Добірка наукової літератури з теми "Martin-Löf Type Theory"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Martin-Löf Type Theory".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Martin-Löf Type Theory"
Gambino, Nicola, and Peter Aczel. "The generalised type-theoretic interpretation of constructive set theory." Journal of Symbolic Logic 71, no. 1 (June 2006): 67–103. http://dx.doi.org/10.2178/jsl/1140641163.
Повний текст джерелаKLEV, ANSTEN. "ETA-RULES IN MARTIN-LÖF TYPE THEORY." Bulletin of Symbolic Logic 25, no. 03 (July 22, 2019): 333–59. http://dx.doi.org/10.1017/bsl.2019.21.
Повний текст джерелаLamarche, François. "Modeling Martin-Löf type theory in categories." Journal of Applied Logic 12, no. 1 (March 2014): 28–44. http://dx.doi.org/10.1016/j.jal.2013.08.003.
Повний текст джерелаAWODEY, STEVE, and MICHAEL A. WARREN. "Homotopy theoretic models of identity types." Mathematical Proceedings of the Cambridge Philosophical Society 146, no. 1 (January 2009): 45–55. http://dx.doi.org/10.1017/s0305004108001783.
Повний текст джерелаGARNER, RICHARD. "Two-dimensional models of type theory." Mathematical Structures in Computer Science 19, no. 4 (August 2009): 687–736. http://dx.doi.org/10.1017/s0960129509007646.
Повний текст джерелаObtułowicz, Adam. "Algebra of constructions II: an algebraic approach to Martin-Löf type theory and the calculus of constructions." Mathematical Structures in Computer Science 3, no. 1 (March 1993): 63–92. http://dx.doi.org/10.1017/s0960129500000128.
Повний текст джерелаPalmgren, Erik. "A construction of type: type in Martin-Löf's partial type theory with one universe." Journal of Symbolic Logic 56, no. 3 (September 1991): 1012–15. http://dx.doi.org/10.2307/2275068.
Повний текст джерелаSetzer, Anton. "Well-ordering proofs for Martin-Löf type theory." Annals of Pure and Applied Logic 92, no. 2 (May 1998): 113–59. http://dx.doi.org/10.1016/s0168-0072(97)00078-x.
Повний текст джерелаSetzer, Anton. "Extending Martin-Löf Type Theory by one Mahlo-universe." Archive for Mathematical Logic 39, no. 3 (April 1, 2000): 155–81. http://dx.doi.org/10.1007/s001530050140.
Повний текст джерелаObtułowicz, Adam. "Categorical and algebraic aspects of Martin-Löf Type Theory." Studia Logica 48, no. 3 (September 1989): 299–317. http://dx.doi.org/10.1007/bf00370827.
Повний текст джерелаДисертації з теми "Martin-Löf Type Theory"
Girardi, Marco. "Proof theoretical issues in Martin-Löf Type Theory and Homotopy Type Theory." Doctoral thesis, Università degli studi di Trento, 2022. http://hdl.handle.net/11572/348681.
Повний текст джерелаFors, Mikael. "Elementary Discrete Sets in Martin-Löf Type Theory." Thesis, Uppsala universitet, Algebra och geometri, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-175717.
Повний текст джерелаMundim, Bruno Rigonato. "Uma abordagem sobre a concepção de proposição da teoria institucionalista de tipos." Universidade Federal de Goiás, 2013. http://repositorio.bc.ufg.br/tede/handle/tede/3337.
Повний текст джерелаApproved for entry into archive by Jaqueline Silva (jtas29@gmail.com) on 2014-10-13T20:49:48Z (GMT) No. of bitstreams: 2 Dissertação - Bruno Rigonato Mundim - 2013.pdf: 1303876 bytes, checksum: 4f1bada6e1186d920d0d0bfcd28d47f1 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Made available in DSpace on 2014-10-13T20:49:48Z (GMT). No. of bitstreams: 2 Dissertação - Bruno Rigonato Mundim - 2013.pdf: 1303876 bytes, checksum: 4f1bada6e1186d920d0d0bfcd28d47f1 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2013-09-02
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
By means of the Curry-Howard Correspondence Martin-Löf’s intuitionistic type theory claims that to define a proposition by laying down how its canonical proofs are formed is the same as to define a set by laying down how its canonical elements are formed; consequently a proposition can be seen as the set of its proofs. On the other hand, we find in this very same theory a distinction between the notions of set and of type, such that the difference of the latter in relation to the former consists in the fact that to form a type we do not need to present an exhaustive prescription for the formation of its objects; it is sufficient to just have a general notion of what would be an arbitrary object that inhabits such type. Thus we argue that we can extract two distinct notions of propositon from the intuitionistic type theory, one which treats propositions as types and another which treats propositions as sets. Such distinction will have some bearing on discussions concerning hypothetical demonstrations and conjecture’s formation.
A teoria intuicionista de tipos, de Martin-Löf, alega, à luz da correspondência Curry- Howard, que definir uma proposição por meio do estabelecimento de como as suas provas canônicas são formadas é o mesmo que definir um conjunto por meio do estabelecimento de como os seus elementos canônicos são formados, fazendo com que uma proposição possa ser vista como o conjunto de suas provas. Por outro lado, encontramos nessa mesma teoria uma distinção entre as noções de conjunto e tipo, sendo que a diferença deste em relação àquele consiste no fato de que para se formar um tipo não é preciso apresentar uma prescrição exaustiva da formação de seus objetos, basta se ter uma noção geral do que seria um objeto arbitrário que o habita. Tendo isso em conta, argumentamos que podemos extrair da teoria intuicionista de tipos duas concepções de proposição distintas, uma que considera proposições como tipos e outra que considera proposições como conjuntos. Tal distinção implicará em algumas considerações envolvendo questões sobre demonstrações hipotéticas e a formação de conjecturas.
Книги з теми "Martin-Löf Type Theory"
Sambin, Giovanni, and Jan M. Smith. Twenty Five Years of Constructive Type Theory. Oxford University Press, 1998. http://dx.doi.org/10.1093/oso/9780198501275.001.0001.
Повний текст джерелаЧастини книг з теми "Martin-Löf Type Theory"
Setzer, Anton. "Proof theory and Martin-Löf Type Theory." In One Hundred Years of Intuitionism (1907–2007), 257–79. Basel: Birkhäuser Basel, 2008. http://dx.doi.org/10.1007/978-3-7643-8653-5_16.
Повний текст джерелаSetzer, Anton. "Partial Recursive Functions in Martin-Löf Type Theory." In Logical Approaches to Computational Barriers, 505–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11780342_51.
Повний текст джерелаHofmann, Martin. "Elimination of extensionality in Martin-Löf type theory." In Lecture Notes in Computer Science, 166–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/3-540-58085-9_76.
Повний текст джерелаThompson, Simon. "Are subsets necessary in Martin-Löf type theory?" In Lecture Notes in Computer Science, 46–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/bfb0021082.
Повний текст джерелаDe Marchi, Federico. "On the Semantics of Coinductive Types in Martin-Löf Type Theory." In Algebra and Coalgebra in Computer Science, 114–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11548133_8.
Повний текст джерелаRathjen, Michael. "The Constructive Hilbert Program and the Limits of Martin-Löf Type Theory." In Logicism, Intuitionism, and Formalism, 397–433. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-8926-8_17.
Повний текст джерелаFridlender, Daniel, and Miguel Pagano. "A Type-Checking Algorithm for Martin-Löf Type Theory with Subtyping Based on Normalisation by Evaluation." In Lecture Notes in Computer Science, 140–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-38946-7_12.
Повний текст джерелаSetzer, A. "An Upper Bound for the Proof-Theoretic Strength of Martin-Löf Type Theory with W-type and One Universe." In The Legacy of Kurt Schütte, 299–343. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-49424-7_16.
Повний текст джерелаAltenkirch, Thorsten, Simon Boulier, Ambrus Kaposi, Christian Sattler, and Filippo Sestini. "Constructing a universe for the setoid model." In Lecture Notes in Computer Science, 1–21. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-71995-1_1.
Повний текст джерелаNördstrom, B., and K. Petersson. "Martin-Löf ’s type theory." In Handbook of Logic in Computer Science: Volume 5. Algebraic and Logical Structures. Oxford University Press, 2001. http://dx.doi.org/10.1093/oso/9780198537816.003.0004.
Повний текст джерелаТези доповідей конференцій з теми "Martin-Löf Type Theory"
Abel, Andreas, Thierry Coquand, and Peter Dybjer. "Normalization by Evaluation for Martin-Löf Type Theory with Typed Equality Judgements." In 2007 22nd Annual IEEE Symposium on Logic in Computer Science. IEEE, 2007. http://dx.doi.org/10.1109/lics.2007.33.
Повний текст джерелаWieczorek, Paweł, and Dariusz Biernacki. "A Coq formalization of normalization by evaluation for Martin-Löf type theory." In CPP '18: Certified Proofs and Programs. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3167091.
Повний текст джерелаWieczorek, Paweł, and Dariusz Biernacki. "A Coq formalization of normalization by evaluation for Martin-Löf type theory." In the 7th ACM SIGPLAN International Conference. New York, New York, USA: ACM Press, 2018. http://dx.doi.org/10.1145/3176245.3167091.
Повний текст джерела