Статті в журналах з теми "Martian regolith"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Martian regolith".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.
Kim, M.-H. Y., S. A. Thibeault, J. W. Wilson, et al. "Development and Testing of in situ Materials for Human Exploration of Mars." High Performance Polymers 12, no. 1 (2000): 13–26. http://dx.doi.org/10.1088/0954-0083/12/1/302.
Повний текст джерелаOze, Christopher, Joshua Beisel, Edward Dabsys, et al. "Perchlorate and Agriculture on Mars." Soil Systems 5, no. 3 (2021): 37. http://dx.doi.org/10.3390/soilsystems5030037.
Повний текст джерелаKaksonen, Anna H., Xiao Deng, Christina Morris, Himel Nahreen Khaleque, Luis Zea, and Yosephine Gumulya. "Potential of Acidithiobacillus ferrooxidans to Grow on and Bioleach Metals from Mars and Lunar Regolith Simulants under Simulated Microgravity Conditions." Microorganisms 9, no. 12 (2021): 2416. http://dx.doi.org/10.3390/microorganisms9122416.
Повний текст джерелаHarris, Franklin, John Dobbs, David Atkins, James A. Ippolito, and Jane E. Stewart. "Soil fertility interactions with Sinorhizobium-legume symbiosis in a simulated Martian regolith; effects on nitrogen content and plant health." PLOS ONE 16, no. 9 (2021): e0257053. http://dx.doi.org/10.1371/journal.pone.0257053.
Повний текст джерелаShumway, Andrew O., David C. Catling, and Jonathan D. Toner. "Regolith Inhibits Salt and Ice Crystallization in Mg(ClO4)2 Brine, Implying More Persistent and Potentially Habitable Brines on Mars." Planetary Science Journal 4, no. 8 (2023): 143. http://dx.doi.org/10.3847/psj/ace891.
Повний текст джерелаSakon, John J., and Robert L. Burnap. "An analysis of potential photosynthetic life on Mars." International Journal of Astrobiology 5, no. 2 (2006): 171–80. http://dx.doi.org/10.1017/s1473550406003144.
Повний текст джерелаSimonsen, L. C., J. E. Nealy, L. W. Townsend, and J. W. Wilson. "Martian regolith as space radiation shielding." Journal of Spacecraft and Rockets 28, no. 1 (1991): 7–8. http://dx.doi.org/10.2514/3.26201.
Повний текст джерелаSeiferlin, Karsten, Pascale Ehrenfreund, James Garry, et al. "Simulating Martian regolith in the laboratory." Planetary and Space Science 56, no. 15 (2008): 2009–25. http://dx.doi.org/10.1016/j.pss.2008.09.017.
Повний текст джерелаJackiewicz, E., M. Lukasiak, M. Kopcewicz, K. Szpila, and N. Bakun-Czubarow. "Mössbauer study of Martian regolith analogues." Hyperfine Interactions 70, no. 1-4 (1992): 993–96. http://dx.doi.org/10.1007/bf02397495.
Повний текст джерелаRahim, Abdur, Umair Majeed, Muhammad Irfan Zubair, and Muhammad Shahzad. "WNMS: A New Basaltic Simulant of Mars Regolith." Sustainability 15, no. 18 (2023): 13372. http://dx.doi.org/10.3390/su151813372.
Повний текст джерелаKasiviswanathan, Pooja, Elizabeth D. Swanner, Larry J. Halverson, and Paramasivan Vijayapalani. "Farming on Mars: Treatment of basaltic regolith soil and briny water simulants sustains plant growth." PLOS ONE 17, no. 8 (2022): e0272209. http://dx.doi.org/10.1371/journal.pone.0272209.
Повний текст джерелаFackrell, Laura E., Paul A. Schroeder, Aaron Thompson, Karen Stockstill-Cahill, and Charles A. Hibbitts. "Development of martian regolith and bedrock simulants: Potential and limitations of martian regolith as an in-situ resource." Icarus 354 (January 2021): 114055. http://dx.doi.org/10.1016/j.icarus.2020.114055.
Повний текст джерелаHedayati, Reza, and Victoria Stulova. "3D Printing of Habitats on Mars: Effects of Low Temperature and Pressure." Materials 16, no. 14 (2023): 5175. http://dx.doi.org/10.3390/ma16145175.
Повний текст джерелаWamelink, G. W. W., J. Y. Frissel, W. H. J. Krijnen, and M. R. Verwoert. "Crop growth and viability of seeds on Mars and Moon soil simulants." Open Agriculture 4, no. 1 (2019): 509–16. http://dx.doi.org/10.1515/opag-2019-0051.
Повний текст джерелаMartikainen, Julia, Olga Muñoz, Teresa Jardiel, et al. "Optical Constants of Martian Dust Analogs at UV–Visible–Near-infrared Wavelengths." Astrophysical Journal Supplement Series 268, no. 2 (2023): 47. http://dx.doi.org/10.3847/1538-4365/acf0be.
Повний текст джерелаPacelli, Claudia, Alessia Cassaro, Lorenzo Aureli, Ralf Moeller, Akira Fujimori, and Silvano Onofri. "The Responses of the Black Fungus Cryomyces Antarcticus to High Doses of Accelerated Helium Ions Radiation within Martian Regolith Simulants and Their Relevance for Mars." Life 10, no. 8 (2020): 130. http://dx.doi.org/10.3390/life10080130.
Повний текст джерелаFabian, A., C. Krauss, A. Sickafoose, M. Horanyi, and S. Robertson. "Measurements of electrical discharges in Martian regolith simulant." IEEE Transactions on Plasma Science 29, no. 2 (2001): 288–91. http://dx.doi.org/10.1109/27.923710.
Повний текст джерелаRamkissoon, Nisha K., Victoria K. Pearson, Susanne P. Schwenzer, et al. "New simulants for martian regolith: Controlling iron variability." Planetary and Space Science 179 (December 2019): 104722. http://dx.doi.org/10.1016/j.pss.2019.104722.
Повний текст джерелаEichler, A., N. Hadland, D. Pickett, et al. "Challenging the agricultural viability of martian regolith simulants." Icarus 354 (January 2021): 114022. http://dx.doi.org/10.1016/j.icarus.2020.114022.
Повний текст джерелаVakkada Ramachandran, Abhilash, María-Paz Zorzano, and Javier Martín-Torres. "Experimental Investigation of the Atmosphere-Regolith Water Cycle on Present-Day Mars." Sensors 21, no. 21 (2021): 7421. http://dx.doi.org/10.3390/s21217421.
Повний текст джерелаRaúl G, Cuero. "Martian soil as a potential source of nanoparticles: Study using martian regolith simulant." Frontiers in Nanoscience and Nanotechnology 2, no. 2 (2016): 91–99. http://dx.doi.org/10.15761/fnn.1000115.
Повний текст джерелаBoxe, C. S., K. P. Hand, K. H. Nealson, Y. L. Yung, A. S. Yen, and A. Saiz-Lopez. "Adsorbed water and thin liquid films on Mars." International Journal of Astrobiology 11, no. 3 (2012): 169–75. http://dx.doi.org/10.1017/s1473550412000080.
Повний текст джерелаMenlyadiev, Marlen, Bryana L. Henderson, Fang Zhong, Ying Lin, and Isik Kanik. "Extraction of amino acids using supercritical carbon dioxide forin situastrobiological applications." International Journal of Astrobiology 18, no. 2 (2018): 102–11. http://dx.doi.org/10.1017/s147355041800006x.
Повний текст джерелаBarkatt, Aaron, and Masataka Okutsu. "Obtaining elemental sulfur for Martian sulfur concrete." Journal of Chemical Research 46, no. 2 (2022): 174751982210807. http://dx.doi.org/10.1177/17475198221080729.
Повний текст джерелаNoe Dobrea, E. Z., J. F. Bell, M. J. Wolff, and K. D. Gordon. "H2O- and OH-bearing minerals in the martian regolith:." Icarus 166, no. 1 (2003): 1–20. http://dx.doi.org/10.1016/s0019-1035(03)00208-2.
Повний текст джерелаGori, Fabio, and Sandra Corasaniti. "Detection of a dry–frozen boundary inside Martian regolith." Planetary and Space Science 56, no. 8 (2008): 1093–102. http://dx.doi.org/10.1016/j.pss.2008.02.003.
Повний текст джерелаAudouard, Joachim, François Poulet, Mathieu Vincendon, et al. "Water in the Martian regolith from OMEGA/Mars Express." Journal of Geophysical Research: Planets 119, no. 8 (2014): 1969–89. http://dx.doi.org/10.1002/2014je004649.
Повний текст джерелаMaurel, Alexis, Ana Cristina Martinez, Pedro Cortes, et al. "3D Printing of Batteries from Lunar and Martian Regolith." ECS Meeting Abstracts MA2023-01, no. 56 (2023): 2724. http://dx.doi.org/10.1149/ma2023-01562724mtgabs.
Повний текст джерелаRao, M. "Neutron Capture Isotopes in the Martian Regolith and Implications for Martian Atmospheric Noble Gases." Icarus 156, no. 2 (2002): 352–72. http://dx.doi.org/10.1006/icar.2001.6809.
Повний текст джерелаYin, Kexin, Jiangxin Liu, Jiaxing Lin, Andreea-Roxana Vasilescu, Khaoula Othmani, and Eugenia Di Filippo. "Interface Direct Shear Tests on JEZ-1 Mars Regolith Simulant." Applied Sciences 11, no. 15 (2021): 7052. http://dx.doi.org/10.3390/app11157052.
Повний текст джерелаNénon, Q., A. R. Poppe, A. Rahmati, and J. P. McFadden. "Implantation of Martian atmospheric ions within the regolith of Phobos." Nature Geoscience 14, no. 2 (2021): 61–66. http://dx.doi.org/10.1038/s41561-020-00682-0.
Повний текст джерелаJach, K., J. Leliwa-Kopystyński, A. Morka, et al. "Modifications of Martian ice-saturated regolith due to meteoroid impact." Advances in Space Research 23, no. 11 (1999): 1933–37. http://dx.doi.org/10.1016/s0273-1177(99)00275-6.
Повний текст джерелаGarry, James R. C., Inge Loes ten Kate, Zita Martins, Per Nørnberg, and Pascale Ehrenfreund. "Analysis and survival of amino acids in Martian regolith analogs." Meteoritics & Planetary Science 41, no. 3 (2006): 391–405. http://dx.doi.org/10.1111/j.1945-5100.2006.tb00470.x.
Повний текст джерелаPavlov, A. K., V. N. Shelegedin, M. A. Vdovina, and A. A. Pavlov. "Growth of microorganisms in Martian-like shallow subsurface conditions: laboratory modelling." International Journal of Astrobiology 9, no. 1 (2009): 51–58. http://dx.doi.org/10.1017/s1473550409990371.
Повний текст джерелаPatel, M. R., A. Bérces, C. Kolb, et al. "Seasonal and diurnal variations in Martian surface ultraviolet irradiation: biological and chemical implications for the Martian regolith." International Journal of Astrobiology 2, no. 1 (2003): 21–34. http://dx.doi.org/10.1017/s1473550402001180.
Повний текст джерелаGleaton, Jason, Zhengshou Lai, Rui Xiao, Ke Zhang, Qiushi Chen, and Yi Zheng. "Optimization of mechanical strength of biocemented Martian regolith simulant soil columns." Construction and Building Materials 315 (January 2022): 125741. http://dx.doi.org/10.1016/j.conbuildmat.2021.125741.
Повний текст джерелаDikshit, Rashmi, Nitin Gupta, Arjun Dey, Koushik Viswanathan, and Aloke Kumar. "Microbial induced calcite precipitation can consolidate martian and lunar regolith simulants." PLOS ONE 17, no. 4 (2022): e0266415. http://dx.doi.org/10.1371/journal.pone.0266415.
Повний текст джерелаZent, Aaron P. "On the thickness of the oxidized layer of the Martian regolith." Journal of Geophysical Research: Planets 103, E13 (1998): 31491–98. http://dx.doi.org/10.1029/98je01895.
Повний текст джерелаWittmann, Axel, Randy L. Korotev, Bradley L. Jolliff, et al. "Petrography and composition of Martian regolith breccia meteorite Northwest Africa 7475." Meteoritics & Planetary Science 50, no. 2 (2015): 326–52. http://dx.doi.org/10.1111/maps.12425.
Повний текст джерелаZent, Aaron P., Fraser P. Fanale, and Susan E. Postawko. "Carbon dioxide: Adsorption on palagonite and partitioning in the Martian regolith." Icarus 71, no. 2 (1987): 241–49. http://dx.doi.org/10.1016/0019-1035(87)90149-7.
Повний текст джерелаMarshall, Jason P., Troy L. Hudson, and José E. Andrade. "Experimental Investigation of InSight HP3 Mole Interaction with Martian Regolith Simulant." Space Science Reviews 211, no. 1-4 (2017): 239–58. http://dx.doi.org/10.1007/s11214-016-0329-1.
Повний текст джерелаGunderson, Kurt, Benjamin Lüthi, Patrick Russell, and Nicolas Thomas. "Visible/NIR photometric signatures of liquid water in Martian regolith simulant." Planetary and Space Science 55, no. 10 (2007): 1272–82. http://dx.doi.org/10.1016/j.pss.2007.03.004.
Повний текст джерелаShiwei, Ng, Stylianos Dritsas, and Javier G. Fernandez. "Martian biolith: A bioinspired regolith composite for closed-loop extraterrestrial manufacturing." PLOS ONE 15, no. 9 (2020): e0238606. http://dx.doi.org/10.1371/journal.pone.0238606.
Повний текст джерелаFanale, Fraser P., and James R. Salvail. "Quasi-periodic Atmosphere-Regolith-Cap CO2 Redistribution in the Martian Past." Icarus 111, no. 2 (1994): 305–16. http://dx.doi.org/10.1006/icar.1994.1147.
Повний текст джерелаBöttger, H. M., S. R. Lewis, P. L. Read, and F. Forget. "The effects of the martian regolith on GCM water cycle simulations." Icarus 177, no. 1 (2005): 174–89. http://dx.doi.org/10.1016/j.icarus.2005.02.024.
Повний текст джерелаDotson, B., D. Sanchez Valencia, C. Millwater, et al. "Cohesion and shear strength of compacted lunar and Martian regolith simulants." Icarus 411 (March 2024): 115943. http://dx.doi.org/10.1016/j.icarus.2024.115943.
Повний текст джерелаPajares, Arturo, Pablo Guardia, Vladimir Galvita, Melchiorre Conti, Jasper Lefevere, and Bart Michielsen. "CO2 conversion over Martian and Lunar regolith simulants for extraterrestrial applications." Journal of CO2 Utilization 81 (March 2024): 102729. http://dx.doi.org/10.1016/j.jcou.2024.102729.
Повний текст джерелаCorrias, Gianluca, Roberta Licheri, Roberto Orrù, and Giacomo Cao. "Self-Propagating High-Temperature Synthesis Reactions for ISRU and ISFR Applications." Eurasian Chemico-Technological Journal 13, no. 3-4 (2010): 137. http://dx.doi.org/10.18321/ectj77.
Повний текст джерелаOliver, James A. W., Matthew Kelbrick, Nisha K. Ramkissoon, et al. "Sulfur Cycling as a Viable Metabolism under Simulated Noachian/Hesperian Chemistries." Life 12, no. 4 (2022): 523. http://dx.doi.org/10.3390/life12040523.
Повний текст джерелаVezzola, Michele, Solveig Tosi, Enrico Doria, Mattia Bonazzi, Matteo Alvaro, and Alessio Sanfilippo. "Interaction between a Martian Regolith Simulant and Fungal Organic Acids in the Biomining Perspective." Journal of Fungi 9, no. 10 (2023): 976. http://dx.doi.org/10.3390/jof9100976.
Повний текст джерела