Добірка наукової літератури з теми "Mahler equations"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Mahler equations".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Mahler equations"
Bugeaud, Yann, and Kálmán Győry. "On binomial Thue-Mahler equations." Periodica Mathematica Hungarica 49, no. 2 (December 2004): 25–34. http://dx.doi.org/10.1007/s10998-004-0520-0.
Повний текст джерелаLalín, Matilde N. "Equations for Mahler measure and isogenies." Journal de Théorie des Nombres de Bordeaux 25, no. 2 (2013): 387–99. http://dx.doi.org/10.5802/jtnb.841.
Повний текст джерелаDreyfus, Thomas, Charlotte Hardouin, and Julien Roques. "Hypertranscendence of solutions of Mahler equations." Journal of the European Mathematical Society 20, no. 9 (June 29, 2018): 2209–38. http://dx.doi.org/10.4171/jems/810.
Повний текст джерелаChyzak, Frédéric, Thomas Dreyfus, Philippe Dumas, and Marc Mezzarobba. "Computing solutions of linear Mahler equations." Mathematics of Computation 87, no. 314 (July 2, 2018): 2977–3021. http://dx.doi.org/10.1090/mcom/3359.
Повний текст джерелаNishioka, Kumiko, and Seiji Nishioka. "Autonomous equations of Mahler type and transcendence." Tsukuba Journal of Mathematics 39, no. 2 (March 2016): 251–57. http://dx.doi.org/10.21099/tkbjm/1461270059.
Повний текст джерелаRoques, Julien. "On the reduction modulo $p$ of Mahler equations." Tohoku Mathematical Journal 69, no. 1 (April 2017): 55–65. http://dx.doi.org/10.2748/tmj/1493172128.
Повний текст джерелаKim, Dohyeong. "A modular approach to cubic Thue-Mahler equations." Mathematics of Computation 86, no. 305 (September 15, 2016): 1435–71. http://dx.doi.org/10.1090/mcom/3139.
Повний текст джерелаNishioka, Kumiko, and Seiji Nishioka. "Algebraic theory of difference equations and Mahler functions." Aequationes mathematicae 84, no. 3 (May 11, 2012): 245–59. http://dx.doi.org/10.1007/s00010-012-0132-3.
Повний текст джерелаBugeaud, Yann, and Kálmán Győry. "Bounds for the solutions of Thue-Mahler equations and norm form equations." Acta Arithmetica 74, no. 3 (1996): 273–92. http://dx.doi.org/10.4064/aa-74-3-273-292.
Повний текст джерелаLalin, Matilde, and Mathew Rogers. "Functional equations for Mahler measures of genus-one curves." Algebra & Number Theory 1, no. 1 (February 1, 2007): 87–117. http://dx.doi.org/10.2140/ant.2007.1.87.
Повний текст джерелаДисертації з теми "Mahler equations"
Nguyen, Phu Qui Pierre. "Equations de Mahler et hypertranscendance." Paris 6, 2012. http://www.theses.fr/2012PA066809.
Повний текст джерелаLet K be a field equipped with an endomorphism \sigma. In this thesis, we show that the Galois theory for \sigma-difference equations, well known if \sigma is an automorphism of K, can be adapted to the case when \sigma is not necessarily surjective anymore, by passing to the inversive closure of K. We then use this Galois theory to give an algebraic independence criterion for solutions of first order \sigma-equations. This result allows us to characterize the hyperalgebraic solutions of such \sigma-equations when K is endowed with a derivation which almost commutes with \sigma. Applying our algebraic independence criterion to the Mahler operator setting, we give a galoisian proof of a hypertranscendence theorem of Ke. Nishioka
Poulet, Marina. "Equations de Mahler : groupes de Galois et singularités régulières." Thesis, Lyon, 2021. https://tel.archives-ouvertes.fr/tel-03789627.
Повний текст джерелаThis thesis is devoted to the study of Mahler equations and the solutions of these equations, called Mahler functions. Classic examples of Mahler functions are the generating series of automatic sequences. The first part of this thesis deals with the Galoisian aspects of Mahler equations. Our main result is an analog for Mahler equations of the Schlesinger’s density theorem according to which the monodromy of a regular singular differential equation is Zariski-dense in its differential Galois group. To this end, we start by attaching a pair of connection matrices to each regular singular Mahler equation. These matrices enable us to construct a subgroup of the Galois group of the Mahler equation and we prove that this subgroup is Zariski-dense in the Galois group. The only assumption of this density theorem is the regular singular condition on the considered Mahler equation. The second part of this thesis is devoted to the construction of an algorithm which recognizes whether or not a Mahler equation is regular singular
Randé, Bernard. "Equations fonctionnelles de Mahler et applications aux suites p-régulières." Bordeaux 1, 1992. https://tel.archives-ouvertes.fr/tel-01183330.
Повний текст джерелаHambrook, Kyle David. "Implementation of a Thue-Mahler equation solver." Thesis, University of British Columbia, 2011. http://hdl.handle.net/2429/38244.
Повний текст джерелаDaquila, Richard. "Strongly annular solutions to Mahler's functional equation /." The Ohio State University, 1993. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487844948075255.
Повний текст джерелаMahlke, Jana [Verfasser]. "Validation of 360-Degree Feedback Assessments : Development, Evaluation, and Application of a Multilevel Structural Equation Model / Jana Mahlke." Berlin : Universitätsbibliothek Freie Universität Berlin, 2019. http://d-nb.info/1179782917/34.
Повний текст джерелаЧастини книг з теми "Mahler equations"
Von Haeseler, Fritz, and Wibke Jürgensen. "Automaticity of Solutions of Mahler Equations." In Sequences and their Applications, 228–39. London: Springer London, 1999. http://dx.doi.org/10.1007/978-1-4471-0551-0_16.
Повний текст джерелаSprindžuk, Vladimir G. "The Thue-Mahler equation." In Lecture Notes in Mathematics, 85–110. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/bfb0073791.
Повний текст джерелаBombieri, E. "On the thue-mahler equation." In Diophantine Approximation and Transcendence Theory, 213–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/bfb0078711.
Повний текст джерела"Thue–Mahler equations." In The Algorithmic Resolution of Diophantine Equations, 117–32. Cambridge University Press, 1998. http://dx.doi.org/10.1017/cbo9781107359994.009.
Повний текст джерела"The Thue–Mahler equation." In Exponential Diophantine Equations, 124–40. Cambridge University Press, 1986. http://dx.doi.org/10.1017/cbo9780511566042.013.
Повний текст джерела"Differential equations for families of Mahler measures." In Many Variations of Mahler Measures, 62–72. Cambridge University Press, 2020. http://dx.doi.org/10.1017/9781108885553.006.
Повний текст джерелаLoeckx, J., and H. D. Ehrich. "Algebraic specification of abstract data types." In Handbook of Logic in Computer Science: Volume 5. Algebraic and Logical Structures. Oxford University Press, 2001. http://dx.doi.org/10.1093/oso/9780198537816.003.0007.
Повний текст джерела