Статті в журналах з теми "Material Electrochemistry"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Material Electrochemistry.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Material Electrochemistry".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

McCreery, Richard, Adam Bergren, Amin Morteza-Najarian, Sayed Youssef Sayed, and Haijun Yan. "Electron transport in all-carbon molecular electronic devices." Faraday Discuss. 172 (2014): 9–25. http://dx.doi.org/10.1039/c4fd00172a.

Повний текст джерела
Анотація:
Carbon has always been an important electrode material for electrochemical applications, and the relatively recent development of carbon nanotubes and graphene as electrodes has significantly increased interest in the field. Carbon solids, both sp2 and sp3 hybridized, are unique in their combination of electronic conductivity and the ability to form strong bonds to a variety of other elements and molecules. The Faraday Discussion included broad concepts and applications of carbon materials in electrochemistry, including analysis, energy storage, materials science, and solid-state electronics. This introductory paper describes some of the special properties of carbon materials useful in electrochemistry, with particular illustrations in the realm of molecular electronics. The strong bond between sp2 conducting carbon and aromatic organic molecules enables not only strong electronic interactions across the interface between the two materials, but also provides sufficient stability for practical applications. The last section of the paper discusses several factors which affect the electron transfer kinetics at highly ordered pyrolytic graphite, some of which are currently controversial. These issues bear on the general question of how the structure and electronic properties of the carbon electrode material control its utility in electrochemistry and electron transport, which are the core principles of electrochemistry using carbon electrodes.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ambrosi, Adriano, and Martin Pumera. "Exfoliation of layered materials using electrochemistry." Chemical Society Reviews 47, no. 19 (2018): 7213–24. http://dx.doi.org/10.1039/c7cs00811b.

Повний текст джерела
Анотація:
There is a tremendous interest towards 2D layered materials. Electrochemically-assisted exfoliation of bulk crystals represents one of the most promising methods of large production of graphene and other 2D material sheets.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Xiang, Qian. "Research on Rechargeable Lithium Manganese Battery Material Electrochemical Roasting Performance Analysis." Advanced Materials Research 455-456 (January 2012): 889–94. http://dx.doi.org/10.4028/www.scientific.net/amr.455-456.889.

Повний текст джерела
Анотація:
As anode material of battery, manganese dioxide has been widely used in zinc-manganese and lithium–manganese primary battery. To meet new electrical products’ requirements on high-performance battery, research on rechargeable lithium manganese button batteries with extensive operating temperature, superior-performance comprehensive electrochemistry and low cost has drawn attention from more and more researchers. This article has analyzed physical and chemical properties of lithium manganese composite oxides synthetic material, assembled lithium button batteries by synthetic sample and lithium aluminum alloy and discussed its electrochemistry performance, based on confirmed material proportioning, discussed the influence of roasting condition on synthetic material performance from physical & chemical properties and electrochemistry properties, and confirmed best roasting temperature and roasting time.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Su, Wei, Yu Chun Li, Fei Yu, Guo Hua Lu, Yuan Chen, Qun Hui Meng, and Wei Xia Wang. "Electrochemical Research on Cl- which Destroys the Surface Passivation Film of T23 in Supercritical Water Tubes." Advanced Materials Research 413 (December 2011): 383–90. http://dx.doi.org/10.4028/www.scientific.net/amr.413.383.

Повний текст джерела
Анотація:
This article with the electrochemistry workstation, electrochemical noise, SEM, X-ray diffraction and atomic absorption spectrophotometer (AAS) has studied the corrosion behavior of Cl- which destroys the surface passivation film of T23 materials in supercritical water tubes. According to the experimental results and analysis, it can be concluded as followed: material was immersed in passivation solution for 7200S electrochemistry noise (ECN) testing, after 6000S, the potential and current tended to be stable. To unify ECN, Tafel curve and electrochemical impedance spectroscopy (EIS), it was considered that the material surface had formed passivation film. But the first 1500S noise potential and current fell rapidly in the 7200S erosion process, Tafel curve passivation area and EIS second arc disappeared, the potential and current was stable after 1500S. So the passivation film of material surface was destroyed, and Fe3O4 product gradually formed on the surface, finally the material corrosion entered into stable state.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Tang, Yuxin, Yanyan Zhang, Wenlong Li, Bing Ma, and Xiaodong Chen. "Rational material design for ultrafast rechargeable lithium-ion batteries." Chemical Society Reviews 44, no. 17 (2015): 5926–40. http://dx.doi.org/10.1039/c4cs00442f.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Bao, Bin, Boris Rivkin, Farzin Akbar, Dmitriy D. Karnaushenko, Vineeth Kumar Bandari, Laura Teuerle, Christian Becker, Stefan Baunack, Daniil Karnaushenko, and Oliver G. Schmidt. "Digital Electrochemistry for On‐Chip Heterogeneous Material Integration." Advanced Materials 33, no. 26 (May 24, 2021): 2101272. http://dx.doi.org/10.1002/adma.202101272.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kapałka, Agnieszka, György Fóti, and Christos Comninellis. "The importance of electrode material in environmental electrochemistry." Electrochimica Acta 54, no. 7 (February 2009): 2018–23. http://dx.doi.org/10.1016/j.electacta.2008.06.045.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bao, Bin, Boris Rivkin, Farzin Akbar, Dmitriy D. Karnaushenko, Vineeth Kumar Bandari, Laura Teuerle, Christian Becker, Stefan Baunack, Daniil Karnaushenko, and Oliver G. Schmidt. "Digital Electrochemistry: Digital Electrochemistry for On‐Chip Heterogeneous Material Integration (Adv. Mater. 26/2021)." Advanced Materials 33, no. 26 (July 2021): 2170204. http://dx.doi.org/10.1002/adma.202170204.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Sun, Gang, Chenxiao Jia, Shuanlong Di, Jianning Zhang, Qinghua Du, and Xiujuan Qin. "The Effect of Thermal Treatment Temperature and Duration on Electrochemistry Performance of LiNi1/3Co1/3Mn1/3O2 Cathode Materials for Lithium-ion Batteries." Current Nanoscience 14, no. 5 (July 23, 2018): 440–47. http://dx.doi.org/10.2174/1573413714666180320145227.

Повний текст джерела
Анотація:
Background: LiNi1/3Mn1/3Co1/3O2 derived from the solid-state method suffers from the problem of significant irreversible charge-discharge behavior. To improve the electrochemical performance of LiNi1/3Mn1/3Co1/3O2, there are several important factors, such as starting raw materials, precursor, preparation method and conditions. In this work, the layered LiNi1/3Mn1/3 Co1/3O2 material was prepared by solid-state reaction. By varying the temperature and duration of synthesis thermal treatment, the greater crystallinity and well-ordered layered LiNi1/3Mn1/3Co1/3O2 cathode material has been successfully synthesized. The structural properties, morphology and electrochemical properties of LiNi1/3Mn1/3Co1/3O2 powders have been investigated in detail. Methods: LiNi1/3Co1/3Mn1/3O2 cathode material was synthesized via a high-temperature solid-state method. Stoichiometric amounts of Ni(CH3COO)2•4H2O, Co(CH3COO)2•4H2O, Mn(CH3COO)2• 4H2O, and Li2CO3 as raw materials were homogenized mixed in a ball mill for 8 h at 240 rpm. By varying the temperature and duration of synthesis thermal treatment, LiNi1/3Co1/3Mn1/3O2 cathode materials with different electrochemistry performance were achieved. (a) The effect of the temperature of synthesis thermal treatment on electrochemistry performance of LiNi1/3Co1/3Mn1/3O2 was explored by calcining the above mixed powder at 800°C, 850°C, 900°C, 950°C, and 1000°C for 12 h in air at a rate of 5°C min-1. Then the target product was prepared at last. The obtained compound was named as N-800, N-850, N-900, N-950 and N-1000, respectively. (b) In order to explore the effect of the duration of synthesis thermal treatment on electrochemistry performance of LiNi1/3 Co1/3Mn1/3O2 cathode material, the above mixed raw materials were calcined at 900°C for 4 h, 8 h, 12 h, 16 h and 20 h in air at a rate of 5°C min-1. The obtained compound was named as N-4, N-8, N- 12, N-16 and N-20, respectively. The N-900 and N-12 are the same sample. Results: The cathode material sintered at 900°C for 12 h revealed the best electrochemical performance, with high-capacity and recyclability compared with other materials. Its initial discharge capacity attains 182.4 mAh g-1 at 0.2 C in the voltage range of 2.5-4.6 V, which can be attributed to its greater crystallinity and well-ordered layered structure. Compared with other studies on lithium-ion batteries given in literature, this work provides a sample, optimal and mild synthetic conditions to synthesize the cathode materials with great electrochemistry performance. Conclusion: A greater crystallinity and well-ordered layered LiNi1/3Mn1/3Co1/3O2 powders had been successfully synthesized by mixing raw materials under various temperatures and duration of synthesis thermal treatment. The XRD results indicated the I(003)/I(104) values of N-900 (N-12) is 1.591 larger than 1.2, which illustrates no undesirable cation mixing to be occurred. In this work, from the results of electrochemical property experiments, it can be indicated that the optimal synthesized conditions are 900°C for 12 h. When the calcination temperature is too low and the calcined time is too short, the material is poorly crystalline and has a poor layer structure. When the calcination temperature is too high and the calcined time is too long, lithium salt is evaporated completely during the calcination process resulting in a poor electrochemistry performance.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

HIGUCHI, Takeshi, Daiki MURAKAMI, Hidetoshi NISHIYAMA, Mitsuo SUGA, Atsushi TAKAHARA, and Hiroshi JINNAI. "Nanometer-scale Real-space Observation and Material Processing for Polymer Materials under Atmospheric Pressure: Application of Atmospheric Scanning Electron Microscopy." Electrochemistry 82, no. 5 (2014): 359–63. http://dx.doi.org/10.5796/electrochemistry.82.359.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Sari, Dwivelia Aftika. "Penerapan Pembelajaran Berbasis Inquiry pada Materi Elektrokimia terhadap Pemahaman Konseptual, Model Mental dan Sikap Siswa." Orbital: Jurnal Pendidikan Kimia 5, no. 2 (December 31, 2021): 137–50. http://dx.doi.org/10.19109/ojpk.v5i2.9178.

Повний текст джерела
Анотація:
The purpose of this article review is to know the effect of applying inquiry-based learning on electrochemistry material to conceptual understanding, mental model and student attitudes. Based on some articles that have been reviewed, it can be concluded that the application of inquiry-based learning can improve conceptual understanding, mental model and positive attitude of students on electrochemistry material. The 5E inquiry (Engagement, Exploration, Explanation, Elaboration, and Evaluation) can be combined with the galvanic cell kit model to improve students' understanding of electrochemistry at the submicroscopic (molecular) level. Inquiry-based learning can be applied in both laboratory activities and classroom learning processes. The students' understanding of chemistry will be intact if students are able to connect the three levels of chemical representation.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

MATSUI, Hideo, Keigo QTSUKI, Emi KUNIMITSU, Hideki KAJITA, Tetsuro KAWAHARA, and Masakuni YOSHIHARA. "Electronic Behavior of a Carbon Cluster/Neodymium Oxide Composite Material." Electrochemistry 73, no. 11 (November 5, 2005): 959–61. http://dx.doi.org/10.5796/electrochemistry.73.959.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Tan, Shu Fen, Kate Reidy, Serin Lee, Julian Klein, Nicholas Schneider, Hae Yeon Lee, and Frances Ross. "Graphene – A Promising Electrode Material in Liquid Cell Electrochemistry." Microscopy and Microanalysis 27, S1 (July 30, 2021): 46–48. http://dx.doi.org/10.1017/s1431927621000751.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Hümmelgen, Ivo A. "Organic electronic solid state device: electrochemistry of material preparation." Journal of Solid State Electrochemistry 21, no. 7 (June 6, 2017): 1977–85. http://dx.doi.org/10.1007/s10008-017-3657-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Brownson, Dale A. C., Lindsey J. Munro, Dimitrios K. Kampouris, and Craig E. Banks. "Electrochemistry of graphene: not such a beneficial electrode material?" RSC Advances 1, no. 6 (2011): 978. http://dx.doi.org/10.1039/c1ra00393c.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

SAKAGUCHI, Hiroki, Yasutaka NAGAO, and Takao ESAKA. "Mechanically Lithiated SnO as an Anode Material for Secondary Battery." Electrochemistry 74, no. 6 (2006): 463–66. http://dx.doi.org/10.5796/electrochemistry.74.463.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Paunović, Perica. "Environmental electrochemistry – importance and fields of application." Macedonian Journal of Chemistry and Chemical Engineering 30, no. 1 (June 15, 2011): 67. http://dx.doi.org/10.20450/mjcce.2011.71.

Повний текст джерела
Анотація:
The main goal of this paper is to present environmental electrochemistry as a very important field of environmental engineering which deals with protection and remediation of the Earth’s resources. The existing Earth’s environmental status as affected by a number of anthropogenic deteriorations is presented. Environmental electrochemistry has great potential to contribute to i) pollution detection, ii) remediation of polluted air, water and soils, iii) recycling of metals (saving of material resources) and alternative sources of energy (hydrogen economy).
Стилі APA, Harvard, Vancouver, ISO та ін.
18

ITO, Atsushi, Yuichi SATO, Takashi SANADA, Tsukuru OHWAKI, Masaharu HATANO, Hideaki HORIE, and Yasuhiko OHSAWA. "Local Structure of Li-rich Layered Cathode Material Li[Ni0.17Li0.2Co0.07Mn0.56]O2." Electrochemistry 78, no. 5 (2010): 380–83. http://dx.doi.org/10.5796/electrochemistry.78.380.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

KUBOTA, Kei, Kazuki YOKOH, Naoaki YABUUCHI, and Shinichi KOMABA. "Na2CoPO4F as a High-voltage Electrode Material for Na-ion Batteries." Electrochemistry 82, no. 10 (2014): 909–11. http://dx.doi.org/10.5796/electrochemistry.82.909.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

MAEDA, Mariko, Akifusa HAGIWARA, Hiroko SOTOUCHI, Hidetaka SATO, Xing-zhe ZHAO, Shigeru MORIKAWA, and Osamu KATO. "The Effect of the Graphitization Degree of Carbon Material on Corrosion Rate." Electrochemistry 67, no. 2 (February 5, 1999): 155–59. http://dx.doi.org/10.5796/electrochemistry.67.155.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Zahroh, Fathimatuz. "PENGARUH MODEL PEMBELAJARAN PROJECT BASED LEARNING TERHADAP KEMAMPUAN BERPIKIR KRITIS SISWA PADA MATERI ELEKTROKIMIA." Phenomenon : Jurnal Pendidikan MIPA 10, no. 2 (December 20, 2020): 191. http://dx.doi.org/10.21580/phen.2020.10.2.4283.

Повний текст джерела
Анотація:
<em>Project Based Learning is a learning model that need collaboration from group member in each stage, so that students can develop their critical thinking skills. The aim of this study is to determine the effect of PjBL to students’ critical thinking skills on electrochemistry material. The research design used true experimental design with pretest-posttest control group design and sampling technique is cluster random sampling. The data collection techniques used pretest-posttest to understand 10 critical thinking indicators, observation sheet used to understand students’ project activities and questionnaire to know students’s responses. Data Analysis techniques that used in this study are average difference test, significant test, product moment correlation test, coefficient of determination test. Analysis of product moment correlation value is 0,67 for students’ critical thinking skill with significant test result is 7,10 indicate the significant effect of PjBL to students’ critical thingking skills on electrochemistry material. The effect of PjBL to students’ critical thinking skills pointed by coefficient of determination 44,89%. Based on the results of the study, it was conclude that PjBL had positive effects on students’ critical thinking skills on electrochemistry material.</em>
Стилі APA, Harvard, Vancouver, ISO та ін.
22

ZHANG, Xiaoxue, Yunfeng ZHAN, Fangyan XIE, Weihong ZHANG, Jian CHEN, Weiguang XIE, Wenjie MAI, and Hui MENG. "SnS2 Urchins as Anode Material for Lithium-ion Battery." Electrochemistry 84, no. 6 (2016): 420–26. http://dx.doi.org/10.5796/electrochemistry.84.420.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

WOO, Sang-Wook, Kaoru DOKKO, Hiroyuki NAKANO, and Kiyoshi KANAMURA. "Bimodal Porous Carbon as a Negative Electrode Material for Lithium-Ion Capacitors." Electrochemistry 75, no. 8 (2007): 635–40. http://dx.doi.org/10.5796/electrochemistry.75.635.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

MOON, Jin-Hee, Hirokazu MUNAKATA, Koichi KAJIHARA, and Kiyoshi KANAMURA. "Hydrothermal Synthesis of Manganese Dioxide Nanoparticles as Cathode Material for Rechargeable Batteries." Electrochemistry 81, no. 1 (2013): 2–6. http://dx.doi.org/10.5796/electrochemistry.81.2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Shida, Naoki, Yaqian Zhou, and Shinsuke Inagi. "Bipolar Electrochemistry: A Powerful Tool for Electrifying Functional Material Synthesis." Accounts of Chemical Research 52, no. 9 (August 22, 2019): 2598–608. http://dx.doi.org/10.1021/acs.accounts.9b00337.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Vickers, Jonathan A., Brian M. Dressen, Melissa C. Weston, Kanokporn Boonsong, Orawan Chailapakul, Donald M. Cropek, and Charles S. Henry. "Thermoset polyester as an alternative material for microchip electrophoresis/electrochemistry." ELECTROPHORESIS 28, no. 7 (April 2007): 1123–29. http://dx.doi.org/10.1002/elps.200600445.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Li, Qi, Guangshe Li, Chaochao Fu, Dong Luo, Jianming Fan, Dongjiu Xie, and Liping Li. "Balancing stability and specific energy in Li-rich cathodes for lithium ion batteries: a case study of a novel Li–Mn–Ni–Co oxide." Journal of Materials Chemistry A 3, no. 19 (2015): 10592–602. http://dx.doi.org/10.1039/c5ta00929d.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Estudillo-Wong, Luis Alberto, Claudia Guerrero-Barajas, Jorge Vázquez-Arenas, and Nicolas Alonso-Vante. "Revisiting Current Trends in Electrode Assembly and Characterization Methodologies for Biofilm Applications." Surfaces 6, no. 1 (January 18, 2023): 2–28. http://dx.doi.org/10.3390/surfaces6010002.

Повний текст джерела
Анотація:
Microbial fuel cell (MFC) is a sustainable technology resulting from the synergism between biotechnology and electrochemistry, exploiting diverse fundamental aspects for the development of numerous applications, including wastewater treatment and energy production. Nevertheless, these devices currently present several limitations and operational restrictions associated with their performance, efficiency, durability, cost, and competitiveness against other technologies. Accordingly, the synthesis of nD nanomaterials (n = 0, 1, 2, and 3) of particular interest in MFCs, methods of assembling a biofilm-based electrode material, in situ and ex situ physicochemical characterizations, electrochemistry of materials, and phenomena controlling electron transfer mechanisms are critically revisited in order to identify the steps that determine the rate of electron transfer, while exploiting novel materials that enhance the interaction that arises between microorganisms and electrodes. This is expected to pave the way for the consolidation of this technology on a large scale to access untapped markets.
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Ladeesh, VG, and R. Manu. "Grinding-aided electrochemical discharge drilling in the light of electrochemistry." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 233, no. 6 (June 6, 2018): 1896–909. http://dx.doi.org/10.1177/0954406218780129.

Повний текст джерела
Анотація:
The electrically non-conductive materials like glass, ceramics, quartz, etc. are of great interest for many applications in modern industries. Machining them with high quality and at a faster rate is a challenging task. In this study, a novel technique called grinding aided electrochemical discharge drilling (G-ECDD) is demonstrated which uses a hollow diamond core drill as the tool for performing electrochemical discharge machining of borosilicate glass. The new hybrid technique enhances the material removal rate and machining accuracy to several folds by combining the thermal melting action of discharges and grinding action of the abrasive tool. This paper presents the experimental investigation on the material removal rate during G-ECDD of glass while using different electrolytes. An attempt has been made to explore the influence of electrolyte temperature on G-ECDD performance by maintaining the electrolyte at different temperatures. Experiments were conducted using three different electrolytes which include NaOH, KOH, and the mixture of both. The results obtained from this study revealed that an increase in temperature will favor chemical etching as well as electrochemical reaction rate. Also, it was observed that heating the electrolyte leads to an increase in the bubble density and enhances the ion mobility. This causes the formation of gas film at a faster rate and thereby improving the discharge activity. Thus, machining will be done at a faster rate. Better results are obtained while using a mixture of NaOH and KOH. From the microscopic images of the machined surface, it was observed that material removal mechanism in G-ECDD is a combination of grinding action, electrochemical discharges, and chemical etching. Response surface methodology was adopted for studying the influence of process parameters on the performance of G-ECDD. The new technique of grinding aided electrochemical discharge drilling proved its potential to machine borosilicate glass and simultaneously offers good material removal rate, repeatability, and accuracy.
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Irfan, Muhammad, Izhar Ullah Khan, Jiao Wang, Yang Li, and Xianhua Liu. "3D porous nanostructured Ni3N–Co3N as a robust electrode material for glucose fuel cell." RSC Advances 10, no. 11 (2020): 6444–51. http://dx.doi.org/10.1039/c9ra08812a.

Повний текст джерела
Анотація:
Metal nitrides are broadly applicable in the field of electrochemistry due to their excellent electrical properties. 3D nanostructured Ni3N–Co3N catalyst was prepared and tested as anode catalyst for a glucose fuel cell.
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Kharlamova, Marianna V., and Christian Kramberger. "Electrochemistry of Carbon Materials: Progress in Raman Spectroscopy, Optical Absorption Spectroscopy, and Applications." Nanomaterials 13, no. 4 (February 6, 2023): 640. http://dx.doi.org/10.3390/nano13040640.

Повний текст джерела
Анотація:
This paper is dedicated to the discussion of applications of carbon material in electrochemistry. The paper starts with a general discussion on electrochemical doping. Then, investigations by spectroelectrochemistry are discussed. The Raman spectroscopy experiments in different electrolyte solutions are considered. This includes aqueous solutions and acetonitrile and ionic fluids. The investigation of carbon nanotubes on different substrates is considered. The optical absorption experiments in different electrolyte solutions and substrate materials are discussed. The chemical functionalization of carbon nanotubes is considered. Finally, the application of carbon materials and chemically functionalized carbon nanotubes in batteries, supercapacitors, sensors, and nanoelectronic devices is presented.
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Widodo, Wiwik. "DEVELOPMENT OF INTEGRATED ELECTROCHEMISTRY TEACHING MATERIAL BASED CONTEXTUAL FOR VOCATIONAL HIGH SCHOOL IN MACHINE ENGINEERING DEPARTEMENT." Jurnal Pena Sains 4, no. 2 (October 29, 2017): 80. http://dx.doi.org/10.21107/jps.v4i2.3262.

Повний текст джерела
Анотація:
<p><em>The chemistry teaching at Vocational High School which tends to be theoretical and not directly connected to vocational lesson has caused students to have low interest, low motivation, and low achievement. The problem is becoming more complex due to limited time allotment and limited teaching materials. One of the efforts to solve the problem is by providing the relevant teaching material using contextual learning approach. The aims of this Research and Development (R&amp;D) research are: (1) to produce an appropriate chemistry teaching material on electrochemistry integrated with skill program subjects using Contextual approach for Vocational High School students of Machinery Engineering Department; (2) to know the feasibility of development result of teaching material. The development of the teaching material uses 4D developmental model from Thiagarajan et al consisting of four phases namely Define, Design, Develop, and Desiminate. The dominate phase was not done. The scores of evaluation of the feasibility or the appropriateness of the product from the content expert are 88.75% (very feasible) for the teachers’ book and 91.25% (very feasible) for the students’ book. The expert on media gave 89.25% (very feasible) for the teachers’ book and 89.9% (very feasible) for the students’ book. The result of readability test shows that the teachers’ book is feasible (83.81%) and the students’ book is very feasible (93.61%).</em></p><p><em><strong>Keywords:<em> </em>Teaching material on electrochemistry, Machinery Engineering Department of Vocational High School, Contextual Approach</strong></em></p>
Стилі APA, Harvard, Vancouver, ISO та ін.
33

OKUMURA, Toyoki, Tomonari TAKEUCHI, and Hironori KOBAYASHI. "Application of LiCoPO4 Positive Electrode Material in All-Solid-State Lithium-Ion Battery." Electrochemistry 82, no. 10 (2014): 906–8. http://dx.doi.org/10.5796/electrochemistry.82.906.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

KUWABATA, Susumu, Tsukasa TORIMOTO, Akihito IMANISHI, and Tetsuya TSUDA. "Introduction of Ionic Liquid to Vacuum Conditions for Development of Material Productions and Analyses." Electrochemistry 80, no. 7 (2012): 498–503. http://dx.doi.org/10.5796/electrochemistry.80.498.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

KATO, Hisashi, Fumitada IGUCHI, and Hiroo YUGAMI. "Compatibility and Performance of La0.675Sr0.325Sc0.99Al0.01O3 Perovskite-type Oxide as an Electrolyte Material for SOFCs." Electrochemistry 82, no. 10 (2014): 845–50. http://dx.doi.org/10.5796/electrochemistry.82.845.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Wu, Yu Shiang. "Characteristic Improvement of Carbon Coating by Furan Resin on Natural Graphite as Anode for Lithium Ion Batteries." Advanced Materials Research 581-582 (October 2012): 768–72. http://dx.doi.org/10.4028/www.scientific.net/amr.581-582.768.

Повний текст джерела
Анотація:
Natural graphite and carbonaceous materials are the most promising materials as the anode for lithium ion batteries. Carbon coating on natural graphite can inhibit the insertion of lithium complex into graphite and reduce its irreversibility. This study verifies that furan resin can be used as a carbon-coating material to enhance the electrochemistry of the charging and discharging cycles. Furan resin changes into amorphous carbon after heat treatment at 1100°C. It is determined that the 40 wt.% furan resin/natural graphite combination material clearly improves the electrochemical properties by electrical cycling tests. The surface properties have been investigated by Raman spectroscopy profiles and the bulk analyzed by X-ray diffraction (XRD) measurements.
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Jiang, Meng. "High Voltage Study of Li-Excess Material as a Cathode Material for Li-Ion Batteries." Electrochemical Society Interface 17, no. 4 (December 1, 2008): 70–71. http://dx.doi.org/10.1149/2.f10084if.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Kunjuzwa, Niki, Mesfin A. Kebede, Kenneth I. Ozoemena, and Mkhulu K. Mathe. "Stable nickel-substituted spinel cathode material (LiMn1.9Ni0.1O4) for lithium-ion batteries obtained by using a low temperature aqueous reduction technique." RSC Advances 6, no. 113 (2016): 111882–88. http://dx.doi.org/10.1039/c6ra23052k.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

McWilliams, Steven, Connor D. Flynn, Jennifer McWilliams, Donna C. Arnold, Ruri Agung Wahyuono, Andreas Undisz, Markus Rettenmayr, and Anna Ignaszak. "Nanostructured Cu2O Synthesized via Bipolar Electrochemistry." Nanomaterials 9, no. 12 (December 15, 2019): 1781. http://dx.doi.org/10.3390/nano9121781.

Повний текст джерела
Анотація:
Cuprous oxide (Cu2O) was synthesized for the first time via an open bipolar electrochemistry (BPE) approach and characterized in parallel with the commercially available material. As compared to the reference, Cu2O formed through a BPE reaction demonstrated a decrease in particle size; an increase in photocurrent; more efficient light scavenging; and structure-correlated changes in the flat band potential and charge carrier concentration. More importantly, as-synthesized oxides were all phase-pure, defect-free, and had an average crystallite size of 20 nm. Ultimately, this study demonstrates the impact of reaction conditions (e.g., applied potential, reaction time) on structure, morphology, surface chemistry, and photo-electrochemical activity of semiconducting oxides, and at the same time, the ability to maintain a green synthetic protocol and potentially create a scalable product. In the proposed BPE synthesis, we introduced a common food supplement (potassium gluconate) as a reducing and complexing agent, and as an electrolyte, allowing us to replace the more harmful reactants that are conventionally used in Cu2O production. In addition, in the BPE process very corrosive reactants, such as hydroxides and metal precursors (required for synthesis of oxides), are generated in situ in stoichiometric quantity, providing an alternative methodology to generate various nanostructured materials in high yields under mild conditions.
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Xue, Ming-Zhe, and Zheng-Wen Fu. "Lithium electrochemistry of NiSe2: A new kind of storage energy material." Electrochemistry Communications 8, no. 12 (December 2006): 1855–62. http://dx.doi.org/10.1016/j.elecom.2006.08.025.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

ONOZAWA-KOMATSUZAKI, Nobuko, Takashi FUNAKI, Takurou N. MURAKAMI, Said KAZAOUI, Masayuki CHIKAMATSU, and Kazuhiro SAYAMA. "Novel Cobalt Complexes as a Dopant for Hole-transporting Material in Perovskite Solar Cells." Electrochemistry 85, no. 5 (2017): 226–30. http://dx.doi.org/10.5796/electrochemistry.85.226.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

GOCHEVA, Irina D., Shigeto OKADA, and Jun-ichi YAMAKI. "Electrochemical Properties of Trirutile-type Li2TiF6 as Cathode Active Material in Li-ion Batteries." Electrochemistry 78, no. 5 (2010): 471–74. http://dx.doi.org/10.5796/electrochemistry.78.471.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

UCHIDA, Satoshi, Masaki YAMAGATA, and Masashi ISHIKAWA. "Improvement of Synthesis Method for LiFePO4/C Cathode Material by High-Frequency Induction Heating." Electrochemistry 80, no. 10 (2012): 825–28. http://dx.doi.org/10.5796/electrochemistry.80.825.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

KITAJOU, Ayuko, Eiji KOBAYASHI, and Shigeto OKADA. "Electrochemical Performance of a Novel Cathode material “LiFeOF” for Li-ion Batteries." Electrochemistry 83, no. 10 (2015): 885–88. http://dx.doi.org/10.5796/electrochemistry.83.885.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

PADILLA, J., V. SESHADRI, G. SOTZING, and T. OTERO. "Maximum contrast from an electrochromic material." Electrochemistry Communications 9, no. 8 (August 2007): 1931–35. http://dx.doi.org/10.1016/j.elecom.2007.05.004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Lau, Hang Kuen. "Battery Materials Characterization Workflow for Effective Battery Electrode Manufacturing Processes." ECS Meeting Abstracts MA2022-02, no. 6 (October 9, 2022): 590. http://dx.doi.org/10.1149/ma2022-026590mtgabs.

Повний текст джерела
Анотація:
A lithium-ion battery’s performance characteristics demand the highest performing materials in the anode, cathode, electrolyte, and separator. Materials characterization is an essential set of analytical techniques for ensuring optimal battery performance during the stages of material selection, development, and manufacturing. Key material characterization technologies for ensuring that batteries achieve their performance characteristics include thermal analysis, rheology, mechanical analysis and isothermal microcalorimetry. Thermal analysis provides insights into material thermal stability and structure change under different temperature ranges. Rheology provides insights into battery slurry storage, mixing, coating, and drying for more uniform and defect free electrode manufacturing. Mechanical testing provides insights into structure-property relationship such as verifying whether the polymer material in a separator will shut down safely without melting. Isothermal microcalorimetry allows researchers to study the electrochemistry of a working battery cell by enabling direct heat flow measurements that provide insights into battery lifetime. This presentation will focus on the electrode manufacturing with thermal analysis and rheology characterization to highlight how advanced material characterization can help battery researchers, developers, and production specialists develop better analytical material characterization and quality control procedures.
Стилі APA, Harvard, Vancouver, ISO та ін.
47

OSAKA, Tetsuya, Toshiyuki MOMMA, Satoru KOMODA, Nobuhiro SHIRAISHI, Susumu KIKUYAMA, and Kohji YUASA. "Electrochemical Properties of Chloranilic Acid and its Application to the Anode Material of Alkaline Secondary Batteries." Electrochemistry 67, no. 3 (March 5, 1999): 238–42. http://dx.doi.org/10.5796/electrochemistry.67.238.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

INAMASU, Tokuo, Daisuke YOSHITOKU, Hiroyuki TANI, and Noboru ONO. "Synthesis and Property of AAEE as Cross-link Type New Cathode Active Material for Lithium Battery." Electrochemistry 71, no. 9 (September 5, 2003): 786–90. http://dx.doi.org/10.5796/electrochemistry.71.786.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Qiao, Yan, Shu-Juan Bao, and Chang Ming Li. "Electrocatalysis in microbial fuel cells—from electrode material to direct electrochemistry." Energy & Environmental Science 3, no. 5 (2010): 544. http://dx.doi.org/10.1039/b923503e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Doménech, Antonio, Eugenio Coronado, Nora Lardiés, Carlos Martí Gastaldo, María Teresa Doménech-Carbó, and Antonio Ribera. "Solid-state electrochemistry of LDH-supported polyaniline hybrid inorganic–organic material." Journal of Electroanalytical Chemistry 624, no. 1-2 (December 2008): 275–86. http://dx.doi.org/10.1016/j.jelechem.2008.09.021.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії