Добірка наукової літератури з теми "Magnetron gun"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Magnetron gun".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Magnetron gun"

1

Lawson, W. "Magnetron injection gun scaling." IEEE Transactions on Plasma Science 16, no. 2 (April 1988): 290–95. http://dx.doi.org/10.1109/27.3827.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Prudkovskii, G. P. "A Radial Magnetron Gun." Instruments and Experimental Techniques 47, no. 1 (January 2004): 129–32. http://dx.doi.org/10.1023/b:inet.0000017266.21891.8e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Liu Chong, 刘冲, 赵青 Zhao Qing, 胡以怀 Hu Yihuai, 马春光 Ma Chunguang, 林叶春 Lin Yechun, 王海燕 Wang Haiyan, 李精明 Li Jingming, and 武起立 Wu Qili. "Double-beam magnetron injection gun." High Power Laser and Particle Beams 26, no. 8 (2014): 83005. http://dx.doi.org/10.3788/hplpb20142608.83005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ling, S. H., and H. K. Wong. "High pressure magnetron sputter gun." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 10, no. 3 (May 1992): 573–75. http://dx.doi.org/10.1116/1.578190.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Wang, Ch, Y. S. Yeh, T. T. Yang, H. Y. Chen, S. H. Chen, Y. C. Tsai, L. R. Barnett, and K. R. Chu. "A mechanically tunable magnetron injection gun." Review of Scientific Instruments 68, no. 8 (August 1997): 3031–35. http://dx.doi.org/10.1063/1.1148237.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Zhang, Liang, Laurence J. R. Nix, and Adrian W. Cross. "Magnetron Injection Gun for High-Power Gyroklystron." IEEE Transactions on Electron Devices 67, no. 11 (November 2020): 5151–57. http://dx.doi.org/10.1109/ted.2020.3025747.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Mulligan, Christopher P., Stephen B. Smith, and Gregory N. Vigilante. "Characterization and Comparison of Magnetron Sputtered and Electroplated Gun Bore Coatings." Journal of Pressure Vessel Technology 128, no. 2 (December 21, 2005): 240–45. http://dx.doi.org/10.1115/1.2172963.

Повний текст джерела
Анотація:
The demands to increase range, rate of fire, and muzzle velocity have resulted in increased wear and erosion problems in gun tubes. To increase the service life of gun tubes, a number of bore-coating systems are being considered for replacement of the current electroplated high-contractile chromium coating. Two such coating systems are cylindrical magnetron sputtered (CMS) Cr coatings and CMS Ta∕Cr bilayer coatings. Cylindrical magnetron sputtering is a high-rate vacuum deposition process that has been applied to 120mm tubes. Characterization studies of the electroplated and CMS coatings were completed to determine the applicability of these coating/substrate systems for gun bore protection. Each coating system is subjected to a series of tests, including adhesion, microhardness, compositional analysis, and vented erosion-simulation testing (VES). VES testing is completed via a laboratory combustion chamber that reproduces the transient thermal and chemical environments of tank cannon firing on small chord sections of 120mm coated gun tubes. In addition to the aforementioned characterization tests, metallography, scanning electron microscopy, and energy dispersive spectroscopy are conducted on each specimen before and after VES testing to evaluate the thermal stability of the coating and the severity of the thermal damage imposed. The mechanisms of damage are investigated, including void formation and micropit growth, oxidation and erosion, and thermomechanical cracking. In addition, methods to further increase resistance to thermal damage are discussed to increase the service life of future gun tube systems.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Dong, Kun, Yong Luo, Wei Jiang, Hao Fu, and Shafei Wang. "Magnetron Injection Gun Design for Multifrequency Band Operations." IEEE Transactions on Electron Devices 63, no. 9 (September 2016): 3719–24. http://dx.doi.org/10.1109/ted.2016.2586522.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

MARK BAIRD, J., and WES LAWSON. "Magnetron injection gun (MIG) design for gyrotron applications." International Journal of Electronics 61, no. 6 (December 1986): 953–67. http://dx.doi.org/10.1080/00207218608920932.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Bratman, V. L., A. E. Fedotov, Yu K. Kalynov, and V. N. Manuilov. "Prospective THz Gyrotrons for High-Field Magneto-Resonance Spectroscopy." EPJ Web of Conferences 195 (2018): 01003. http://dx.doi.org/10.1051/epjconf/201819501003.

Повний текст джерела
Анотація:
A high-harmonic Large Orbit Gyrotron and a low-voltage gyrotrino placed inside a spectrometer cryomagnet enable greatly simplify terahertz systems for magneto-resonance spectrometers. Large Orbit Gyrotrons provide a powerful third-harmonic generation at frequencies of 1 THz and 0.394 THz in pulsed and CW regimes, respectively, at significantly lower magnetic fields than conventional gyrotrons. According to simulations the gyrotrino with the voltage of 1.5 kV and frequency of 0.264 THz can generate a power of tens of watts; a possibility to operate at such a low voltage is demonstrated in the existing gyrotron with three-electrode magnetron-injection gun.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Magnetron gun"

1

Marchewka, Chad D. (Chad Daniel). "Non-uniform emission studies of a magnetron injection gun." Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/35610.

Повний текст джерела
Анотація:
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2006.
Includes bibliographical references (leaves 124-139).
This thesis investigates the experimental measurement and theoretical simulation of the effects of azimuthal emission non-uniformity of a 96 kV, 40 amp magnetron injection gun (MIG) used in a gyrotron. The accomplishments of this thesis include: Experimental measurement of the azimuthal emission non-uniformity of the MIG gun; Simulation of the beam quality of the MIG gun using MICHELLE 3-D, the first simulation of a MIG electron beam with azimuthal non-uniformity; Benchmarking the MICHELLE 3-D code to other established gun optics codes; Evaluation of the effects on the velocity spread and pitch factor of azimuthal non-uniformity in the MIG gun, showing that the direct effect on the beam quality is very small; Design, fabrication, and testing in the gyrotron of a capacitive probe system divided into four quadrants to measure azimuthal asymmetries of the electron beam; Use of the capacitive probes to measure low-frequency (100 - 160 MHz) oscillations on the beam, the first measurement of such oscillations in a microsecond pulse length gyrotron; First results on testing a new MIG cathode for emission non-uniformity using a special test chamber built by Calabazas Creek Research.
(cont.) This research will contribute to our understanding of the properties of intense electron beams produced by MIG guns in high-power gyrotrons. MIG's are widely used in gyrotron oscillators and amplifiers for fusion applications to create a beam of gyrating electrons generally operating in the temperature limited regime of emission. Due to this dependence on the temperature of the cathode, variation of the emitter surface temperature will result in inhomogeneous emission. Non-uniform emission is attributed to a deviation in the cathode work function as well. Studies have shown this inhomogeneous beam current density can lead to increased mode competition and velocity spread contributing to an overall decreased efficiency of the gyrotron. This research focuses on the effects on velocity spread and in turn the efficiency of the device from non-uniform current emission. Initially, we measured experimentally the detailed azimuthal non-uniformity profile of an existing 110 GHz gyrotron oscillator at MIT. Using a rotating collector current probe the current density of different emitter angles was extracted. These results agreed fairly well with previous measurements of Anderson et al.
(cont.) This non-uniformity profile was then used with a 3-D simulation code to do the first complete 3-D model from the cathode to the cavity of a MIG. In order to investigate these effects of beam non-uniformity with simulation, we use MICHELLE 3-D developed by SAIC. MICHELLE 3-D has been benchmarked to MICHELLE 2-D and EGUN in the case of a uniform beam. The non-uniform beam measurements are entered into MICHELLE and results are computed at four different azimuthal quadrants of different current densities and for the overall beam, giving special attention to the differences in the beam pitch factor and perpendicular velocity spread. MICHELLE found azimuthal non-uniformity to be a fairly small effect on the overall beam quality. Concurrently with the MICHELLE 3-D simulations, segmented pitch factor probes are implemented to measure the pitch factor in the four azimuthal quadrants. In an attempt to compare with MICHELLE's results, these four capacitive probes measure the induced image charge of different azimuthal sections of the electron beam, enabling an estimation of differences in the pitch factor between quadrants.
(cont.) Unfortunately, the experimental error is found to be quite high (±15%) rendering differences in the pitch factor to be contained within the error boundaries. Though the capacitive probes are found to have too much error for adequate resolution of the pitch factor, they are also used to discover the first observations of low-frequency oscillations in a short pulse MW gyrotron. These frequencies, from 100-160 MHz, are found to be dependent on the beam parameters such as the beam voltage, current, magnetic field, and magnetic compression ratio. The frequency range is remarkably close to the frequency of an electron in the adiabatic trap and the experimental as well as the predicted theoretical oscillation behavior of trapped electrons are discussed. Last, initial progress has been made to test three new cathodes on the Calabazas Creek Research cathode tester. This tester is a dedicated test stand for azimuthal non-uniformity able to obtain a measurement directly at the cathode instead of at the collector end of the device. The setup procedure and results on the first cathode test for the 96 kV, 40 amp gun are reported and future tests are summarized.
by Chad D. Marchewka.
S.M.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ayzatskiy, N., A. Dovbnya, V. Zakutin, N. Reshetnyak, V. Romas'ko, I. Chertishchev, V. N. Boriskin, V. Mitrochenko, A. B. Galat, and I. Khodak. "Experimental investigation on the time characteristics of an electron beam formed in the magnetron gun with a secondari-emission cathode." Thesis, Национальный научный центр "Харьковский физико-технический институт" (ННЦ ХФТИ), 2007. http://openarchive.nure.ua/handle/document/9244.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Junaid, Muhammad. "Magnetron Sputter Epitaxy of GaN Epilayers and Nanorods." Doctoral thesis, Linköpings universitet, Tunnfilmsfysik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-84655.

Повний текст джерела
Анотація:
In this research, electronic-grade GaN(0001) epilayers and nanorods have been grown onto Al2O3(0001) and Si(111) substrates, respectively, by reactive magnetron sputter epitaxy (MSE) using liquid Ga as a sputtering target. MSE, employing ultra high vacuum conditions, high-purity source materials, and lowenergy ion assisted deposition from substrate biasing, is a scalable method, lending itself to large area GaN synthesis. For the growth of epitaxial GaN films two types of sputtering techniques, direct current (DC) magnetron sputtering and high power impulse magnetron sputtering (HiPIMS) were studied. The GaN epitaxial films grown by DC-MSE directly on to Al2O3(0001) in a mixture of Ar and N2, feature low threading dislocation densities on the order of ≤ 1010 cm-2, as determined by transmission electron microscopy (TEM) and modified Williamson-Hall plots. X-ray rocking curves reveal a narrow full-width at half maximum (FWHM) of 1054 arcsec of the 0002 reflection. A sharp 4 K photoluminescence (PL) peak at 3.474 eV with a FWHM of 6.3 meV is attributed to intrinsic GaN band edge emission. GaN(0001) epitaxial films grown on Al2O3 substrates by HiPIMS deposition in a mixed N2/Ar discharge contain both strained domains and almost relaxed domains in the same epilayers, which was determined by a combination of x-ray diffraction (XRD), TEM, atomic force microscopy (AFM), μ-Raman microscopy, μ-PL, and Cathodoluminescence (CL). The almost fully relaxed domains show superior structural and optical properties evidenced by a rocking curves with full width at half maximum of 885 arc sec and a low temperature band edge luminescence at 3.47 eV with the FWHM of 10 meV. The other domain exhibits a 14 times higher isotropic strain component, which is due to higher densities of point and extended defects, resulting from  bombardment of energetic species during growth. Single-crystal GaN(0001) nanorods have been grown directly on Si(111) substrates by DC-MSE in a pure N2environment. The as-grown GaN nanorods exhibit very high crystal quality from bottom to the top without any stacking faults, as determined by TEM. The crystal quality is found to increase with increasing working pressure. XRD results show that all the rods are highly 0001 oriented. All nanorods exhibit an N-polarity, as determined by convergent beam electron diffraction methods. Sharp and well-resolved 4 K μ-PL peaks at ~3.474 eV with a FWHM ranging from 1.7 meV to 22 meV are attributed to the intrinsic GaN band edge emission and corroborate the exceptional crystal quality of the material. Texture measurements reveal that the rods have random in-plane orientation when grown on Si(111) with its native oxide while they have an inplane epitaxial relationship of GaN[11̅20] // Si[1̅10] when grown on Si(111) without the surface oxide. The best structural and optical properties of the rods were achieved at N2 partial pressures of 15 to 20 mTorr. By diluting the reactive N2 working gas in DC-MSE with Ar, it is possible to achieve favorable growth conditions for high quality GaN nanorods onto Si(111) at a low total pressure of 5 mTorr. With an addition of small amount of Ar (0.5 mTorr), we observe an increase in nanorod aspect ratio from 8 to ~35, a decrease in average diameter from 74 nm to 35 nm, and a 2-fold increase in nanorod density compared to pure N2 conditions. By further dilution, the aspect ratio continuously decreases to 14 while the diameter increases to 60 nm and the nanorod density increases to a maximum of 2.4×109 cm-1. The changes in nanorod morphology upon Ar-dilution of the N2 working gas are explained by a transition from N-rich growth conditions, promoting the diffusion induced nanorods growth mode, to Ga-rich growth conditions, in qualitative agreement with GaN nanorods growth by MBE. At N2 partial pressure of 2.5 mTorr, the Ga-target is close to a non-poisoned state which gives the most perfect crystal quality which is reflected in an exceptionally narrow band edge emission at 3.479 eV with a FWHM of only 1.7 meV. Such structural and optical properties are comparable to rods previously grown at 3 to 4 time higher total working pressures of pure N2.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Schiaber, Ziani de Souza. "Nanoestruturas de GaN crescidas pelas técnicas de epitaxia por magnetron sputtering e epitaxia por feixe molecular." Universidade Estadual Paulista (UNESP), 2016. http://hdl.handle.net/11449/138237.

Повний текст джерела
Анотація:
Submitted by Ziani DE SOUZA SCHIABER (zianisouza@yahoo.com.br) on 2016-05-02T20:43:07Z No. of bitstreams: 1 Tese_Final_Ziani_Schiaber.pdf: 4224142 bytes, checksum: 63114f480403729da0d811c82872c3cc (MD5)
Approved for entry into archive by Felipe Augusto Arakaki (arakaki@reitoria.unesp.br) on 2016-05-04T19:24:06Z (GMT) No. of bitstreams: 1 schiaber_zs_dr_bauru.pdf: 4224142 bytes, checksum: 63114f480403729da0d811c82872c3cc (MD5)
Made available in DSpace on 2016-05-04T19:24:06Z (GMT). No. of bitstreams: 1 schiaber_zs_dr_bauru.pdf: 4224142 bytes, checksum: 63114f480403729da0d811c82872c3cc (MD5) Previous issue date: 2016-04-19
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Nanosestruturas de GaN destacam-se devido à baixa densidade de defeitos e consequentemente alta qualidade estrutural e óptica quando comparadas ao material em forma de filme. O entendimento dos mecanismos de formação de nanofios e nanocolunas de GaN por diferentes técnicas é fundamental do ponto de vista da ciência básica e também para o aprimoramento da fabricação de dispositivos eletrônicos e optoeletrônicos baseados nesse material. Neste trabalho discorre-se sobre a preparação e caracterização de nanofios e nanoestruturas de GaN pelas técnicas de epitaxia por magnetron sputtering e epitaxia por feixe molecular em diferentes tipos de substratos. Pela técnica de epitaxia por magnetron sputtering foram obtidos nanocristais e nanocolunas de GaN, além de uma região com camada compacta. Visando criar uma atmosfera propícia para o crescimento de nanoestruturas de GaN não coalescida, atmosfera de N2 puro e um anteparo, situado entre o alvo e o porta-substratos, foram utilizados. O anteparo causou diferença no fluxo incidente de gálio no substrato, ocasionando a formação de diferentes tipos de estruturas. A caracterização das amostras se deu principalmente através de medidas de microscopia eletrônica de varredura, difração de raios X e espectroscopia de fotoluminescência. As nanocolunas, de 220 nm de altura, foram formadas na região distante 2 mm do centro da sombra geométrica do orifício do anteparo e apresentaram orientação [001] perpendicular ao substrato, comumente encontrada em nanofios de GaN depositados por MBE. Em relação aos nanofios obtidos pela técnica de MBE, investigou-se a possibilidade de controlar a densidade de nanofios através de uma camada de Si sobre o GaN–Ga polar visando inibir a coalescência. Diferentes quantidades de Si foram depositadas e a densidade dos nanofios foi diferenciada significativamente. Os nanofios apresentaram densidade média de 108 nanofios/cm2 com 0,60 nm de espessura da camada de Si. Espessuras menores não resultaram no crescimento de nanofios, porém espessuras superiores causaram uma alta densidade de nanofios de 1010 nanofios/cm2 que permaneceu constante, independentemente do tempo de deposição. Medidas de polo por difração de raios X evidenciaram que os nanofios nuclearam-se orientados e em uma camada cristalina de Si ou SixNy. Experimentos de ataque químico com KOH indicaram a polaridade N para o nanofio e as medidas de difração por feixe convergente confirmaram a polaridade de N para o nanofio e Ga para a buffer layer. Os resultados obtidos neste trabalho permitiram um melhor entendimento da nucleação e dos mecanismos de formação de nanoestruturas de GaN, viabilizando maior controle das características dessas nanoestruturas produzidas.
GaN nanowires and nanocolumns stand out due to the low defect density and high structural and optical quality compared to the corresponding thin films. The understanding of the formation mechanism of the different GaN structures using different techniques is critical to improving the manufacture of the electronic and optoelectronic devices based on this material. This thesis focuses on the preparation and characterization of GaN nanowires and nanostructures. The molecular bem epitaxy (MBE) and magnetron sputtering epitaxy (MSE) were used and different substrates were tested. Concerning GaN nanocrystals and nanocolumns obtained by MSE, optimization of the deposition conditions was necessary in order to produce non-coalesced GaN nanostructures. The best conditions were: pure N2 atmosphere, silicon substrate, and a perforated screen placed between the target and the substrate holder. The later produced differences on the Ga flow to the substrate, inducing the formation of different structures, depending on the position of growth spot. Samples were characterized using scanning electron microscopy, X-ray diffraction and photoluminescence spectroscopy. Nanocolumns were observed, mainly in sites corresponding to a disc of radius 2 mm from the geometric centre of the hole. The columns were oriented with the GaN [001] axis perpendicular to the Si (111) substrate surface, situation which is commonly found in GaN nanowires deposited by MBE. Regarding the nanowires prepared by MBE technique, in order to inhibit coalescence and to investigate the possibility of controlling the numerical density of nanowires, we have used Si cap layers on top of the Ga-polar GaN buffer layer. Different amounts of Si have been deposited, and the density of the nanowires was significantly modified. With Si layer thickness of 0.60 nm, the nanowires had an average density of 108 nanowires/cm2 . Lower thickness did not result in the growth of nanowires, but higher thickness caused a high density of nanowires of 1010 nanowires/cm2 which remained constant regardless of the deposition time. X-ray diffraction pole figures showed that the different nanowires grown up in oriented fashion in a crystalline layer of Si or SixNy. Etching with KOH indicated N polarity for the grown nanowires, in spite of the fact that they were grown using Ga polar GaN buffer layers. Measurements by convergent beam electron diffraction confirmed the N polarity to the nanowire and Ga polarity for the buffer layer. Aspects obtained in this study allowed a better understanding of nucleation and nanostructures formation mechanisms of GaN, enabling greater control of the characteristics of these nanostructures produced.
FAPESP: 2011/22664-2
FAPESP: 2013/25625-3
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Schiaber, Ziani de Souza [UNESP]. "Influência da temperatura e do tipo de substrato em filmes de GaN depositados por magnetron sputtering reativo." Universidade Estadual Paulista (UNESP), 2012. http://hdl.handle.net/11449/99683.

Повний текст джерела
Анотація:
Made available in DSpace on 2014-06-11T19:30:18Z (GMT). No. of bitstreams: 0 Previous issue date: 2012-02-24Bitstream added on 2014-06-13T18:40:19Z : No. of bitstreams: 1 schiaber_zs_me_bauru.pdf: 1292517 bytes, checksum: a77a9460815db1ad11c8b75efaad7290 (MD5)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Semicondutores de gap largo são materiais de grande interesse devido às suas amplas aplicações tecnológicas. Entre os semicondutores de gap largo se destaca o GaN que apresenta características desejáveis para tais aplicações, como valor de energia de bandgap de 3,4 eV, alta condutividade térmica e alta dureza. As técnicas convencionais para a produção de filmes finos de GaN são a epitaxia por feixe molecular (MBE) e deposição de vapor químico de precursores metalorgânicos (MOVPE), porém tais técnicas possuem um elevado custo. Este trabalho discorre sobre a preparação e caracterização de filmes policristalinos de GaN pela técnica alternativa de RF magnetron sputtering reativo com diferentes temperaturas e tipos de substratos. Analisou-se o efeito da variação destes dois parâmetros sobre estrutura e propriedades ópticas destes filmes. Utilizou-se medidas de difração de raios-X, microscopia de força atômica, transmitância no ultravioleta/visível/infravermelho e espectroscopia de espalhamento Rutherford (RBS). As medidas realizadas reportaram que tanto a temperatura quanto o tipo de substrato influenciaram na textura de orientação, morfologia e propriedades ópticas dos filmes. Medidas de transmitância no infravermelho indicaram a presença de bandas relacionadas à contaminação com higrogênio e oxigênio em filmes depositados em temperaturas de substratos menores que 500ºC. As referidas contaminações são compatíveis com a análise residual da água detectada no sistema de deposições, e não foram observadas em temperaturas maiores de substrato. Os diafratogramas de raios-X revelaram que somente em temperaturas altas (Ts>500ºC) a textura de orientação dos filmes é influenciada pelo substrato utilizado, podendo apresentar indícios de crescimento epitaxial. As medidas...
Wide bandgap semiconductor materials are of great interest due to the broad range of their technological applications. Among the wide bandgap semiconductor GaN stands out due to its desirable characteristics for such aplications as the value of energy bandgap of 3.4 eV, high thermal conductivity and high hardness. Conventional techniques for producing GaN thin films are the molecular beam epitaxy (MBE) and chemical vapor deposition of metalorganinc precursors (MOVPE), nevertheless these are high techniques. This work brings into focus the preparation and characterization of polycrystalline GaN films by the alternative technique of reactive RF magnetron sputtering with different temperatures and substrates. The effects of varying theses two parameters on structured and optical properties of these films were analysed. Therefore, X-ray diffraction, atomic force microscopy, optical transmittance in the ultraviolet/visible/infrared, and Rutherford Backscattering Spectrometry (RBS) were used to characterize the samples. The results show that temperature, substrate type, and substrate orientation influence the texture, morphology and optical properties of the films. The X-ray diffraction patterns revealed that the orientation texture of films is influenced by the substrate used only at high substrate temperature (Ts>500ºC). This evidences a tendency of epitaxial growth. Besides, the atomic force microscopy at temperature above 500ºC showed that the surface morphology is different for amorphous and crystalline substrates. It also became evident that the decrease of deposition rate and bandgap of the films with increasing deposition temperature is possibly due to nitrogen deficiency by the high rate of desorption at these temperatures. In addition, measurements of trasmisttanc in the infrared Fourier Transform indicated the presence... (Complete abstract click electronic access below)
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Schiaber, Ziani de Souza. "Influência da temperatura e do tipo de substrato em filmes de GaN depositados por magnetron sputtering reativo /." Bauru : [s.n.], 2012. http://hdl.handle.net/11449/99683.

Повний текст джерела
Анотація:
Orientador: José Humberto Dias da Silva
Banca: Mario Antonio Bica de Moraes
Banca: Jose Roberto Ribeiro Bortoleto
Programa de Pós Graduação em Ciência e Tecnologia de Materiais, PosMat, tem carater institucional e integra as atividades de pequisa em materiais de diversos campi
Resumo: Semicondutores de gap largo são materiais de grande interesse devido às suas amplas aplicações tecnológicas. Entre os semicondutores de gap largo se destaca o GaN que apresenta características desejáveis para tais aplicações, como valor de energia de bandgap de 3,4 eV, alta condutividade térmica e alta dureza. As técnicas convencionais para a produção de filmes finos de GaN são a epitaxia por feixe molecular (MBE) e deposição de vapor químico de precursores metalorgânicos (MOVPE), porém tais técnicas possuem um elevado custo. Este trabalho discorre sobre a preparação e caracterização de filmes policristalinos de GaN pela técnica alternativa de RF magnetron sputtering reativo com diferentes temperaturas e tipos de substratos. Analisou-se o efeito da variação destes dois parâmetros sobre estrutura e propriedades ópticas destes filmes. Utilizou-se medidas de difração de raios-X, microscopia de força atômica, transmitância no ultravioleta/visível/infravermelho e espectroscopia de espalhamento Rutherford (RBS). As medidas realizadas reportaram que tanto a temperatura quanto o tipo de substrato influenciaram na textura de orientação, morfologia e propriedades ópticas dos filmes. Medidas de transmitância no infravermelho indicaram a presença de bandas relacionadas à contaminação com higrogênio e oxigênio em filmes depositados em temperaturas de substratos menores que 500ºC. As referidas contaminações são compatíveis com a análise residual da água detectada no sistema de deposições, e não foram observadas em temperaturas maiores de substrato. Os diafratogramas de raios-X revelaram que somente em temperaturas altas (Ts>500ºC) a textura de orientação dos filmes é influenciada pelo substrato utilizado, podendo apresentar indícios de crescimento epitaxial. As medidas... (Resumo completo, clicar acesso eletrônico abaixo)
Abstract: Wide bandgap semiconductor materials are of great interest due to the broad range of their technological applications. Among the wide bandgap semiconductor GaN stands out due to its desirable characteristics for such aplications as the value of energy bandgap of 3.4 eV, high thermal conductivity and high hardness. Conventional techniques for producing GaN thin films are the molecular beam epitaxy (MBE) and chemical vapor deposition of metalorganinc precursors (MOVPE), nevertheless these are high techniques. This work brings into focus the preparation and characterization of polycrystalline GaN films by the alternative technique of reactive RF magnetron sputtering with different temperatures and substrates. The effects of varying theses two parameters on structured and optical properties of these films were analysed. Therefore, X-ray diffraction, atomic force microscopy, optical transmittance in the ultraviolet/visible/infrared, and Rutherford Backscattering Spectrometry (RBS) were used to characterize the samples. The results show that temperature, substrate type, and substrate orientation influence the texture, morphology and optical properties of the films. The X-ray diffraction patterns revealed that the orientation texture of films is influenced by the substrate used only at high substrate temperature (Ts>500ºC). This evidences a tendency of epitaxial growth. Besides, the atomic force microscopy at temperature above 500ºC showed that the surface morphology is different for amorphous and crystalline substrates. It also became evident that the decrease of deposition rate and bandgap of the films with increasing deposition temperature is possibly due to nitrogen deficiency by the high rate of desorption at these temperatures. In addition, measurements of trasmisttanc in the infrared Fourier Transform indicated the presence... (Complete abstract click electronic access below)
Mestre
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ferreira, Guilherme [UNESP]. "Estudo das propriedades ópticas e vibracionais de filmes de GaN dopados com Mn elaborados por RF Magnetron Sputtering Reativo." Universidade Estadual Paulista (UNESP), 2014. http://hdl.handle.net/11449/116018.

Повний текст джерела
Анотація:
Made available in DSpace on 2015-03-03T11:52:52Z (GMT). No. of bitstreams: 0 Previous issue date: 2014-05-27Bitstream added on 2015-03-03T12:06:56Z : No. of bitstreams: 1 000808135.pdf: 2777565 bytes, checksum: e57516b1335c820bcfe63c7183d37b8b (MD5)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
O nitreto de Gálio (GaN) têm recebido grande atração nos últimos anos devido a sua possível aplicação em semicondutor magnético diluído (DMS) pela incorporação de íons como o Manganês (Mn). No entanto, a preparação destes tipos de amostras tem sido conseguida nos últimos anos usando Epitaxia por Feixe Molecular (Molecular Beam Epitaxy, MBE) e Deposição de Vapor Químico com precursoresMetalorgânicos (Metal Organic Chemical Vapor Deposition, MOCVD), que são técnicas de crescimento muito caras e necessitam de condições especiais de substrato, tal como alta temperatura de crescimento. Uma alternativa é a utilização de técnicas de crescimento como o Sputerring. A vantagem desta técnica de sputerring é o baixo custo e a possibilidade de crescimento de filme em temperatura relativamente baixa. Neste trabalho, foram realizadas medidas de fotoluminescência, espectroscopia Raman e espectroscopia no infravermelho nos filmes de Ga1-xMnxN e GaN obtidos por RF Magnetron Sputtering Reativo. Os espectros de fotoluminescência proporcionaram o entendimento da concentração máxima de Mn incorporado nos filmes de Ga1-xMnxN. Ainda, os dados revelaram a presença de emissões de fotoluminescência em aproximadamente 3,31 eV atribuída à incorporação de Mn, em aproximadamente 3,35 eV atribuída à contaminação por Hidrogênio e em 3,36 eV atribuída a éxciton ligado a falta de empilhamento. Os dados de fotoluminescência são consistentes com os dados de espectroscopia Raman que mostram o efeito da tensão sobre os modos vibracionais com o aumento de concentração de Mn. Isto ocorre devido à diferença de raio iônico do Mn em relação ao Ga que gera tensão na estrutura do cristal. Estes resultados proporcionaram um melhor entendimento do processo de crescimento de filmes de GaN e Ga1-xMnxN por RF Magnetron Sputtering Reativo
Galium nitride (GaN) has gained an unprecedented attention in the last years due to their possible application in dilute magnetic semiconductor (DMS) by incorporation of ions like Mn. However, the preparation of these samples is very complicated and has been achieved only in the past few years by using Molecular Beam Epitaxy and Metal Organic Chemical Vapor Deposition, which are very expensive techniques and require special condition like high temperature of growth. One alternative route is to use growth techniques like reactive magnetron sputtering. The advantage of sputtering technique is the low cost and the possibility to grow film at relatively low temperature. In this work, we perform measurements of photoluminescence, Raman spectroscopy and infrared spectroscopy in Ga1-xMnxN and GaN films obtained by RF Reactive Magnetron Sputtering. The photoluminescence spectra have provided he understanding of the maximum Mn concentration in Ga1-xMnxN films. In addition, the data revealed the presence of photoluminescence emission, around 3.31 eV assigned by incorporation of Mn, around 3.35eV assigned by hydrogen and 3.36eV assigned by exciton bound to stacking faults. The photoluminescence data is consistent with Raman spectroscopy data that show the tension effect at the vibrational models with increasing Mn concentration. This is due to the difference in ionic radius of Mn relative to Ga that generates tensions in the crystal lattice. These allow understanding the growth process of GaN and Ga1-xMnxN films by RF Reactive Magnetron Sputtering
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ferreira, Guilherme. "Estudo das propriedades ópticas e vibracionais de filmes de GaN dopados com Mn elaborados por RF Magnetron Sputtering Reativo /." Bauru, 2014. http://hdl.handle.net/11449/116018.

Повний текст джерела
Анотація:
Orientador: Américo Sheitiro Tabata
Banca: Virgilio de Carvalho dos Anjos
Banca: Alexandre Levine
Banca: Luis Vicente de Andrade Scalvi
Banca: Dayse Iara dos Santos
Resumo: O nitreto de Gálio (GaN) têm recebido grande atração nos últimos anos devido a sua possível aplicação em semicondutor magnético diluído (DMS) pela incorporação de íons como o Manganês (Mn). No entanto, a preparação destes tipos de amostras tem sido conseguida nos últimos anos usando Epitaxia por Feixe Molecular ("Molecular Beam Epitaxy", MBE) e Deposição de Vapor Químico com precursoresMetalorgânicos ("Metal Organic Chemical Vapor Deposition", MOCVD), que são técnicas de crescimento muito caras e necessitam de condições especiais de substrato, tal como alta temperatura de crescimento. Uma alternativa é a utilização de técnicas de crescimento como o "Sputerring". A vantagem desta técnica de "sputerring" é o baixo custo e a possibilidade de crescimento de filme em temperatura relativamente baixa. Neste trabalho, foram realizadas medidas de fotoluminescência, espectroscopia Raman e espectroscopia no infravermelho nos filmes de Ga1-xMnxN e GaN obtidos por RF Magnetron Sputtering Reativo. Os espectros de fotoluminescência proporcionaram o entendimento da concentração máxima de Mn incorporado nos filmes de Ga1-xMnxN. Ainda, os dados revelaram a presença de emissões de fotoluminescência em aproximadamente 3,31 eV atribuída à incorporação de Mn, em aproximadamente 3,35 eV atribuída à contaminação por Hidrogênio e em 3,36 eV atribuída a éxciton ligado a falta de empilhamento. Os dados de fotoluminescência são consistentes com os dados de espectroscopia Raman que mostram o efeito da tensão sobre os modos vibracionais com o aumento de concentração de Mn. Isto ocorre devido à diferença de raio iônico do Mn em relação ao Ga que gera tensão na estrutura do cristal. Estes resultados proporcionaram um melhor entendimento do processo de crescimento de filmes de GaN e Ga1-xMnxN por RF Magnetron Sputtering Reativo
Abstract: Galium nitride (GaN) has gained an unprecedented attention in the last years due to their possible application in dilute magnetic semiconductor (DMS) by incorporation of ions like Mn. However, the preparation of these samples is very complicated and has been achieved only in the past few years by using Molecular Beam Epitaxy and Metal Organic Chemical Vapor Deposition, which are very expensive techniques and require special condition like high temperature of growth. One alternative route is to use growth techniques like reactive magnetron sputtering. The advantage of sputtering technique is the low cost and the possibility to grow film at relatively low temperature. In this work, we perform measurements of photoluminescence, Raman spectroscopy and infrared spectroscopy in Ga1-xMnxN and GaN films obtained by RF Reactive Magnetron Sputtering. The photoluminescence spectra have provided he understanding of the maximum Mn concentration in Ga1-xMnxN films. In addition, the data revealed the presence of photoluminescence emission, around 3.31 eV assigned by incorporation of Mn, around 3.35eV assigned by hydrogen and 3.36eV assigned by exciton bound to stacking faults. The photoluminescence data is consistent with Raman spectroscopy data that show the tension effect at the vibrational models with increasing Mn concentration. This is due to the difference in ionic radius of Mn relative to Ga that generates tensions in the crystal lattice. These allow understanding the growth process of GaN and Ga1-xMnxN films by RF Reactive Magnetron Sputtering
Doutor
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Tanaka, Hiroki. "Development of MOKE Spectrometer for Magneto-optical Studies of Novel Magnetic Materials and Quantum Structures." Ohio University / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1226965026.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Hsu, Hsin-Lu, and 許欣璐. "Simulation Study of Coupler and Magnetron Injection Gun." Thesis, 2001. http://ndltd.ncl.edu.tw/handle/21469308680170836015.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Magnetron gun"

1

Hugenschmidt, M. "Electro-Optical and Magneto-Optical Studies of Cold Cathode Electron Beam Gun Discharges." In Fast Electrical and Optical Measurements, 27–39. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-017-0445-8_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Shi, Feng. "GaN Nanowires Fabricated by Magnetron Sputtering Deposition." In Nanowires - Fundamental Research. InTech, 2011. http://dx.doi.org/10.5772/16355.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Koizumi, A., B. Mitchell, V. Dierolf, and Y. Fujiwara. "Growth of Eu-doped GaN and its magneto-optical properties." In Rare Earth and Transition Metal Doping of Semiconductor Materials, 259–80. Elsevier, 2016. http://dx.doi.org/10.1016/b978-0-08-100041-0.00008-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Garcia-Perez, Roman, Karen Lozano, Jorge Castillo, and Hasina F. Huq. "A Study of the Elemental and Surface Characterization of AlGaN/GaN HEMT by Magnetron Sputtering System." In Handbook for III-V High Electron Mobility Transistor Technologies, 341–57. CRC Press, 2019. http://dx.doi.org/10.1201/9780429460043-13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Magnetron gun"

1

Ives, R. Lawrence, George Collins, and Philipp Borchard. "Magnetron injection gun measurements." In 2008 33rd International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2008). IEEE, 2008. http://dx.doi.org/10.1109/icimw.2008.4665636.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Siva Rao, P. V., P. Srikrishna, Naveen K. Sharma, and S. Subramanian. "Thermal analysis of Magnetron Injection Gun." In 2009 IEEE International Vacuum Electronics Conference (IVEC). IEEE, 2009. http://dx.doi.org/10.1109/ivelec.2009.5193600.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Tang, Chao, Hui Wang, Zhiyuan Jin, Xinjian Niu, Yinghui Liu, and Jianwei Liu. "Inverse Magnetron Injection Gun for 170GHz Gyrotron." In 2020 IEEE 21st International Conference on Vacuum Electronics (IVEC). IEEE, 2020. http://dx.doi.org/10.1109/ivec45766.2020.9520478.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Yefimov, Boris P., Alexei N. Kuleshov, and Valentine F. Zhiglo. "Adiabatic Magnetron Injection Gun for Low-Voltage Gyrotron." In 2007 IEEE International Vacuum Electronics Conference. IEEE, 2007. http://dx.doi.org/10.1109/ivelec.2007.4283317.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lei, Chaojun, Sheng Yu, Xinjian Niu, Yinghui Liu, Jianhua Guo, Shenyong Hou, and Yusheng Zhao. "Design and simulation of 94GHz Magnetron Injection Gun." In 2012 IEEE Thirteenth International Vacuum Electronics Conference (IVEC). IEEE, 2012. http://dx.doi.org/10.1109/ivec.2012.6262255.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Yamaguchi, Y., Y. Tatematsu, T. Saito, V. N. Manuilov, J. Kasa, and M. Kotera. "Magnetron injection gun for a multi-frequency gyrotron." In 2015 40th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz). IEEE, 2015. http://dx.doi.org/10.1109/irmmw-thz.2015.7327911.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Feng, Shushu, Wei Jiang, Hao Li, and Yelei Yao. "Computational design and optimization of a magnetron injection gun." In 2017 Eighteenth International Vacuum Electronics Conference (IVEC). IEEE, 2017. http://dx.doi.org/10.1109/ivec.2017.8289595.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Tang, Chao, Hui Wang, Xinjian Niu, Dinghai Wan, Yinghui Liu, and Jianwei Liu. "Thermal Analysis of Magnetron Injection Gun for 170GHz Gyrotron." In 2019 12th UK-Europe-China Workshop on Millimeter Waves and Terahertz Technologies (UCMMT). IEEE, 2019. http://dx.doi.org/10.1109/ucmmt47867.2019.9008271.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Mishra, Alok, A. Bera, and M. V. Kartikeyan. "Design of Magnetron Injection Gun for 140GHz, 1MW Gyrotron." In 2020 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT). IEEE, 2020. http://dx.doi.org/10.1109/conecct50063.2020.9198459.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Tsai, Cheng-Hung, Tsun-Hsu Chang, and Toshitaka Idehara. "Magnetron Injection Gun for 203GHz Reflective Gyro-BWO System." In 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2018). IEEE, 2018. http://dx.doi.org/10.1109/irmmw-thz.2018.8510050.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Magnetron gun"

1

Read, Michael E., Wesley Lawson, George Miram, David Marsden, and Philipp Borchard. High peak power gyroklystron with an inverted magnetron injection gun. Office of Scientific and Technical Information (OSTI), December 2005. http://dx.doi.org/10.2172/861208.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії