Добірка наукової літератури з теми "Mass absorption coefficients"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Mass absorption coefficients".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Mass absorption coefficients"
Buse, Ben, та Stuart Kearns. "Quantification of Olivine Using Fe Lα in Electron Probe Microanalysis (EPMA)". Microscopy and Microanalysis 24, № 1 (лютий 2018): 1–7. http://dx.doi.org/10.1017/s1431927618000041.
Повний текст джерелаBairlein, Katharina, and Oliver Hupe. "INFLUENCE OF NEW MASS ENERGY-ABSORPTION COEFFICIENTS FROM ICRU REPORT NO. 90 ON AIR KERMA TO DOSE EQUIVALENT CONVERSION COEFFICIENTS." Radiation Protection Dosimetry 185, no. 1 (December 6, 2018): 27–33. http://dx.doi.org/10.1093/rpd/ncy213.
Повний текст джерелаHitzenberger, Regina. "Absorption and mass absorption coefficients measured with the integrating plate method." Journal of Aerosol Science 20, no. 8 (January 1989): 1205–8. http://dx.doi.org/10.1016/0021-8502(89)90798-2.
Повний текст джерелаRickerby, David G., and Norbert Wächter. "Effective L-Series Mass Absorption Coefficients for EDS." Microchimica Acta 132, no. 2-4 (April 2000): 157–61. http://dx.doi.org/10.1007/s006040050057.
Повний текст джерелаSeltzer, Stephen M. "Calculation of Photon Mass Energy-Transfer and Mass Energy-Absorption Coefficients." Radiation Research 136, no. 2 (November 1993): 147. http://dx.doi.org/10.2307/3578607.
Повний текст джерелаMahmoud Aboelkheir, Ibrahim Mohamed. "Trends in an Absorption Column through Mass Transfer Coefficients." Cognizance Journal of Multidisciplinary Studies 2, no. 1 (January 30, 2022): 38–57. http://dx.doi.org/10.47760/cognizance.2022.v02i01.003.
Повний текст джерелаBabikian, D. S., D. K. Edwards, S. E. Karam, C. P. Wood, and G. S. Samuelsen. "Experimental mass absorption coefficients of soot in spray combustorflames." Journal of Thermophysics and Heat Transfer 4, no. 1 (January 1990): 8–15. http://dx.doi.org/10.2514/3.29157.
Повний текст джерелаChipera, Steve J., and David L. Bish. "Measurement of Mass Absorption Coefficients Using Compton-Scattered Cu Radiation in X-ray Diffraction Analysis." Advances in X-ray Analysis 34 (1990): 325–35. http://dx.doi.org/10.1154/s0376030800014634.
Повний текст джерелаAlkire, R. W. "Approximating the near-edge mass absorption coefficients for Ni using an ultra-thin bimetal foil." Journal of Applied Crystallography 50, no. 1 (February 1, 2017): 1–13. http://dx.doi.org/10.1107/s1600576716017544.
Повний текст джерелаGabitto, Jorge, and Costas Tsouris. "Determination of reactive mass transfer coefficients for CO2 absorption predictions." Separation Science and Technology 54, no. 13 (April 13, 2019): 2026–33. http://dx.doi.org/10.1080/01496395.2019.1603240.
Повний текст джерелаДисертації з теми "Mass absorption coefficients"
Miller, Jacob. "Modelling the Effect of Catalysis on Membrane Contactor Mass Transfer Coefficients for Carbon Dioxide Absorption Systems." University of Cincinnati / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1627662756315225.
Повний текст джерелаBenmakhlouf, Hamza. "Key Data for the Reference and Relative Dosimetry of Radiotherapy and Diagnostic and Interventional Radiology Beams." Doctoral thesis, Stockholms universitet, Fysikum, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-114413.
Повний текст джерелаAt the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 6: Manuscript.
Schweizer, Pia. "Analyse et quantification du lithium par le développement d'un dispositif innovant de spectrométrie et microanalyse X." Electronic Thesis or Diss., Sorbonne université, 2024. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2024SORUS207.pdf.
Повний текст джерелаQuantitative analysis of lithium is feasible today, but relies on the use of destructive techniques. Local non-destructive quantitative analysis remains challenging using traditional laboratory spectroscopic methods. The aim of this thesis is to develop an innovative device for lithium quantification using electron probe microanalysis. By implementing a periodic multilayer and ultra-thin separation windows into the spectrometer of a Castaing microprobe, spectroscopy in the extreme low photon energy range, including Li K measurement was possible. Despite the significant analytical challenges, mainly linked to the specificities of the instrumentation and to various physical phenomena such as low lithium fluorescence yield and strong absorption of the characteristic photons in the sample, quantitative results were obtained for different materials with lithium mass fractions ranging from 4 % to 9 % and detection limits lower than one percent. Two different quantification approaches based on measurement with real standards and Monte Carlo simulations to create virtual standards were employed. In addition, experimental measurement of photon attenuation coefficients in the ultra-soft X-ray range provided precision to existing databases for different elements, helping to improve the accuracy of results. Despite persistent challenges, this work paves the way for further advances in lithium quantification by electron probe microanalysis and represents an important first step towards future development of this technique
Nordmann, Stephan. "Light absorption of atmospheric soot particles over Central Europe." Doctoral thesis, Universitätsbibliothek Leipzig, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-109901.
Повний текст джерелаChery, Olivier. "Étude hydrodynamique et transfert de matière dans un contacteur gaz-liquide à film centrifuge dans le cadre de procédés de traitement d'effluents gazeux contenant du dioxyde de soufre et/ou des oxydes d'azote." Vandoeuvre-les-Nancy, INPL, 1994. http://docnum.univ-lorraine.fr/public/INPL_T_1994_CHERY_O.pdf.
Повний текст джерелаHou, Longfeng. "Etude numérique sur le modèle de coefficient d’absorption corrélé en multi spectral." Thesis, Lyon, INSA, 2015. http://www.theses.fr/2015ISAL0068.
Повний текст джерелаRadiative heat transfer of gas plays an important role in industrial applications such as in combustion chambers, atmospheric sciences, etc. Several models [11] have been proposed to estimate the radiative properties of gases. The most accurate one is the Line-By-Line (LBL) approach. However, this technique involves excessive computation cost which makes it inappropriate for most applications. Nevertheless, it remains the reference approach for the assessment of other approximate models. The Correlated k-distribution method (Ck) [11] was shown to be a relevant choice for many applications. This method performs usually well, when only small temperature gradients are involved [21]. However, if the gaseous medium is subject to large temperature gradients, it may lead to errors that can reach 50% in terms of radiative heat fluxes when compared to LBL simulations [21]. The aim of the present paper is to propose an enhanced version of the Ck method, called the Multi-Spectral Correlated k-distribution approach (MSCk). The main difference between Ck and MSCk models is that in the Ck approach spectral intervals over which the radiative properties of the gas are averaged are chosen contiguous whereas, in the MSCk technique, those intervals are built in order to ensure that the absorption coefficient are scaled over them [27]. Accordingly, the usual assumption of correlated spectrum used in k-distribution approaches for the treatment of non uniformities is more acceptable in the MSCk case than in the Ck one. The building of those spectral intervals (using Functional Data Clustering, [52]) is detailed and the approach is assessed against LBL reference data in several test cases. These cases involve H2O-N2 and H2O-CO2-N2 mixtures in the [300-3000K] temperature range. Results show that the MSCk method enables to achieve better accuracies than Ck methods while remaining acceptable in terms of computational cost
Derdar, Mawaheb M. Zarok. "Experimental and kinetic modelling of multicomponent gas/liquid ozone reactions in aqueous phase. Experimental investigation and Matlab modelling of the ozone mass transfer and multicomponent chemical reactions in a well agitatated semi-batch gas/liquid reactor." Thesis, University of Bradford, 2010. http://hdl.handle.net/10454/4872.
Повний текст джерелаMinistry of Higher Education in Libya and the Libyan Cultural Centre and Educational Bureau in London.
Derdar, Mawaheb M. Zarok. "Experimental and kinetic modelling of multicomponent gas/liquid ozone reactions in aqueous phase : experimental investigation and Matlab modelling of the ozone mass transfer and multicomponent chemical reactions in a well agitated semi-batch gas/liquid reactor." Thesis, University of Bradford, 2010. http://hdl.handle.net/10454/4872.
Повний текст джерелаMENDES, Marcus Vinícius Araújo da Silva. "Avaliação das propriedades de transporte de massa contendo adições minerais." Universidade Federal de Goiás, 2009. http://repositorio.bc.ufg.br/tede/handle/tde/1353.
Повний текст джерелаThe durability of reinforced concrete structures is damaged by the degrading action of the penetration of substances in the form of gases, vapors and liquids through the pores and cracks. It is known that water both in its pure form or containing dissolved ions such as chloride, sulphate, carbon dioxide or oxygen ions, can compromise the durability of concrete structures. In reinforced concrete structures at the marine environment, for example, the towers of wind power plants, this degradation can be more intense and accelerated. Thus, in the present study were analyzed concretes with different mineral additions (silica fume, blast furnace slag) and water / binder ratios (0.35, 0.45 and 0.55), with the objective to verify if the inside and cover thickness of concrete have some effect on the mechanisms of transport and also the effect of carbonation (only for concrete with w/b equal to 0.55) in the surface layer of concrete is important enough to make dificult the entry of aggressive agents in concrete. For this, the following tests to evaluate the mass transport in concrete were performed: capillary water absorption (NBR 9779:1995), water penetration under pressure (NBR 10787:1994), air permeability (method Figg), penetrability of chloride ion (ASTM C 1202: 2009), non-steadystate migration test (NT BUILD 492:1999). As a result, it was found that the mineral addition used generally provided an improvement in front of the concrete mechanisms of mass transport. In one of the properties, namely the diffusion coefficient (non-steady-state migration) of concrete with the use of silica fume and blast furnace slag, this has been reduced dramatically, around 11 times for the concrete with w/b equal to 0.55, when it is compared with concrete without mineral addition. It was observed that the inner region of concrete behaved better, in an unexpected way, than concrete cover region for some properties (capillary absorption, water penetration under pressure, penetration of chloride ions). From this conclusion, it can be said that the inner part of concrete is composed of transition zones (aggregated interface / mortar) exposed to facilitate the entry of fluids, gases and ions. About the effect of carbonation, this affected the capillary absorption and air permeability. The results led to explain that the clogging of the pores resulting from the product of carbonation (CaCO3), promoted the refinement of the pores, thus increasing capillary force and, consequently, increasing the capillary absorption. However, for air permeability this effect has damaged the passage of air through the surface layer. Finally, it is important noting that significant correlations were found among tests that evaluated the mechanisms of mass transport, namely, penetration of chloride ions and capillary absorption, diffusion coefficient (non-steady-state migration) and capillary absorption, permeability air and water penetration under pressure, penetration of chloride ions and the diffusion coefficient.
A durabilidade das estruturas de concreto armado é prejudicada pela ação deteriorante da penetração de substâncias na forma de gases, vapores e líquidos através de poros e fissuras. Sabe-se que a água, tanto no seu estado puro ou com íons dissolvidos, como os cloretos, sulfato, dióxido de carbono ou oxigênio, pode comprometer a durabilidade das estruturas de concreto. Em estruturas de concreto armado localizadas em ambiente marítimo como, por exemplo, as torres de energia eólica, essa deterioração pode ser mais intensa e acelerada. Diante disso, no presente trabalho foram analisados concretos com diferentes adições minerais (sílica ativa e escória de alto-forno) e relações água/aglomerante (0,35; 0,45 e 0,55), tendo como objetivo principal verificar se a parte interna e o cobrimento do concreto exercem algum efeito nos mecanismos de transporte e, se o efeito da carbonatação (somente para concretos de relação a/g igual a 0,55) na camada superficial do concreto é relevante a ponto de dificultar a entrada de agentes agressivos no concreto. Para isso, foram realizados os seguintes ensaios para avaliar o transporte de massa no concreto: absorção de água por capilaridade (NBR 9779:1995), penetração de água sob pressão (NBR 10787:1994), permeabilidade ao ar (método de Figg), penetrabilidade de cloretos (ASTM C 1202: 2009), ensaio de migração em regime não estacionário (NT BUILD 492:1999). Como resultado constatou-se que as adições minerais empregadas propiciaram de maneira geral uma melhoria dos concretos frente aos mecanismos de transporte de massa. Em uma das propriedades avaliadas, a saber, o coeficiente de difusão (migração regime não estacionário) dos concretos com o emprego de sílica ativa e escória de alto-forno, esse foi reduzido drasticamente, em torno de 11 vezes para os concretos com relação a/ag igual a 0,55, quando comparado com os concretos sem adição mineral. Quanto à região do concreto, notou-se para algumas propriedades (absorção capilar, penetração de água sob pressão, penetrabilidade de cloretos) que a região interna comportou-se melhor, de maneira inesperada, que a região do cobrimento. Diante dessa conclusão, criou-se uma hipótese para tal comportamento que consistiu em afirmar que a parte interna é composta por zonas de transição (interface agregado/pasta) expostas que facilitam a entrada de fluidos, gases e íons. Já com relação ao efeito da carbonatação, esta afetou a absorção capilar e a permeabilidade ao ar. Os resultados levaram a explicar que a colmatação dos poros, advindos do produto (CaCO3) da carbonatação promoveu o refinamento dos poros, aumentando, assim, a força capilar e, conseqüentemente, o aumento da absorção capilar. No entanto, para permeabilidade ao ar esse efeito dificultou a passagem de ar através da camada superficial. Por último, cabe destacar, que correlações importantes foram obtidas entre os ensaios que avaliaram os mecanismos de transporte de massa, a saber, penetrabilidade de cloretos e absorção capilar, coeficiente de difusão (migração regime não estacionário) e absorção capilar, permeabilidade ao ar e penetração de água sob pressão, penetrabilidade de cloreto e coeficiente de difusão.
Garcia, Fernandez Carlos. "Modeling Optical Properties of Combustion Soot emitted in the Troposphere." Thesis, Besançon, 2015. http://www.theses.fr/2015BESA2040/document.
Повний текст джерелаThis work concerns the modeling, at the molecular level, of the interaction between carbonaceous particles of nanometric size and the electromagnetic radiation. The goal is to improve our understanding of the optical properties of soot particles, to better quantify the influence of soot on the atmosphere and on climate change. The study of the interaction between radiation and fresh soot particles was carried out using the point dipole interaction method; it has been shown that: i) the mass absorption coefficient (MAC) of these soot nanoparticles may significantly depend on their atomistic details, especially between 200 and 350 nm; ii) the MAC depends on whether the heart of the carbonaceous particle is occupied or not by graphite planes; iii) an analytical model is not suitable for calculating the MAC of carbonaceous nanoparticles having structural defects. In addition, quantum chemical methods have been used to characterize the ageing of soot. The results obtained are i) NO, Cl, and HCl are physisorbed on a perfect carbonaceous surface whereas on a defective surface, these species are chemisorbed and lead to a modification of the surface; ii) on a carbonaceous surface, the presence of adsorbed Cl atoms leads to a strong trapping of the surrounding water molecules. This may be related to the highly hydrophilic nature of soot emitted during fires in industrial environments. Finally, the PDI method was applied to calculate the polarizability of PAHs to help at interpreting the absorption spectra of carbonaceous grains in the interstellar medium, including molecules for which no data was currently available
Книги з теми "Mass absorption coefficients"
Singh, Jag J. Low-energy gamma ray attenuation characteristics of aviation fuels. [Washington, D.C.]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Division, 1990.
Знайти повний текст джерелаSingh, Jag J. Low-energy gamma ray attenuation characteristics of aviation fuels. Hampton, Va: Langley Research Center, 1990.
Знайти повний текст джерелаSingh, Jag J. Low-energy gamma ray attenuation characteristics of aviation fuels. [Washington, D.C.]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Division, 1990.
Знайти повний текст джерелаSkiba, Grzegorz. Fizjologiczne, żywieniowe i genetyczne uwarunkowania właściwości kości rosnących świń. The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 2020. http://dx.doi.org/10.22358/mono_gs_2020.
Повний текст джерелаЧастини книг з теми "Mass absorption coefficients"
Chipera, Steve J., and David L. Bish. "Measurement of Mass Absorption Coefficients Using Compton-Scattered Cu Radiation in X-Ray Diffraction Analysis." In Advances in X-Ray Analysis, 325–35. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3744-1_36.
Повний текст джерелаWertz, David L., Charles B. Smithhart, and Stacey L. Wertz. "X-Ray Mass Absorption Coefficients: Measurements and Uses in the Quantitative Diffraction Analysis of Pyrite in Coals." In Advances in X-Ray Analysis, 475–83. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-9996-4_53.
Повний текст джерелаWillis, J. P. "Mass Absorption Coefficient Determination Using Compton Scattered Tube Radiation: Applications, Limitations and Pitfalls." In Advances in X-Ray Analysis, 243–61. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3744-1_27.
Повний текст джерелаBirks, L. S., and John Criss. "Mass Photoelectric Absorption Coefficients." In Practical Handbook of Spectroscopy, 701–78. Routledge, 2017. http://dx.doi.org/10.1201/9780203742433-44.
Повний текст джерелаKirk, John T. O. "The Relationship between the Inherent and the Apparent Optical Properties of Surface Waters and its Dependence on the Shape of the Volume Scattering Function." In Ocean Optics. Oxford University Press, 1994. http://dx.doi.org/10.1093/oso/9780195068436.003.0006.
Повний текст джерелаBentham Science Publisher, Bentham Science Publisher. "Mass Absorption Coefficient and Density of the Element." In Multifunctional Two- and Three-Dimensional Polycrystalline X-Ray Diffractometry, 150–51. BENTHAM SCIENCE PUBLISHERS, 2012. http://dx.doi.org/10.2174/978160805076511101010150.
Повний текст джерелаPeña, Rosaura, Lourdes Hurtado, Rubi Romero, and Reyna Natividad. "Absorption and reaction of CO2 in capillaries." In CIERMMI Women in Science Engineering and Technology TXV, 51–74. ECORFAN, 2021. http://dx.doi.org/10.35429/h.2021.6.51.74.
Повний текст джерела"Ss." In Biochemistry and Molecular biology, edited by Dr AD Smith, SP Datta, Dr G. H. Smith, P. N. Campbell, Dr R. Bentley, Dr HA McKenzie, Dr DA Bender, et al., 582–631. Oxford University PressOxford, 1997. http://dx.doi.org/10.1093/oso/9780198547686.003.0019.
Повний текст джерелаKhvorostyanov, Vitaly I., and Kenneth Sassen. "Microphysical Processes in Cirrus and Their Impact on Radiation: A Mesoscale Modeling Perspective." In Cirrus. Oxford University Press, 2002. http://dx.doi.org/10.1093/oso/9780195130720.003.0023.
Повний текст джерелаGómez-Hernández, Jesús, Alhi Kholghi, Mercedes de Vega, Javier Villa Briongos, and Ronan Grimes. "STUDYING CARBON DIOXIDE AND ACETONE MIXTURES IN A SINGLE-STAGE ABSORPTION-COMPRESSION CYCLE FOR HEATING AND COOLING APPLICATIONS." In Proceedings of the 7th International Seminar on ORC Power System (ORC 2023), 458–65. 2024th ed. Editorial Universidad de Sevilla, 2024. http://dx.doi.org/10.12795/9788447227457_75.
Повний текст джерелаТези доповідей конференцій з теми "Mass absorption coefficients"
Chakraborty, Debamitra, Bradley N. Mills, Jing Cheng, Ivan Komissarov, Scott Gerber, and Roman Sobolewski. "Terahertz Time-Domain Imaging for Radiotherapy Treatment Monitoring in Pancreatic Ductal Adenocarcinoma." In CLEO: Applications and Technology, ATh1B.4. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_at.2024.ath1b.4.
Повний текст джерелаKarunarathne, Sumudu S., Dag A. Eimer, and Lars Erik Øi. "Model uncertainty of interfacial area and mass transfer coefficients in absorption column packings." In The 58th Conference on Simulation and Modelling (SIMS 58) Reykjavik, Iceland, September 25th – 27th, 2017. Linköping University Electronic Press, 2017. http://dx.doi.org/10.3384/ecp17138144.
Повний текст джерелаBABIKIAN, D., D. EDWARDS, S. KARAM, C. WOOD, and G. SAMUELSEN. "Gravimetric and radiometric measurements of soot mass absorption coefficients in a spray combustor flame." In 26th Aerospace Sciences Meeting. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1988. http://dx.doi.org/10.2514/6.1988-539.
Повний текст джерелаGanapathy, Harish, Amir Shooshtari, Serguei Dessiatoun, Mohamed Alshehhi, and Michael M. Ohadi. "Experimental Investigation of Enhanced Absorption of Carbon Dioxide in Diethanolamine in a Microreactor." In ASME 2013 11th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/icnmm2013-73162.
Повний текст джерелаWang, Wei-zhi, Chun-guang Yang, and Jin-rui Zhang. "Volumetric Mass Transfer Coefficients of Dilute SO2 Absorption into Sodium Alkali Solution in Packed Column." In 2010 International Conference on Digital Manufacturing and Automation (ICDMA 2010). IEEE, 2010. http://dx.doi.org/10.1109/icdma.2010.299.
Повний текст джерелаEsfahany, Mohsen Nasr, and Elahe Fadaie. "EXPERIMENTAL INVESTIGATION OF THE CONVECTIVE MASS TRANSFER COEFFICIENTS FOR CO2 ABSORPTION IN Fe3O4/H2O NANOFLUIDS." In Proceedings of CONV-14: International Symposium on Convective Heat and Mass Transfer. June 8 - 13, 2014, Kusadasi, Turkey. Connecticut: Begellhouse, 2014. http://dx.doi.org/10.1615/ichmt.2014.intsympconvheatmasstransf.820.
Повний текст джерелаYang, Gang, and Changying Zhao. "Experimental Study of Wide-Range Spectral Radiation Properties of Air Plasma Sprayed Thermal Barrier Coatings." In ASME 2013 4th International Conference on Micro/Nanoscale Heat and Mass Transfer. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/mnhmt2013-22041.
Повний текст джерелаMore, Chaitali V., Rajkumar M. Lokhande, and Pravina P. Pawar. "Mass energy-absorption coefficients and average atomic energy-absorption cross-sections for amino acids in the energy range 0.122-1.330 MeV." In INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC 2015): Proceeding of International Conference on Condensed Matter and Applied Physics. Author(s), 2016. http://dx.doi.org/10.1063/1.4946214.
Повний текст джерелаGanapathy, Harish, Amir Shooshtari, Serguei Dessiatoun, Mohamed Alshehhi, and Michael M. Ohadi. "Experimental Investigation of Advanced Microscale Reactors for Enhanced Carbon Capture and Natural Gas Sweetening Applications." In ASME 2013 7th International Conference on Energy Sustainability collocated with the ASME 2013 Heat Transfer Summer Conference and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/es2013-18394.
Повний текст джерелаZhang, Yafei, Qulan Zhou, Yi Zhang, Qinxin Zhao, and Shi’en Hui. "The Corresponding Relationship Between Heat, Mass Transfer Coefficients and the Flow Regime in Dual-Contact-Flow Absorption Tower." In ASME 2011 Power Conference collocated with JSME ICOPE 2011. ASMEDC, 2011. http://dx.doi.org/10.1115/power2011-55349.
Повний текст джерелаЗвіти організацій з теми "Mass absorption coefficients"
Higgins, P. D., F. H. Attix, J. H. Hubbell, S. M. Seltzer, M. J. Berger, and C. H. Sibata. Mass energy-transfer and mass energy-absorption coefficients, including in-flight positron annihilation for photon energies 1 keV to 100 MeV. Gaithersburg, MD: National Institute of Standards and Technology, 1991. http://dx.doi.org/10.6028/nist.ir.4680.
Повний текст джерелаHiggens, P. D., F. H. Attix, J. H. Hubbell, S. M. Seltzer, M. J. Berger, and C. H. Sibata. Mass energy-transfer and mass energy-absorption coefficients, including in-flight positron annihilation for photon energies 1 keV to 100 MeV. Gaithersburg, MD: National Institute of Standards and Technology, 1992. http://dx.doi.org/10.6028/nist.ir.4812.
Повний текст джерелаHubbell, J. H., and S. M. Seltzer. Tables of x-ray mass attenuation coefficients and mass energy-absorption coefficients 1 keV to 20 MeV for elements Z = 1 to 92 and 48 additional substances of dosimetry interest. Gaithersburg, MD: National Institute of Standards and Technology, 1995. http://dx.doi.org/10.6028/nist.ir.5632.
Повний текст джерелаSalonvaara, Mikael, and André Desjarlais. The impact of the solar absorption coefficient of roof and wall surfaces on energy use and peak demand. Department of the Built Environment, 2023. http://dx.doi.org/10.54337/aau541650886.
Повний текст джерела