Зміст
Добірка наукової літератури з теми "Manipulation industrielle"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Manipulation industrielle".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Manipulation industrielle"
Delbos, E., Y. Goujon, and M. D. Matray. "Toxicité de l’étain et de ses dérivés organiques : étude de l’exposition professionnelle au cours de la manipulation industrielle de fenbutatin oxyde." Archives des Maladies Professionnelles et de l'Environnement 65, no. 2-3 (May 2004): 176. http://dx.doi.org/10.1016/s1775-8785(04)93219-5.
Повний текст джерелаBienhaus, Diethelm, and Andreas Ebner. "Sicheres und flexibles Retrofit." atp magazin 63, no. 05 (May 12, 2021): 70–76. http://dx.doi.org/10.17560/atp.v63i05.2492.
Повний текст джерелаPruß, Axel, Bernard Schroeter, and Matthias Löwel. "Auswirkungen der Fälschungsrichtlinie 2011/62/EU und der Delegierten Verordnung (EU) Nr. 2016/161 auf Gewebezubereitungen und Blutprodukte." Transfusionsmedizin - Immunhämatologie, Hämotherapie, Immungenetik, Zelltherapie 9, no. 03 (August 2019): 173–78. http://dx.doi.org/10.1055/a-0832-7023.
Повний текст джерелаCrampes, Claude. "Normes de fabrication et barrières à l’entrée." L'Actualité économique 67, no. 4 (February 27, 2009): 567–81. http://dx.doi.org/10.7202/602055ar.
Повний текст джерелаChabaud-Rychter, Danielle. "La mise en forme des pratiques domestiques dans le travail de conception d'appareils électroménagers." Sociétés contemporaines 17, no. 1 (July 1, 1994): 103–18. http://dx.doi.org/10.3917/soco.p1994.17n1.0103.
Повний текст джерелаMAISSE, G., and B. BRETON. "Contrôle photopériodique de la saison de Contrôle photopériodique de la saison de reproduction chez les salmonidés." INRAE Productions Animales 9, no. 1 (February 17, 1996): 71–77. http://dx.doi.org/10.20870/productions-animales.1996.9.1.4036.
Повний текст джерелаMaubert, Oriane. "Sans objet d’Aurélien Bory : pour une chorégraphie intermédiale." Voix Plurielles 15, no. 2 (December 9, 2018): 4–17. http://dx.doi.org/10.26522/vp.v15i2.2070.
Повний текст джерелаGUÉMENÉ, D., N. KANSAKU, and D. ZADWORNY. "L’expression du comportement d’incubation chez la dinde et sa maîtrise en élevage." INRAE Productions Animales 14, no. 3 (June 16, 2001): 147–60. http://dx.doi.org/10.20870/productions-animales.2001.14.3.3735.
Повний текст джерелаAlves Silva Junior, Humberto. "INDÚSTRIA CULTURAL E IDEOLOGIA." Caderno CRH 32, no. 87 (December 31, 2019): 505. http://dx.doi.org/10.9771/ccrh.v32i87.32099.
Повний текст джерелаSilva, Pâmela do Espírito Santo, Amanda Alves Fecury, Euzébio Oliveira, Carla Viana Dendasck, and Claudio Alberto Gellis de Mattos Dias. "Vue d’ensemble quantitative d’une décennie de cas d’intoxication alimentaire dans le nord du Brésil." Revista Científica Multidisciplinar Núcleo do Conhecimento, September 25, 2018, 121–28. http://dx.doi.org/10.32749/nucleodoconhecimento.com.br/biologie/intoxication-alimentaire.
Повний текст джерелаДисертації з теми "Manipulation industrielle"
Riedmüller, Benjamin [Verfasser]. "Magnetisch basierte Systeme zur Manipulation und Detektion von magnetischen Partikeln / Benjamin Riedmüller." Ulm : Universität Ulm, 2019. http://d-nb.info/1189733730/34.
Повний текст джерелаFlixeder, Stefan [Verfasser]. "Force-Based Cooperative Manipulation of Highly Deformable Materials / Stefan Flixeder." Aachen : Shaker, 2017. http://d-nb.info/1139583301/34.
Повний текст джерелаvon, Kleist-Retzow Fabian [Verfasser]. "Robotic Liquid Metal Manipulation and Electrical Contact Probing at Small Scales / Fabian von Kleist-Retzow." München : Verlag Dr. Hut, 2021. http://d-nb.info/1240540051/34.
Повний текст джерелаCochet, François. "Economie de la robotisation industrielle origines, conditions et perspectives de l'automatisation de la manipulation dans la production /." Grenoble 2 : ANRT, 1987. http://catalogue.bnf.fr/ark:/12148/cb37604004q.
Повний текст джерелаMatbaechi, Ettehad Honeyeh [Verfasser], Christian [Gutachter] Wenger, and Inga Anita [Gutachter] Fischer. "Dielectrophoretic manipulation of yeast cells using CMOS integrated microfluidic / Honeyeh Matbaechi Ettehad ; Gutachter: Christian Wenger, Inga Anita Fischer." Cottbus : BTU Cottbus - Senftenberg, 2021. http://d-nb.info/1237687322/34.
Повний текст джерелаMoore, John. "Discrétion et manipulation dans les marchés publics : étude du cas français." Paris 1, 2013. http://www.theses.fr/2013PA010064.
Повний текст джерелаSallaberry, Christian. "Cholq : une interface de manipulation de base de données orientée objet pour non-spécialistes. Mise en oeuvre dans le cadre d'une application industrielle." Toulouse 3, 1992. http://www.theses.fr/1992TOU30180.
Повний текст джерелаWirth, Janina [Verfasser], Wolfgang [Akademischer Betreuer] Fritzsche, Volker [Akademischer Betreuer] Deckert, and Jussi [Akademischer Betreuer] Toppari. "Wechselwirkung von Licht mit Metall-Nanopartikeln für die biomolekulare Manipulation / Janina Wirth. Gutachter: Wolfgang Fritzsche ; Volker Deckert ; Jussi Toppari." Jena : Thüringer Universitäts- und Landesbibliothek Jena, 2014. http://d-nb.info/1060044501/34.
Повний текст джерелаZhao, Yingshen. "An ontology-based approach towards coupling task and path planning for the simulation of manipulation tasks." Thesis, Toulouse, INPT, 2019. http://www.theses.fr/2019INPT0065.
Повний текст джерелаThis work deals with the simulation and the validation of complex manipulation tasks under strong geometric constraints in virtual environments. The targeted applications relate to the industry 4.0 framework; as up-to-date products are more and more integrated and the economic competition increases, industrial companies express the need to validate, from design stage on, not only the static CAD models of their products but also the tasks (e.g., assembly or maintenance) related to their Product Lifecycle Management (PLM). The scientific community looked at this issue from two points of view: - Task planning decomposes a manipulation task to be realized into a sequence of primitive actions (i.e., a task plan) - Path planning computes collision-free trajectories, notably for the manipulated objects. It traditionally uses purely geometric data, which leads to classical limitations (possible high computational processing times, low relevance of the proposed trajectory concerning the task to be performed, or failure); recent works have shown the interest of using higher abstraction level data. Joint task and path planning approaches found in the literature usually perform a classical task planning step, and then check out the feasibility of path planning requests associated with the primitive actions of this task plan. The link between task and path planning has to be improved, notably because of the lack of loopback between the path planning level and the task planning level: - The path planning information used to question the task plan is usually limited to the motion feasibility where richer information such as the relevance or the complexity of the proposed path would be needed; - path planning queries traditionally use purely geometric data and/or “blind” path planning methods (e.g., RRT), and no task-related information is used at the path planning level Our work focuses on using task level information at the path planning level. The path planning algorithm considered is RRT; we chose such a probabilistic algorithm because we consider path planning for the simulation and the validation of complex tasks under strong geometric constraints. We propose an ontology-based approach to use task level information to specify path planning queries for the primitive actions of a task plan. First, we propose an ontology to conceptualize the knowledge about the 3D environment in which the simulated task takes place. The environment where the simulated task takes place is considered as a closed part of 3D Cartesian space cluttered with mobile/fixed obstacles (considered as rigid bodies). It is represented by a digital model relying on a multilayer architecture involving semantic, topologic and geometric data. The originality of the proposed ontology lies in the fact that it conceptualizes heterogeneous knowledge about both the obstacles and the free space models. Second, we exploit this ontology to automatically generate a path planning query associated to each given primitive action of a task plan. Through a reasoning process involving the primitive actions instantiated in the ontology, we are able to infer the start and the goal configurations, as well as task-related geometric constraints. Finally, a multi-level path planner is called to generate the corresponding trajectory. The contributions of this work have been validated by full simulation of several manipulation tasks under strong geometric constraints. The results obtained demonstrate that using task-related information allows better control on the RRT path planning algorithm involved to check the motion feasibility for the primitive actions of a task plan, leading to lower computational time and more relevant trajectories for primitive actions
Bahloul, Abdelkrim. "Sur la commande des robots manipulateurs industriels en co-manipulation robotique." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS511/document.
Повний текст джерелаIn this thesis, we were interested in the control of industrial manipulators in co-manipulation mode with a human operator for the handling of heavy loads. First, we have presented an overview of existing studies in this framework. Then, we have addressed the modeling and the identification of dynamic parameters for the Denso VP-6242G robot. We have used the OpenSYMORO software to calculate its dynamical model. After a detailed presentation of the method for identifying the robot's parameters, we have applied it to the case of our robot. This allowed us to obtain a vector of the parameters which guarantees a positive definite inertia matrix for any configuration of the robot, as well as a good quality of reconstruction of the torques in the case of constant joint velocities or in the case of variable ones over time. To continue, we have detailed the new features that have been proposed for the online trajectory generator, for which the control scheme is based on. We have presented a method for estimating the operator's force from the measurements of the interaction force between the robot and the operator, while taking into account for the penalization of the operator's force in order to have an information of this last which allows to generate a trajectory that respects the limits of workspace. Some tests of the trajectory generator simulating different possible scenarios have allowed us to check the effectiveness of the new proposed features. The generator makes it possible to produce a trajectory in the three-dimensional workspace according to the direction of the force applied by the operator, which contributes to fulfill the requirement of transparency that is sought in a co-manipulation. In the last part, we have presented and validated, in simulation, an impedance control whose reference trajectories are delivered by the proposed generator. The obtained results have shown a good trajectory tracking. On the other hand, the satisfaction of the virtual bounds of the workspace has also been nicely taken into account. However, the corresponding articular trajectories can cross the bounds defined to preserve the integrity of the robot
Книги з теми "Manipulation industrielle"
Marriott, Norman G. Principles of food sanitation. 2nd ed. New York: Van Nostrand Reinhold, 1989.
Знайти повний текст джерелаMarriott, Norman G. Principles of food sanitation. Westport, Conn: AVI Pub. Co., 1985.
Знайти повний текст джерелаMarriott, Norman G. Principles of food sanitation. 4th ed. Gaithersburg, Md: Aspen, 1999.
Знайти повний текст джерелаMarriott, Norman G. Principles of food sanitation. 3rd ed. New York: Chapman & Hall, 1994.
Знайти повний текст джерелаKrimsky, Sheldon. Biotechnics and society: The riseof industrial genetics. New York: Praeger, 1991.
Знайти повний текст джерелаCochet, Franc̦ois. Economie de la robotisation industrielle: Origines, conditions et perspectives de l'automatisation de la manipulation dans la production. 1987.
Знайти повний текст джерелаBeghin, A. Formulaire de Manipulations de Chimie Générale et de Chimie Industrielle (Notation Atomique). Creative Media Partners, LLC, 2018.
Знайти повний текст джерелаDuwez, Anne-Sophie, and Nicolas Willet. Molecular Manipulation with Atomic Force Microscopy. Taylor & Francis Group, 2011.
Знайти повний текст джерелаDuwez, Anne-Sophie, and Nicolas Willet. Molecular Manipulation with Atomic Force Microscopy. Taylor & Francis Group, 2011.
Знайти повний текст джерелаDuwez, Anne-Sophie, and Nicolas Willet. Molecular Manipulation with Atomic Force Microscopy. Taylor & Francis Group, 2013.
Знайти повний текст джерела