, the mechanical behavior of a silty sand which is collected in the area adjacent of a breach of the Rhone embankment dike during the flood of 2003, by means of triaxial tests.The test results obtained on clean sand show that this material is very sensitive to the instability phenomenon. The occurrence of the latter can be predicted by an instability curve relating, at the onset of instability, the stress ratio to the state parameter. The analysis of these results suggests that a strong contractiveness of the material is the necessary condition for instability of loose sand and an appropriate direction of stress increment vector is the sufficient condition.The test results obtained on mixtures of sand with fines show that a removal of fine particles caused by an erosion, such as suffusion for example, favors the occurrence of instability in the dikes. Moreover, these results indicate that the equivalent void ratio is a relevant parameter in analyzing the behavior of silty sand. The calculation of the equivalent void ratio requires the determination of the parameter b for which a new formula has been proposed
Nguyen, Hoang Quan. "Modélisation et simulation du remplissage de moules verriers : "Prise en compte du transfert radiatif"." Thesis, Vandoeuvre-les-Nancy, INPL, 2009. http://www.theses.fr/2009INPL054N/document.
Повний текст джерелаThe aim of this study is to propose an adapted model for the simulation of mould filling that must be a compromise solution between computational time and results accuracy. The double difficulty is to take into account the filling phenomenon that is a complex problem due to the presence of free boundaries and to the Glass specificities: viscosity that is highly thermal dependant and high melting temperature that requires taking into account radiation effects. Chapter I is devoted to the melting Glass flow. The numerical libraries Aquilon/Thétis, adapted for solving such type of problems and the thermal coupling between Air/Glass/Walls, has been used. (V.O.F method for front tracking, Augmented Lagrangian/Vector Projection methods for solving Pressure/Velocity coupling). For radiative aspect, different approaches are proposed: equivalent radiative conductivity (Chapter II), direct explicit method for validation (Chapter III) and spherical harmonics method or PN method (Chapter IV). In the Chapter V, the selected PN method is validated through simple cases and is then applied in other cases with convective coupling in complex geometries including semi-transparent inclusions (1D, 2D and 3D, 2D axi-symmetric and non grey medium). A P1 modified version is presented. The results are close to those given by P3 method but with reduced computational time. The main interest of this model is that it can be easily implemented in existing numerical codes: a single stationary second order partial differential equation to solve in 3D
Champagne, Jonathan. "Modélisation physique du comportement mécanique linéaire et non-linéaire des élastomères renforcés." Thesis, Université Paris sciences et lettres, 2020. http://www.theses.fr/2020UPSLM043.
Повний текст джерелаThe addition of fillers into a polymer matrix, such as nano-silica into silicone rubbers, brings an outstanding enhancement in the mechanical properties (stiffness, hysteresis, ultimate strength,...). In return, many dependencies or nonlinearities appear in the mechanical behaviour which do not exist in the pure rubber. The relation between the microstructure and the macroscopic mechanical properties is not yet clearly understood.Thus, we start with the development of a stochastic model describing the linear mechanical response of filled rubbers. This model is based on the glassy bridges theory. The typical microstructure of the system is composed by a bridges lengths and orientations distribution, i.e. confined polymer chains between aggregates. The local mechanical response of a single bridge can be glassy or rubbery depending on the confinement degree, the temperature and the strain amplitude. The macroscopic mechanical properties of the distribution are calculated by the mean of a self-consistent homogenization. For all our materials, the bridges distribution has been identified based on the linear mechanical reinforcement measurements.The stochastic model also provides the physical origin of the pressure-temperature superposition highlighted on the stiffness. The temperature makes the glassy bridges disappear (softening) while the pressure creates new ones (hardening). The glassy bridges theory allows us to suggest a new pressure-temperature superposition law for filled elastomers.Then, we show that the theory is also capable, to a first approximation, to describe the nonlinear mechanical properties (Payne effect) of our samples. Finally, we implement the constitutive equations of a macroscopique behaviour into a finite element software. Although the thermodynamical framework is standard, the material parameters are given by responses surfaces which are identified based on the stochastic model
Marioni, Luca. "Modélisation numerique et couplage électromagnétique-CFD dans les procédés decoulée." Thesis, Paris Sciences et Lettres (ComUE), 2017. http://www.theses.fr/2017PSLEM011/document.
Повний текст джерелаMany of the processes used in thesteelmaking industry (e.g. ingot casting,continuous casting, …) can lead todefects: macro-segregation, poormicrostructure properties, surfacedefects. These issues can be solved bycontrolling the temperature and the flowof molten steel. Electromagnetic stirring(EMS) is a widely used technique to steerthe flow of liquid steel by thesuperimposition of an electro-magneticfield. This application is complex becauseit couples several physical problems:multi-phase flow, solidification, heattransfer and low frequency electromagneticinduction. In addition,experimental work is difficult because ofthe size, environment and cost of theconsidered processes. For thesereasons, efficient and effective numericalsimulations are needed to understandEMS applications and improve theaforementioned processes.The objective of this thesis is to developa robust, efficient and accurate numericalprocedure for the multi-physicssimulation of EMS, especially for in-moldstirring in the framework of continuouscasting of steel. This procedure has beenimplemented in the commercial codeTHERCAST® in order to be used forindustrial applications
Warneboldt, Iona. "Multiaxial fatigue design of elastomeric parts using Equivalent Fatigue Loads." Electronic Thesis or Diss., Brest, École nationale supérieure de techniques avancées Bretagne, 2022. http://www.theses.fr/2022ENTA0002.
Повний текст джерелаThis thesis introduces an Equivalent Fatigue Load (EFL) approach for the multiaxial fatigue design of elastomeric parts. As direct Finite Element Analysis (FEA) calculations of automotive in-service loads (Road Load Data (RLD)) are too expensive, the objective is to derive simplified load blocks as a realistic input for numerical damage calculations. Three streps are applied for this method: the localization method, the material damage function and the EFL determination process. Various fatigue tests have been conducted (415 samples) to study the fatigue behavior of this complex type of relaxing and non-relaxing multiaxial loading on natural rubber specimens. Lifetime and crack features are analyzed to eventually introduce an appropriate critical planebased fatigue measure and to establish a novel mean strain effect model. This criterion is generalized throughout an original critical plane search method. To estimate the local mechanical response (localization method), this thesis identifies an axes-coupling method that is fitted for the nonlinear nature of elastomeric structures. It is based on the multiplicative decomposition of the deformation gradient tensors. These two steps are then implemented in the framework of the EFLdetermination process. For this, a global optimization method is added to determine the simplified load blocks, causing locally the same fatigue behavior in the given structure. The computational costs of this optimization are reduced by only considering a subset of the most damaged material points for EFLdetermination. Finally, the method has been challenged on a specimen to outline its capabilities and to validate the approach