Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Many-Body quantum physics.

Статті в журналах з теми "Many-Body quantum physics"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Many-Body quantum physics".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Ullmo, Denis. "Many-body physics and quantum chaos." Reports on Progress in Physics 71, no. 2 (January 28, 2008): 026001. http://dx.doi.org/10.1088/0034-4885/71/2/026001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Modi, Kavan. "Quantum many-body physics in a nutshell." Contemporary Physics 60, no. 2 (April 3, 2019): 197. http://dx.doi.org/10.1080/00107514.2019.1621944.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Yao, Yunyan, and Liang Xiang. "Superconducting Quantum Simulation for Many-Body Physics beyond Equilibrium." Entropy 26, no. 7 (July 11, 2024): 592. http://dx.doi.org/10.3390/e26070592.

Повний текст джерела
Анотація:
Quantum computing is an exciting field that uses quantum principles, such as quantum superposition and entanglement, to tackle complex computational problems. Superconducting quantum circuits, based on Josephson junctions, is one of the most promising physical realizations to achieve the long-term goal of building fault-tolerant quantum computers. The past decade has witnessed the rapid development of this field, where many intermediate-scale multi-qubit experiments emerged to simulate nonequilibrium quantum many-body dynamics that are challenging for classical computers. Here, we review the basic concepts of superconducting quantum simulation and their recent experimental progress in exploring exotic nonequilibrium quantum phenomena emerging in strongly interacting many-body systems, e.g., many-body localization, quantum many-body scars, and discrete time crystals. We further discuss the prospects of quantum simulation experiments to truly solve open problems in nonequilibrium many-body systems.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Luchnikov, Ilia A., Alexander Ryzhov, Pieter-Jan Stas, Sergey N. Filippov, and Henni Ouerdane. "Variational Autoencoder Reconstruction of Complex Many-Body Physics." Entropy 21, no. 11 (November 7, 2019): 1091. http://dx.doi.org/10.3390/e21111091.

Повний текст джерела
Анотація:
Thermodynamics is a theory of principles that permits a basic description of the macroscopic properties of a rich variety of complex systems from traditional ones, such as crystalline solids, gases, liquids, and thermal machines, to more intricate systems such as living organisms and black holes to name a few. Physical quantities of interest, or equilibrium state variables, are linked together in equations of state to give information on the studied system, including phase transitions, as energy in the forms of work and heat, and/or matter are exchanged with its environment, thus generating entropy. A more accurate description requires different frameworks, namely, statistical mechanics and quantum physics to explore in depth the microscopic properties of physical systems and relate them to their macroscopic properties. These frameworks also allow to go beyond equilibrium situations. Given the notably increasing complexity of mathematical models to study realistic systems, and their coupling to their environment that constrains their dynamics, both analytical approaches and numerical methods that build on these models show limitations in scope or applicability. On the other hand, machine learning, i.e., data-driven, methods prove to be increasingly efficient for the study of complex quantum systems. Deep neural networks, in particular, have been successfully applied to many-body quantum dynamics simulations and to quantum matter phase characterization. In the present work, we show how to use a variational autoencoder (VAE)—a state-of-the-art tool in the field of deep learning for the simulation of probability distributions of complex systems. More precisely, we transform a quantum mechanical problem of many-body state reconstruction into a statistical problem, suitable for VAE, by using informationally complete positive operator-valued measure. We show, with the paradigmatic quantum Ising model in a transverse magnetic field, that the ground-state physics, such as, e.g., magnetization and other mean values of observables, of a whole class of quantum many-body systems can be reconstructed by using VAE learning of tomographic data for different parameters of the Hamiltonian, and even if the system undergoes a quantum phase transition. We also discuss challenges related to our approach as entropy calculations pose particular difficulties.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Vicentini, Filippo. "Machine learning toolbox for quantum many body physics." Nature Reviews Physics 3, no. 3 (January 29, 2021): 156. http://dx.doi.org/10.1038/s42254-021-00285-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Liu, Hong, and Julian Sonner. "Quantum many-body physics from a gravitational lens." Nature Reviews Physics 2, no. 11 (September 25, 2020): 615–33. http://dx.doi.org/10.1038/s42254-020-0225-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Noh, Changsuk, and Dimitris G. Angelakis. "Quantum simulations and many-body physics with light." Reports on Progress in Physics 80, no. 1 (November 4, 2016): 016401. http://dx.doi.org/10.1088/0034-4885/80/1/016401.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Wu, Dian, Riccardo Rossi, Filippo Vicentini, Nikita Astrakhantsev, Federico Becca, Xiaodong Cao, Juan Carrasquilla, et al. "Variational benchmarks for quantum many-body problems." Science 386, no. 6719 (October 18, 2024): 296–301. http://dx.doi.org/10.1126/science.adg9774.

Повний текст джерела
Анотація:
The continued development of computational approaches to many-body ground-state problems in physics and chemistry calls for a consistent way to assess its overall progress. In this work, we introduce a metric of variational accuracy, the V-score, obtained from the variational energy and its variance. We provide an extensive curated dataset of variational calculations of many-body quantum systems, identifying cases where state-of-the-art numerical approaches show limited accuracy and future algorithms or computational platforms, such as quantum computing, could provide improved accuracy. The V-score can be used as a metric to assess the progress of quantum variational methods toward a quantum advantage for ground-state problems, especially in regimes where classical verifiability is impossible.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Lindgren, Ingvar, Sten Salomonson, and Daniel Hedendahl. "New approach to many-body quantum-electrodynamics calculations:merging quantum electrodynamics with many-body perturbation." Canadian Journal of Physics 83, no. 4 (April 1, 2005): 395–403. http://dx.doi.org/10.1139/p05-012.

Повний текст джерела
Анотація:
A new method for bound-state quantum electrodynamics (QED) calculations on many-electron systems is presented that is a combination of the non-QED many-body technique for quasi-degenerate systems and the newly developed covariant-evolution-operator technique for QED calculations. The latter technique has been successfully applied to the fine structure of excited states of medium-heavy heliumlike ions, and it is expected that the new method should be applicable also to light elements, hopefully down to neutral helium. PACS Nos.: 31.30.Jv, 31.15.Md, 31.25.Jf, 33.15.Pw
Стилі APA, Harvard, Vancouver, ISO та ін.
10

von der Linden, Wolfgang. "A quantum Monte Carlo approach to many-body physics." Physics Reports 220, no. 2-3 (November 1992): 53–162. http://dx.doi.org/10.1016/0370-1573(92)90029-y.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Zhang, XiaoFei, YaoHua Chen, GuoCai Liu, Wei Wu, Lin Wen, and WuMing Liu. "Quantum information and many body physics with cold atoms." Chinese Science Bulletin 57, no. 16 (June 2012): 1910–18. http://dx.doi.org/10.1007/s11434-012-5095-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Mukherjee, Victor, and Uma Divakaran. "Many-body quantum thermal machines." Journal of Physics: Condensed Matter 33, no. 45 (August 27, 2021): 454001. http://dx.doi.org/10.1088/1361-648x/ac1b60.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Vojta, Thomas. "Disorder in Quantum Many-Body Systems." Annual Review of Condensed Matter Physics 10, no. 1 (March 10, 2019): 233–52. http://dx.doi.org/10.1146/annurev-conmatphys-031218-013433.

Повний текст джерела
Анотація:
Impurities, defects, and other types of imperfections are ubiquitous in realistic quantum many-body systems and essentially unavoidable in solid state materials. Often, such random disorder is viewed purely negatively as it is believed to prevent interesting new quantum states of matter from forming and to smear out sharp features associated with the phase transitions between them. However, disorder is also responsible for a variety of interesting novel phenomena that do not have clean counterparts. These include Anderson localization of single-particle wave functions, many-body localization in isolated many-body systems, exotic quantum critical points, and glassy ground-state phases. This brief review focuses on two separate but related subtopics in this field. First, we review under what conditions different types of randomness affect the stability of symmetry-broken low-temperature phases in quantum many-body systems and the stability of the corresponding phase transitions. Second, we discuss the fate of quantum phase transitions that are destabilized by disorder as well as the unconventional quantum Griffiths phases that emerge in their vicinity.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Gómez-Ullate, D., A. González-López, and M. A. Rodríguez. "New algebraic quantum many-body problems." Journal of Physics A: Mathematical and General 33, no. 41 (October 5, 2000): 7305–35. http://dx.doi.org/10.1088/0305-4470/33/41/305.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

FRÖHLICH, J., and U. M. STUDER. "GAUGE INVARIANCE IN NON-RELATIVISTIC MANY-BODY THEORY." International Journal of Modern Physics B 06, no. 11n12 (June 1992): 2201–8. http://dx.doi.org/10.1142/s0217979292001092.

Повний текст джерела
Анотація:
We review some recent results on the physics of two-dimensional, incompressible electron and spin liquids. These results follow from Ward identities reflecting the U(1) em × SU(2) spin -gauge invariance of non-relativistic quantum mechanics. They describe a variety of generalized quantized Hall effects.
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Goihl, Marcel, Mathis Friesdorf, Albert H. Werner, Winton Brown, and Jens Eisert. "Experimentally Accessible Witnesses of Many-Body Localization." Quantum Reports 1, no. 1 (June 17, 2019): 50–62. http://dx.doi.org/10.3390/quantum1010006.

Повний текст джерела
Анотація:
The phenomenon of many-body localized (MBL) systems has attracted significant interest in recent years, for its intriguing implications from a perspective of both condensed-matter and statistical physics: they are insulators even at non-zero temperature and fail to thermalize, violating expectations from quantum statistical mechanics. What is more, recent seminal experimental developments with ultra-cold atoms in optical lattices constituting analog quantum simulators have pushed many-body localized systems into the realm of physical systems that can be measured with high accuracy. In this work, we introduce experimentally accessible witnesses that directly probe distinct features of MBL, distinguishing it from its Anderson counterpart. We insist on building our toolbox from techniques available in the laboratory, including on-site addressing, super-lattices, and time-of-flight measurements, identifying witnesses based on fluctuations, density–density correlators, densities, and entanglement. We build upon the theory of out of equilibrium quantum systems, in conjunction with tensor network and exact simulations, showing the effectiveness of the tools for realistic models.
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Davis-Tilley, C., C. K. Teoh, and A. D. Armour. "Dynamics of many-body quantum synchronisation." New Journal of Physics 20, no. 11 (November 6, 2018): 113002. http://dx.doi.org/10.1088/1367-2630/aae947.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Quarati, Piero, Marcello Lissia, and Antonio Scarfone. "Negentropy in Many-Body Quantum Systems." Entropy 18, no. 2 (February 22, 2016): 63. http://dx.doi.org/10.3390/e18020063.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Monras, A., and O. Romero-Isart. "Quantum information processing with quantum zeno many-body dynamics." Quantum Information and Computation 10, no. 3&4 (March 2010): 201–22. http://dx.doi.org/10.26421/qic10.3-4-3.

Повний текст джерела
Анотація:
We show how the quantum Zeno effect can be exploited to control quantum many-body dynamics for quantum information and computation purposes. In particular, we consider a one dimensional array of three level systems interacting via a nearest-neighbour interaction. By encoding the qubit on two levels and using simple projective frequent measurements yielding the quantum Zeno effect, we demonstrate how to implement a well defined quantum register, quantum state transfer on demand, universal two-qubit gates and two-qubit parity measurements. Thus, we argue that the main ingredients for universal quantum computation can be achieved in a spin chain with an {\em always-on} and {\em constant} many-body Hamiltonian. We also show some possible modifications of the initially assumed dynamics in order to create maximally entangled qubit pairs and single qubit gates.
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Biegert, Jens. "Attosecond science: a new era for many-body physics." Europhysics News 55, no. 1 (2024): 12–15. http://dx.doi.org/10.1051/epn/2024105.

Повний текст джерела
Анотація:
The properties and the functionality of materials and devices, or chemical reactions, are determined by the microscopic interaction of their building blocks, i.e., between electrons, holes, and nuclei. Thus, understanding the many-body interaction between these fundamental building blocks holds the key to advancing fundamental science and, at the same time, directly leads to applications. Attosecond science now provides an entirely new view into the quantum many-body interaction of these microscopic building blocks.
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Balantekin, A. B. "Quantum Entanglement and Neutrino Many-Body Systems." Journal of Physics: Conference Series 2191, no. 1 (February 1, 2022): 012004. http://dx.doi.org/10.1088/1742-6596/2191/1/012004.

Повний текст джерела
Анотація:
Abstract Entanglement of constituents of a many-body system is a recurrent feature of quantum behaviour. Quantum information science provides tools, such as the entanglement entropy, to help assess the amount of entanglement in such systems. Many-neutrino systems are present in core-collapse supernovae, neutron star mergers, and the Early Universe. Recent work in applying the tools of quantum information science to the description of the entanglement in astrophysical many-neutrino systems is reviewed.
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Wingreen, N. S. "PHYSICS: Quantum Many-Body Effects in a Single-Electron Transistor." Science 304, no. 5675 (May 28, 2004): 1258–59. http://dx.doi.org/10.1126/science.1098302.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Schneider, Ch, Diego Porras, and Tobias Schaetz. "Experimental quantum simulations of many-body physics with trapped ions." Reports on Progress in Physics 75, no. 2 (January 17, 2012): 024401. http://dx.doi.org/10.1088/0034-4885/75/2/024401.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Logan, D. E. "Many-Body Quantum Theory in Condensed Matter Physics—An Introduction." Journal of Physics A: Mathematical and General 38, no. 8 (February 10, 2005): 1829–30. http://dx.doi.org/10.1088/0305-4470/38/8/b01.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Larder, B., D. O. Gericke, S. Richardson, P. Mabey, T. G. White, and G. Gregori. "Fast nonadiabatic dynamics of many-body quantum systems." Science Advances 5, no. 11 (November 2019): eaaw1634. http://dx.doi.org/10.1126/sciadv.aaw1634.

Повний текст джерела
Анотація:
Modeling many-body quantum systems with strong interactions is one of the core challenges of modern physics. A range of methods has been developed to approach this task, each with its own idiosyncrasies, approximations, and realm of applicability. However, there remain many problems that are intractable for existing methods. In particular, many approaches face a huge computational barrier when modeling large numbers of coupled electrons and ions at finite temperature. Here, we address this shortfall with a new approach to modeling many-body quantum systems. On the basis of the Bohmian trajectory formalism, our new method treats the full particle dynamics with a considerable increase in computational speed. As a result, we are able to perform large-scale simulations of coupled electron-ion systems without using the adiabatic Born-Oppenheimer approximation.
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Ritter, Mark B. "Near-term Quantum Algorithms for Quantum Many-body Systems." Journal of Physics: Conference Series 1290 (October 2019): 012003. http://dx.doi.org/10.1088/1742-6596/1290/1/012003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Gustafson, Erik J., Andy C. Y. Li, Abid Khan, Joonho Kim, Doga Murat Kurkcuoglu, M. Sohaib Alam, Peter P. Orth, Armin Rahmani, and Thomas Iadecola. "Preparing quantum many-body scar states on quantum computers." Quantum 7 (November 7, 2023): 1171. http://dx.doi.org/10.22331/q-2023-11-07-1171.

Повний текст джерела
Анотація:
Quantum many-body scar states are highly excited eigenstates of many-body systems that exhibit atypical entanglement and correlation properties relative to typical eigenstates at the same energy density. Scar states also give rise to infinitely long-lived coherent dynamics when the system is prepared in a special initial state having finite overlap with them. Many models with exact scar states have been constructed, but the fate of scarred eigenstates and dynamics when these models are perturbed is difficult to study with classical computational techniques. In this work, we propose state preparation protocols that enable the use of quantum computers to study this question. We present protocols both for individual scar states in a particular model, as well as superpositions of them that give rise to coherent dynamics. For superpositions of scar states, we present both a system-size-linear depth unitary and a finite-depth nonunitary state preparation protocol, the latter of which uses measurement and postselection to reduce the circuit depth. For individual scarred eigenstates, we formulate an exact state preparation approach based on matrix product states that yields quasipolynomial-depth circuits, as well as a variational approach with a polynomial-depth ansatz circuit. We also provide proof of principle state-preparation demonstrations on superconducting quantum hardware.
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Bravyi, Sergey, David Gosset, Robert König, and Kristan Temme. "Approximation algorithms for quantum many-body problems." Journal of Mathematical Physics 60, no. 3 (March 2019): 032203. http://dx.doi.org/10.1063/1.5085428.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Gelfand, Martin P., Rajiv R. P. Singh, and David A. Huse. "Perturbation expansions for quantum many-body systems." Journal of Statistical Physics 59, no. 5-6 (June 1990): 1093–142. http://dx.doi.org/10.1007/bf01334744.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Prosen, Tomaz. "Ruelle resonances in quantum many-body dynamics." Journal of Physics A: Mathematical and General 35, no. 48 (November 19, 2002): L737—L743. http://dx.doi.org/10.1088/0305-4470/35/48/102.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Golovko, V. A. "Quantum effects in many-body gravitating systems." Journal of Physics A: Mathematical and General 38, no. 29 (July 6, 2005): 6431–46. http://dx.doi.org/10.1088/0305-4470/38/29/001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Bang, J., and G. Vagradov. "Unstable States in Quantum Many-Body Theory." Physica Scripta 31, no. 4 (April 1, 1985): 225–28. http://dx.doi.org/10.1088/0031-8949/31/4/001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Cai, Zi. "Symmetries and effect of time dimension in non-equilibrium quantum matter." Acta Physica Sinica 70, no. 23 (2021): 230310. http://dx.doi.org/10.7498/aps.70.20211741.

Повний текст джерела
Анотація:
Non-equilibrium quantum many-body systems have attracted considerable attention in the past decades. The scope of the research of this kind of novel system involves interdisciplinary research of condensed matter, atomic and molecular physics, quantum optics, quantum information and quantum computation, as well as the non-equilibrium statistical physics. The non-equilibrium phenomena emerging from the aforementioned quantum systems can exhibit rich and universal behaviors, which have far from being well understood due to the novelties and complexities of these systems, and hence the quantum many-body physics becomes the research highlight. At the same time, with the rapid development of quantum techniques, the understanding of these complex systems is of important practical significance due to their potential applications in quantum computation and quantum manipulation. In this paper, we show our recent progress of non-equilibrium quantum many-body systems. We focus on the novel phenomena closely related to the temporary symmetry breaking, including the exotic quantum matter, quasi-particles as well as the dynamical universality classes in non-equilibrium quantum many-body systems.
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Novo, Leonardo, Juani Bermejo-Vega, and Raúl García-Patrón. "Quantum advantage from energy measurements of many-body quantum systems." Quantum 5 (June 2, 2021): 465. http://dx.doi.org/10.22331/q-2021-06-02-465.

Повний текст джерела
Анотація:
The problem of sampling outputs of quantum circuits has been proposed as a candidate for demonstrating a quantum computational advantage (sometimes referred to as quantum "supremacy"). In this work, we investigate whether quantum advantage demonstrations can be achieved for more physically-motivated sampling problems, related to measurements of physical observables. We focus on the problem of sampling the outcomes of an energy measurement, performed on a simple-to-prepare product quantum state – a problem we refer to as energy sampling. For different regimes of measurement resolution and measurement errors, we provide complexity theoretic arguments showing that the existence of efficient classical algorithms for energy sampling is unlikely. In particular, we describe a family of Hamiltonians with nearest-neighbour interactions on a 2D lattice that can be efficiently measured with high resolution using a quantum circuit of commuting gates (IQP circuit), whereas an efficient classical simulation of this process should be impossible. In this high resolution regime, which can only be achieved for Hamiltonians that can be exponentially fast-forwarded, it is possible to use current theoretical tools tying quantum advantage statements to a polynomial-hierarchy collapse whereas for lower resolution measurements such arguments fail. Nevertheless, we show that efficient classical algorithms for low-resolution energy sampling can still be ruled out if we assume that quantum computers are strictly more powerful than classical ones. We believe our work brings a new perspective to the problem of demonstrating quantum advantage and leads to interesting new questions in Hamiltonian complexity.
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Mohseni, Naeimeh, Thomas Fösel, Lingzhen Guo, Carlos Navarrete-Benlloch, and Florian Marquardt. "Deep Learning of Quantum Many-Body Dynamics via Random Driving." Quantum 6 (May 17, 2022): 714. http://dx.doi.org/10.22331/q-2022-05-17-714.

Повний текст джерела
Анотація:
Neural networks have emerged as a powerful way to approach many practical problems in quantum physics. In this work, we illustrate the power of deep learning to predict the dynamics of a quantum many-body system, where the training is based purely on monitoring expectation values of observables under random driving. The trained recurrent network is able to produce accurate predictions for driving trajectories entirely different than those observed during training. As a proof of principle, here we train the network on numerical data generated from spin models, showing that it can learn the dynamics of observables of interest without needing information about the full quantum state. This allows our approach to be applied eventually to actual experimental data generated from a quantum many-body system that might be open, noisy, or disordered, without any need for a detailed understanding of the system. This scheme provides considerable speedup for rapid explorations and pulse optimization. Remarkably, we show the network is able to extrapolate the dynamics to times longer than those it has been trained on, as well as to the infinite-system-size limit.
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Martin, M. J., M. Bishof, M. D. Swallows, X. Zhang, C. Benko, J. von-Stecher, A. V. Gorshkov, A. M. Rey, and Jun Ye. "A Quantum Many-Body Spin System in an Optical Lattice Clock." Science 341, no. 6146 (August 8, 2013): 632–36. http://dx.doi.org/10.1126/science.1236929.

Повний текст джерела
Анотація:
Strongly interacting quantum many-body systems arise in many areas of physics, but their complexity generally precludes exact solutions to their dynamics. We explored a strongly interacting two-level system formed by the clock states in 87Sr as a laboratory for the study of quantum many-body effects. Our collective spin measurements reveal signatures of the development of many-body correlations during the dynamical evolution. We derived a many-body Hamiltonian that describes the experimental observation of atomic spin coherence decay, density-dependent frequency shifts, severely distorted lineshapes, and correlated spin noise. These investigations open the door to further explorations of quantum many-body effects and entanglement through use of highly coherent and precisely controlled optical lattice clocks.
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Sun, Li-Zhen, Qingmiao Nie, and Haibin Li. "Randomness of Eigenstates of Many-Body Quantum Systems." Entropy 21, no. 3 (February 27, 2019): 227. http://dx.doi.org/10.3390/e21030227.

Повний текст джерела
Анотація:
The emergence of random eigenstates of quantum many-body systems in integrable-chaos transitions is the underlying mechanism of thermalization for these quantum systems. We use fidelity and modulus fidelity to measure the randomness of eigenstates in quantum many-body systems. Analytic results of modulus fidelity between random vectors are obtained to be a judge for the degree of randomness. Unlike fidelity, which just refers to a kind of criterion of necessity, modulus fidelity can measure the degree of randomness in eigenstates of a one-dimension (1D) hard-core boson system and identifies the integrable-chaos transition in this system.
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Otsuki, Junya, Masayuki Ohzeki, Hiroshi Shinaoka, and Kazuyoshi Yoshimi. "Sparse Modeling in Quantum Many-Body Problems." Journal of the Physical Society of Japan 89, no. 1 (January 15, 2020): 012001. http://dx.doi.org/10.7566/jpsj.89.012001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Nielsen, S. E. B., M. Ruggenthaler, and R. van Leeuwen. "Many-body quantum dynamics from the density." EPL (Europhysics Letters) 101, no. 3 (February 1, 2013): 33001. http://dx.doi.org/10.1209/0295-5075/101/33001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Mendl, Christian B. "Fourier's law and many-body quantum systems." Comptes Rendus Physique 20, no. 5 (July 2019): 442–48. http://dx.doi.org/10.1016/j.crhy.2019.08.006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Capriotti, L., A. Cuccoli, A. Fubini, V. Tognetti, and R. Vaia. "Simulating quantum dissipation in many-body systems." Europhysics Letters (EPL) 58, no. 2 (April 2002): 155–61. http://dx.doi.org/10.1209/epl/i2002-00618-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Chau Huu-Tai, P., and P. Van Isacker. "Convexity and the quantum many-body problem." Journal of Physics A: Mathematical and Theoretical 46, no. 20 (May 1, 2013): 205302. http://dx.doi.org/10.1088/1751-8113/46/20/205302.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Colcelli, A., G. Mussardo, G. Sierra, and A. Trombettoni. "Free fall of a quantum many-body system." American Journal of Physics 90, no. 11 (November 2022): 833–40. http://dx.doi.org/10.1119/10.0013427.

Повний текст джерела
Анотація:
The quantum version of the free fall problem is a topic often skipped in undergraduate quantum mechanics courses, because its discussion usually requires wavepackets built on the Airy functions—a difficult computation. Here, on the contrary, we show that the problem can be nicely simplified both for a single particle and for general many-body systems by making use of a gauge transformation that corresponds to a change of reference frame from the laboratory frame to the one comoving with the falling system. Using this approach, the quantum mechanics problem of a particle in an external gravitational potential reduces to a much simpler one where there is no longer any gravitational potential in the Schrödinger equation. It is instructive to see that the same procedure can be used for many-body systems subjected to an external gravitational potential and a two-body interparticle potential that is a function of the distance between the particles. This topic provides a helpful and pedagogical example of a quantum many-body system whose dynamics can be analytically described in simple terms.
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Mivehvar, Farokh, Francesco Piazza, Tobias Donner, and Helmut Ritsch. "Cavity QED with quantum gases: new paradigms in many-body physics." Advances in Physics 70, no. 1 (January 2, 2021): 1–153. http://dx.doi.org/10.1080/00018732.2021.1969727.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Schönhammer, K. "Physics in one dimension: theoretical concepts for quantum many-body systems." Journal of Physics: Condensed Matter 25, no. 1 (December 5, 2012): 014001. http://dx.doi.org/10.1088/0953-8984/25/1/014001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Plenio, M. B., and S. Virmani. "Many-body physics and the capacity of quantum channels with memory." New Journal of Physics 10, no. 4 (April 18, 2008): 043032. http://dx.doi.org/10.1088/1367-2630/10/4/043032.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

CLARK, J. W., A. MANDILARA, M. L. RISTIG, and K. E. KÜRTEN. "ENTANGLEMENT PROPERTIES OF QUANTUM MANY-BODY WAVE FUNCTIONS." International Journal of Modern Physics B 23, no. 20n21 (August 20, 2009): 4041–57. http://dx.doi.org/10.1142/s0217979209063249.

Повний текст джерела
Анотація:
The entanglement properties of correlated wave functions commonly employed in theories of strongly correlated many-body systems are studied. The variational treatment of the transverse Ising model within correlated-basis theory is reviewed, and existing calculations of the one- and two-body reduced density matrices are used to evaluate or estimate established measures of bipartite entanglement, including the Von Neumann entropy, the concurrence, and localizable entanglement, for square, cubic, and hypercubic lattice systems. The results discussed in relation to the findings of previous studies that explore the relationship of entanglement behaviors to quantum critical phenomena and quantum phase transitions. It is emphasized that Jastrow-correlated wave functions and their extensions contain multipartite entanglement to all orders.
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Wilkinson, Samuel A., and Michael J. Hartmann. "Superconducting quantum many-body circuits for quantum simulation and computing." Applied Physics Letters 116, no. 23 (June 8, 2020): 230501. http://dx.doi.org/10.1063/5.0008202.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Hui Zhai. "Non-Equilibrium Quantum Many-body Physics with Ultracold Atoms." Acta Physica Sinica, 2023, 0. http://dx.doi.org/10.7498/aps.72.20231375.

Повний текст джерела
Анотація:
Combining quantum many-body physics and nonequilibrium physics is an important opportunity and challenge for physics research nowadays. Nonequilibrium quantum many-body physics is not only a subject of common interest to many branches of physics but also an indispensable theoretical foundation for developing emergent quantum technologies. Cold atom systems provide an ideal platform for studying nonequilibrium quantum many-body physics. The advantages of cold atom systems, as well as other synthetic quantum systems, are manifested in studying various nonequilibrium processes such as the thermalization of isolated systems, dissipation induced by coupling to the environment, ramping, quench, or periodical driving physical parameters of a system. In this article, I will discuss three examples from our research to show how the study of nonequilibrium quantum many-body physics with cold atoms can help us go beyond the existing framework of topological physics, uncover new methods for detecting quantum many-body correlations, and enrich the physical content of gauge theory. Such research concerns the fundamental properties of quantum many-body systems, such as topology and correlation, utilizes the advantages of cold atomic systems to achieve a quantitative comparison between theory and experiment, and aims at discovering universal physical rules for nonequilibrium quantum many-body process, which can be extended to condensed matter and nuclear matter systems.
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Špička, Václav, Peter D. Keefe, and Theo M. Nieuwenhuizen. "Non-equilibrium quantum physics, many body systems, and foundations of quantum physics." European Physical Journal Special Topics, January 9, 2024. http://dx.doi.org/10.1140/epjs/s11734-023-01072-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії