Статті в журналах з теми "Magnetoresponsive"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Magnetoresponsive.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Magnetoresponsive".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Lei, Yi, Zhizhi Sheng, Jian Zhang, Jing Liu, Wei Lv, and Xu Hou. "Building Magnetoresponsive Composite Elastomers for Bionic Locomotion Applications." Journal of Bionic Engineering 17, no. 3 (May 2020): 405–20. http://dx.doi.org/10.1007/s42235-020-0033-4.

Повний текст джерела
Анотація:
AbstractThe ability of natural living organisms, transferring deformations into locomotion, has attracted researchers’ increasing attention in building bionic actuators and smart systems. As a typical category of functional materials, magnetoresponsive composite elastomers, comprised of flexible elastomer matrices and rigid magnetic particles, have been playing critical roles in this field of research due to their dynamic changes in response to applied magnetic field direction and intensity. The magnetically driven bionic actuators based on magnetoresponsive composite elastomers have been developed to achieve some specific functions in some special fields. For instance, under the control of the applied magnetic field, the bionic actuators can not only generate time-varying deformation, but also motion in diverse environments, suggesting new possibilities for target gripping and directional transporting especially in the field of artificial soft robots and biological engineering. Therefore, this review comprehensively introduces the component, fabrication, and bionic locomotion application of magnetoresponsive composite elastomers. Moreover, existing challenges and future perspectives are further discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kulshrestha, Akshay, Sanjay Sharma, Kuldeep Singh, and Arvind Kumar. "Magnetoresponsive biocomposite hydrogels comprising gelatin and valine based magnetic ionic liquid surfactant as controlled release nanocarrier for drug delivery." Materials Advances 3, no. 1 (2022): 484–92. http://dx.doi.org/10.1039/d1ma00758k.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Molchanov, Vyacheslav S., Vera A. Pletneva, Ilya A. Klepikov, Irina V. Razumovskaya, and Olga E. Philippova. "Soft magnetic nanocomposites based on adaptive matrix of wormlike surfactant micelles." RSC Advances 8, no. 21 (2018): 11589–97. http://dx.doi.org/10.1039/c8ra01014e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Xiong, Xinhong, Lulu Xue, Li Yang, Shihua Dong, and Jiaxi Cui. "Bio-inspired semi-infused adaptive surface with reconfigurable topography for on-demand droplet manipulation." Materials Chemistry Frontiers 5, no. 14 (2021): 5382–89. http://dx.doi.org/10.1039/d1qm00399b.

Повний текст джерела
Анотація:
The topography of magnetoresponsive semi-infused adaptive surface is reversibly switched between semi-infused and oil-accumulated states for stimuli-free pinning of droplets in a tilted state and on-demand motion of liquid droplets.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Chaudhary, Gaurav, N. Ashwin Bharadwaj, Paul V. Braun, and Randy H. Ewoldt. "Exploiting Nonlinear Elasticity for Anomalous Magnetoresponsive Stiffening." ACS Macro Letters 9, no. 11 (October 27, 2020): 1632–37. http://dx.doi.org/10.1021/acsmacrolett.0c00614.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Lee, Seung Yeol, Jongkook Choi, Jong-Ryul Jeong, Jung H. Shin, and Shin-Hyun Kim. "Magnetoresponsive Photonic Microspheres with Structural Color Gradient." Advanced Materials 29, no. 13 (February 6, 2017): 1605450. http://dx.doi.org/10.1002/adma.201605450.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Fischer, Viktor, Markus B. Bannwarth, Gerhard Jakob, Katharina Landfester, and Rafael Muñoz-Espí. "Luminescent and Magnetoresponsive Multifunctional Chalcogenide/Polymer Hybrid Nanoparticles." Journal of Physical Chemistry C 117, no. 11 (March 12, 2013): 5999–6005. http://dx.doi.org/10.1021/jp400277k.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Abdalla, Ahmed M., Abdel Rahman Abdel Fattah, Suvojit Ghosh, and Ishwar K. Puri. "Magnetoresponsive conductive colloidal suspensions with magnetized carbon nanotubes." Journal of Magnetism and Magnetic Materials 421 (January 2017): 292–99. http://dx.doi.org/10.1016/j.jmmm.2016.08.031.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Gokhale, Ankush A., Jue Lu, and Ilsoon Lee. "Immobilization of cellulase on magnetoresponsive graphene nano-supports." Journal of Molecular Catalysis B: Enzymatic 90 (June 2013): 76–86. http://dx.doi.org/10.1016/j.molcatb.2013.01.025.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Shang, Luoran, Fengqi Shangguan, Yao Cheng, Jie Lu, Zhuoying Xie, Yuanjin Zhao, and Zhongze Gu. "Microfluidic generation of magnetoresponsive Janus photonic crystal particles." Nanoscale 5, no. 20 (2013): 9553. http://dx.doi.org/10.1039/c3nr03218c.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Sim, Jae Young, Gun Ho Lee, and Shin-Hyun Kim. "Microfluidic Design of Magnetoresponsive Photonic Microcylinders with Multicompartments." Small 11, no. 37 (July 14, 2015): 4938–45. http://dx.doi.org/10.1002/smll.201501325.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Lee, Hye Soo, Ju Hyeon Kim, Joon-Seok Lee, Jae Young Sim, Jung Yoon Seo, You-Kwan Oh, Seung-Man Yang, and Shin-Hyun Kim. "Magnetoresponsive Discoidal Photonic Crystals Toward Active Color Pigments." Advanced Materials 26, no. 33 (May 28, 2014): 5801–7. http://dx.doi.org/10.1002/adma.201401155.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Savva, Ioanna, George Krekos, Alina Taculescu, Oana Marinica, Ladislau Vekas, and Theodora Krasia-Christoforou. "Fabrication and Characterization of Magnetoresponsive Electrospun Nanocomposite Membranes Based on Methacrylic Random Copolymers and Magnetite Nanoparticles." Journal of Nanomaterials 2012 (2012): 1–9. http://dx.doi.org/10.1155/2012/578026.

Повний текст джерела
Анотація:
Magnetoresponsive polymer-based fibrous nanocomposites belonging to the broad category of stimuli-responsive materials, is a relatively new class of “soft” composite materials, consisting of magnetic nanoparticles embedded within a polymeric fibrous matrix. The presence of an externally applied magnetic field influences the properties of these materials rendering them useful in numerous technological and biomedical applications including sensing, magnetic separation, catalysis and magnetic drug delivery. This study deals with the fabrication and characterization of magnetoresponsive nanocomposite fibrous membranes consisting of methacrylic random copolymers based on methyl methacrylate (MMA) and 2-(acetoacetoxy)ethyl methacrylate (AEMA) (MMA-co-AEMA) and oleic acid-coated magnetite (OA·Fe3O4) nanoparticles. The AEMA moieties containingβ-ketoester side-chain functionalities were introduced for the first time in this type of materials, because of their inherent ability to bind effectively onto inorganic surfaces providing an improved stabilization. For membrane fabrication the electrospinning technique was employed and a series of nanocomposite membranes was prepared in which the polymer content was kept constant and only the inorganic (OA·Fe3O4) content varied. Further to the characterization of these materials in regards to their morphology, composition and thermal properties, assessment of their magnetic characteristics disclosed tunable superparamagnetic behaviour at ambient temperature.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Merazzo, Karla J. "Design, Fabrication, and Characterization of Magnetoresponsive Materials and Devices." Materials 15, no. 20 (October 14, 2022): 7183. http://dx.doi.org/10.3390/ma15207183.

Повний текст джерела
Анотація:
Modern technology has made an elegant link between smart materials and interlinked devices thanks to the interplay between materials science, smart sensors and devices, artificial intelligence, and a fierce imagination; this has allowed us to reach every corner of our society [...]
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Arias, José L., L. Harivardhan Reddy, and Patrick Couvreur. "Magnetoresponsive Squalenoyl Gemcitabine Composite Nanoparticles for Cancer Active Targeting." Langmuir 24, no. 14 (July 2008): 7512–19. http://dx.doi.org/10.1021/la800547s.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Katagiri, Kiyofumi, Yuji Imai, and Kunihito Koumoto. "Variable on-demand release function of magnetoresponsive hybrid capsules." Journal of Colloid and Interface Science 361, no. 1 (September 2011): 109–14. http://dx.doi.org/10.1016/j.jcis.2011.05.035.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Sharifianjazi, Fariborz, Mohammad Irani, Amirhossein Esmaeilkhanian, Leila Bazli, Mehdi Shahedi Asl, Ho Won Jang, Soo Young Kim, Seeram Ramakrishna, Mohammadreza Shokouhimehr, and Rajender S. Varma. "Polymer incorporated magnetic nanoparticles: Applications for magnetoresponsive targeted drug delivery." Materials Science and Engineering: B 272 (October 2021): 115358. http://dx.doi.org/10.1016/j.mseb.2021.115358.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Lee, Nohyun, Dongwon Yoo, Daishun Ling, Mi Hyeon Cho, Taeghwan Hyeon, and Jinwoo Cheon. "Iron Oxide Based Nanoparticles for Multimodal Imaging and Magnetoresponsive Therapy." Chemical Reviews 115, no. 19 (August 7, 2015): 10637–89. http://dx.doi.org/10.1021/acs.chemrev.5b00112.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Kaufman, Gilad, Karla A. Montejo, Arthur Michaut, Paweł W. Majewski, and Chinedum O. Osuji. "Photoresponsive and Magnetoresponsive Graphene Oxide Microcapsules Fabricated by Droplet Microfluidics." ACS Applied Materials & Interfaces 9, no. 50 (December 11, 2017): 44192–98. http://dx.doi.org/10.1021/acsami.7b14448.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Kim, Shin-Hyun, Jae Young Sim, Jong-Min Lim, and Seung-Man Yang. "Magnetoresponsive Microparticles with Nanoscopic Surface Structures for Remote-Controlled Locomotion." Angewandte Chemie International Edition 49, no. 22 (April 14, 2010): 3786–90. http://dx.doi.org/10.1002/anie.201001031.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Zhou, Yi, Shilin Huang, and Xuelin Tian. "Magnetoresponsive Surfaces for Manipulation of Nonmagnetic Liquids: Design and Applications." Advanced Functional Materials 30, no. 6 (November 18, 2019): 1906507. http://dx.doi.org/10.1002/adfm.201906507.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Kim, Shin-Hyun, Jae Young Sim, Jong-Min Lim, and Seung-Man Yang. "Magnetoresponsive Microparticles with Nanoscopic Surface Structures for Remote-Controlled Locomotion." Angewandte Chemie 122, no. 22 (April 14, 2010): 3874–78. http://dx.doi.org/10.1002/ange.201001031.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Flores-Rojas, Guadalupe Gabriel, Felipe López-Saucedo, Ricardo Vera-Graziano, Eduardo Mendizabal, and Emilio Bucio. "Magnetic Nanoparticles for Medical Applications: Updated Review." Macromol 2, no. 3 (August 2, 2022): 374–90. http://dx.doi.org/10.3390/macromol2030024.

Повний текст джерела
Анотація:
Magnetic nanoparticles (MNPs) represent an advanced tool in the medical field because they can be modified according to biomedical approaches and guided by an external magnetic field in the human body. The first objective of this review is to exemplify some promising applications in the medical field, including smart drug-delivery systems, therapies against cancer cells, radiotherapy, improvements in diagnostics using magnetic resonance imaging (MRI), and tissue engineering. Complementarily, the second objective is to illustrate the mechanisms of action and theoretical foundations related to magnetoresponsive materials.
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Katagiri, Kiyofumi, Masato Nakamura, and Kunihito Koumoto. "Magnetoresponsive Smart Capsules Formed with Polyelectrolytes, Lipid Bilayers and Magnetic Nanoparticles." ACS Applied Materials & Interfaces 2, no. 3 (March 3, 2010): 768–73. http://dx.doi.org/10.1021/am900784a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Yoo, Ami, Gwangjun Go, Kim Tien Nguyen, Kyungmin Lee, Hyun-Ki Min, Byungjeon Kang, Chang-Sei Kim, Jiwon Han, Jong-Oh Park, and Eunpyo Choi. "Magnetoresponsive stem cell spheroid-based cartilage recovery platform utilizing electromagnetic fields." Sensors and Actuators B: Chemical 307 (March 2020): 127569. http://dx.doi.org/10.1016/j.snb.2019.127569.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Sánchez, Pedro A., Elena S. Pyanzina, Ekaterina V. Novak, Joan J. Cerdà, Tomàs Sintes, and Sofia S. Kantorovich. "Magnetic filament brushes: tuning the properties of a magnetoresponsive supracolloidal coating." Faraday Discussions 186 (2016): 241–63. http://dx.doi.org/10.1039/c5fd00133a.

Повний текст джерела
Анотація:
We present a theoretical study on the design of a supramolecular magnetoresponsive coating. The coating is formed by a relatively dense array of supracolloidal magnetic filaments grafted to a surface in a polymer brush-like arrangement. In order to determine and optimise the properties of the magnetic filament brush, we perform extensive computer simulations with a coarse-grained model that takes into account the correlations between the magnetic moments of the particles and the backbone crosslinks. We show that the self-assembly of magnetic beads from neighbouring filaments defines the equilibrium structural properties of the complete brush. In order to control this self-assembly, we highlight two external stimuli that can lead to significant effects: temperature of the system and an externally applied magnetic field. Our study reveals self-assembly scenarios inherently driven by the crosslinking and grafting constraints. Finally, we explain the mechanisms of structural changeovers in the magnetic filament brushes and confirm the possibility of controlling them by changing the temperature or the intensity of an external magnetic field.
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Kim, Young Jae, Ying Dan Liu, Yongsok Seo, and Hyoung Jin Choi. "Pickering-Emulsion-Polymerized Polystyrene/Fe2O3 Composite Particles and Their Magnetoresponsive Characteristics." Langmuir 29, no. 16 (April 11, 2013): 4959–65. http://dx.doi.org/10.1021/la400523w.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Zhu, Hanlin, Yifeng He, Yuan Wang, Yan Zhao, and Chao Jiang. "Mechanically‐Guided 4D Printing of Magnetoresponsive Soft Materials across Different Length Scale." Advanced Intelligent Systems 4, no. 3 (October 14, 2021): 2100137. http://dx.doi.org/10.1002/aisy.202100137.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Marten, Gernot U., Thorsten Gelbrich, Helmut Ritter, and Annette M. Schmidt. "A Magnetoresponsive Drug Delivery System via $\beta$-Cyclodextrin Functionalized Magnetic Polymer Brushes." IEEE Transactions on Magnetics 49, no. 1 (January 2013): 364–72. http://dx.doi.org/10.1109/tmag.2012.2224649.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Bernad, Sandor I., Izabell Craciunescu, Gurpreet S. Sandhu, Dan Dragomir-Daescu, Etelka Tombacz, Ladislau Vekas, and Rodica Turcu. "Fluid targeted delivery of functionalized magnetoresponsive nanocomposite particles to a ferromagnetic stent." Journal of Magnetism and Magnetic Materials 519 (February 2021): 167489. http://dx.doi.org/10.1016/j.jmmm.2020.167489.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Pitakchatwong, Chutamart, and Suwabun Chirachanchai. "Thermo-Magnetoresponsive Dual Function Nanoparticles: An Approach for Magnetic Entrapable–Releasable Chitosan." ACS Applied Materials & Interfaces 9, no. 12 (March 14, 2017): 10398–407. http://dx.doi.org/10.1021/acsami.6b14676.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Amali, Arlin Jose, Padmanapan Saravanan, and Rohit Kumar Rana. "Tailored Anisotropic Magnetic Chain Structures Hierarchically Assembled from Magnetoresponsive and Fluorescent Components." Angewandte Chemie International Edition 50, no. 6 (January 11, 2011): 1318–21. http://dx.doi.org/10.1002/anie.201005619.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Amali, Arlin Jose, Padmanapan Saravanan, and Rohit Kumar Rana. "Tailored Anisotropic Magnetic Chain Structures Hierarchically Assembled from Magnetoresponsive and Fluorescent Components." Angewandte Chemie 123, no. 6 (January 11, 2011): 1354–57. http://dx.doi.org/10.1002/ange.201005619.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Wang, Yunpeng, Yu Zheng, Kai Zhao, Suli Wu, Benzhi Ju, Shufen Zhang, and Wenbin Niu. "Magnetoresponsive Photonic Micromotors and Wireless Sensing Microdevices Based on Robust Magnetic Photonic Microspheres." Industrial & Engineering Chemistry Research 60, no. 48 (November 19, 2021): 17575–84. http://dx.doi.org/10.1021/acs.iecr.1c03981.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Li, G. J., E. K. Liu, H. G. Zhang, Y. J. Zhang, J. L. Chen, W. H. Wang, H. W. Zhang, G. H. Wu, and S. Y. Yu. "Phase diagram, ferromagnetic martensitic transformation and magnetoresponsive properties of Fe-doped MnCoGe alloys." Journal of Magnetism and Magnetic Materials 332 (April 2013): 146–50. http://dx.doi.org/10.1016/j.jmmm.2012.12.001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Tombácz, Etelka, Rodica Turcu, Vlad Socoliuc, and Ladislau Vékás. "Magnetic iron oxide nanoparticles: Recent trends in design and synthesis of magnetoresponsive nanosystems." Biochemical and Biophysical Research Communications 468, no. 3 (December 2015): 442–53. http://dx.doi.org/10.1016/j.bbrc.2015.08.030.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Bernad, Sandor I., and Elena Bernad. "Magnetic Forces by Permanent Magnets to Manipulate Magnetoresponsive Particles in Drug-Targeting Applications." Micromachines 13, no. 11 (October 25, 2022): 1818. http://dx.doi.org/10.3390/mi13111818.

Повний текст джерела
Анотація:
This study presents preliminary computational and experimental findings on two alternative permanent magnet configurations helpful for magnetic drug administration in vivo. A numerical simulation and a direct experimental measurement of the magnetic induction on the magnet system’s surface were used to map the magnetic field. In addition, the ferrite-type (grade Y35) and permanent neodymium magnets (grade N52) to produce powerful magnetic forces were also examined analytically and quantitatively. Ansys-Maxwell software and Finite Element Method Magnetism (FEMM) version 4.2 were used for all numerical computations in the current investigation. For both magnets, the generated magnetic fields were comparatively studied for targeting Fe particles having a diameter of 6 μm. The following findings were drawn from the present investigation: (i) the particle deposition on the vessel wall is greatly influenced by the intensity of the magnetic field, the magnet type, the magnet size, and the magnetic characteristics of the micro-sized magnetic particles (MSMPs); (ii) ferrite-type magnets might be employed to deliver magnetoresponsive particles to a target location, even if they are less powerful than neodymium magnets; and (iii) the results from the Computational Fluid Dynamics( CFD) models agree well with the measured magnetic field induction, magnetic field strength, and their fluctuation with the distance from the magnet surface.
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Nishi, Mariko, Daisuke Nagao, Kentaro Hayasaka, Haruyuki Ishii, and Mikio Konno. "Magnetoresponsive, anisotropic composite particles reversibly changing their chain lengths by a combined external field." Soft Matter 8, no. 43 (2012): 11152. http://dx.doi.org/10.1039/c2sm26285a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Liu, Enke, Yin Du, Jinglan Chen, Wenhong Wang, Hongwei Zhang, and Guangheng Wu. "Magnetostructural Transformation and Magnetoresponsive Properties of ${\rm MnNiGe}_{1-x}{\rm Sn}_{x}$ Alloys." IEEE Transactions on Magnetics 47, no. 10 (October 2011): 4041–43. http://dx.doi.org/10.1109/tmag.2011.2159964.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Tsipis, Athanassios C., and Alexandros V. Stalikas. "Structural, electronic, and magnetoresponsive properties of triangular lanthanide clusters and their free-standing nitrides." Journal of Computational Chemistry 32, no. 4 (September 1, 2010): 620–38. http://dx.doi.org/10.1002/jcc.21648.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Lee, Hye Soo, Ju Hyeon Kim, Joon-Seok Lee, Jae Young Sim, Jung Yoon Seo, You-Kwan Oh, Seung-Man Yang, and Shin-Hyun Kim. "Photonic Crystals: Magnetoresponsive Discoidal Photonic Crystals Toward Active Color Pigments (Adv. Mater. 33/2014)." Advanced Materials 26, no. 33 (September 2014): 5734. http://dx.doi.org/10.1002/adma.201470224.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Bernad, Sandor I., Vlad Socoliuc, Daniela Susan-Resiga, Izabell Crăciunescu, Rodica Turcu, Etelka Tombácz, Ladislau Vékás, Maria C. Ioncica, and Elena S. Bernad. "Magnetoresponsive Functionalized Nanocomposite Aggregation Kinetics and Chain Formation at the Targeted Site during Magnetic Targeting." Pharmaceutics 14, no. 9 (September 12, 2022): 1923. http://dx.doi.org/10.3390/pharmaceutics14091923.

Повний текст джерела
Анотація:
Drug therapy for vascular disease has been promoted to inhibit angiogenesis in atherosclerotic plaques and prevent restenosis following surgical intervention. This paper investigates the arterial depositions and distribution of PEG-functionalized magnetic nanocomposite clusters (PEG_MNCs) following local delivery in a stented artery model in a uniform magnetic field produced by a regionally positioned external permanent magnet; also, the PEG_MNCs aggregation or chain formation in and around the implanted stent. The central concept is to employ one external permanent magnet system, which produces enough magnetic field to magnetize and guide the magnetic nanoclusters in the stented artery region. At room temperature (25 °C), optical microscopy of the suspension model’s aggregation process was carried out in the external magnetic field. According to the optical microscopy pictures, the PEG_MNC particles form long linear aggregates due to dipolar magnetic interactions when there is an external magnetic field. During magnetic particle targeting, 20 mL of the model suspensions are injected (at a constant flow rate of 39.6 mL/min for the period of 30 s) by the syringe pump in the mean flow (flow velocity is Um = 0.25 m/s, corresponding to the Reynolds number of Re = 232) into the stented artery model. The PEG_MNC clusters are attracted by the magnetic forces (generated by the permanent external magnet) and captured around the stent struts and the bottom artery wall before and inside the implanted stent. The colloidal interaction among the MNC clusters was investigated by calculating the electrostatic repulsion, van der Waals and magnetic dipole-dipole energies. The current work offers essential details about PEG_MNCs aggregation and chain structure development in the presence of an external magnetic field and the process underlying this structure formation.
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Cao, Yuan, Muhammad Hassan, Yue Cheng, Zhongrong Chen, Meng Wang, Xiaozhang Zhang, Zeeshan Haider, and Gang Zhao. "Multifunctional Photo- and Magnetoresponsive Graphene Oxide–Fe3O4 Nanocomposite–Alginate Hydrogel Platform for Ice Recrystallization Inhibition." ACS Applied Materials & Interfaces 11, no. 13 (March 13, 2019): 12379–88. http://dx.doi.org/10.1021/acsami.9b02887.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Ilia, Rafaella, Ioanna Liatsou, Ioanna Savva, Eugenia Vasile, Ladislau Vekas, Oana Marinica, Fotios Mpekris, Ioannis Pashalidis, and Theodora Krasia-Christoforou. "Magnetoresponsive polymer networks as adsorbents for the removal of U(VI) ions from aqueous media." European Polymer Journal 97 (December 2017): 138–46. http://dx.doi.org/10.1016/j.eurpolymj.2017.10.005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Katagiri, Kiyofumi, Yuji Imai, Kunihito Koumoto, Tomohiro Kaiden, Kenji Kono, and Sadahito Aoshima. "Magnetoresponsive On-Demand Release of Hybrid Liposomes Formed from Fe3O4 Nanoparticles and Thermosensitive Block Copolymers." Small 7, no. 12 (May 12, 2011): 1683–89. http://dx.doi.org/10.1002/smll.201002180.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Lantean, Simone, Gabriele Barrera, Candido Fabrizio Pirri, Paola Tiberto, Marco Sangermano, Ignazio Roppolo, and Giancarlo Rizza. "3D Printing of Magnetoresponsive Polymeric Materials with Tunable Mechanical and Magnetic Properties by Digital Light Processing." Advanced Materials Technologies 4, no. 11 (September 25, 2019): 1900505. http://dx.doi.org/10.1002/admt.201900505.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Burba, Christopher M., and Hai-Chou Chang. "Confinement Effects on the Magnetic Ionic Liquid 1-Ethyl-3-methylimidazolium Tetrachloroferrate(III)." Molecules 27, no. 17 (August 30, 2022): 5591. http://dx.doi.org/10.3390/molecules27175591.

Повний текст джерела
Анотація:
Confinement effects for the magnetoresponsive ionic liquid 1-ethyl-3-methylimidazolium tetrachloroferrate(III), [C2mim]FeCl4, are explored from thermal, spectroscopic, and magnetic points of view. Placing the ionic liquid inside SBA-15 mesoporous silica produces a significant impact on the material’s response to temperature, pressure, and magnetic fields. Isobaric thermal experiments show melting point reductions that depend on the pore diameter of the mesopores. The confinement-induced reductions in phase transition temperature follow the Gibbs–Thomson equation if a 1.60 nm non-freezable interfacial layer is postulated to exist along the pore wall. Isothermal pressure-dependent infrared spectroscopy reveals a similar modification to phase transition pressures, with the confined ionic liquid requiring higher pressures to trigger phase transformation than the unconfined system. Confinement also impedes ion transport as activation energies are elevated when the ionic liquid is placed inside the mesopores. Finally, the antiferromagnetic ordering that characterizes unconfined [C2mim]FeCl4 is suppressed when the ionic liquid is confined in 5.39-nm pores. Thus, confinement provides another avenue for manipulating the magnetic properties of this compound.
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Krasia-Christoforou, Theodora, Vlad Socoliuc, Kenneth D. Knudsen, Etelka Tombácz, Rodica Turcu, and Ladislau Vékás. "From Single-Core Nanoparticles in Ferrofluids to Multi-Core Magnetic Nanocomposites: Assembly Strategies, Structure, and Magnetic Behavior." Nanomaterials 10, no. 11 (October 31, 2020): 2178. http://dx.doi.org/10.3390/nano10112178.

Повний текст джерела
Анотація:
Iron oxide nanoparticles are the basic components of the most promising magnetoresponsive nanoparticle systems for medical (diagnosis and therapy) and bio-related applications. Multi-core iron oxide nanoparticles with a high magnetic moment and well-defined size, shape, and functional coating are designed to fulfill the specific requirements of various biomedical applications, such as contrast agents, heating mediators, drug targeting, or magnetic bioseparation. This review article summarizes recent results in manufacturing multi-core magnetic nanoparticle (MNP) systems emphasizing the synthesis procedures, starting from ferrofluids (with single-core MNPs) as primary materials in various assembly methods to obtain multi-core magnetic particles. The synthesis and functionalization will be followed by the results of advanced physicochemical, structural, and magnetic characterization of multi-core particles, as well as single- and multi-core particle size distribution, morphology, internal structure, agglomerate formation processes, and constant and variable field magnetic properties. The review provides a comprehensive insight into the controlled synthesis and advanced structural and magnetic characterization of multi-core magnetic composites envisaged for nanomedicine and biotechnology.
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Reznickova Mantlikova, Alice, Jiri Plocek, Barbara Pacakova, Simona Kubickova, Ondrej Vik, Daniel Niznansky, Miroslav Slouf, and Jana Vejpravova. "Nanocomposite of CeO2 and High-Coercivity Magnetic Carrier with Large Specific Surface Area." Journal of Nanomaterials 2016 (2016): 1–13. http://dx.doi.org/10.1155/2016/7091241.

Повний текст джерела
Анотація:
We succeeded in the preparation of CoFe2O4/CeO2 nanocomposites with very high specific surface area (up to 264 g/m2). First, highly crystalline nanoparticles (NPs) of CoFe2O4 (4.7 nm) were prepared by hydrothermal method in water-alcohol-oleic acid system. The oleate surface coating was subsequently modified by ligand exchange to citrate. Then the NPs were embedded in CeO2 using heterogeneous precipitation from diluted Ce3+ sulphate solution. Dried samples were characterized by Powder X-Ray Diffraction, Energy Dispersive X-Ray Analysis, Scanning and Transmission Electron Microscopy, Mössbauer Spectroscopy, and Brunauer-Emmett-Teller method. Moreover, detailed investigation of magnetic properties of the bare NPs and final composite was carried out. We observed homogeneous embedding of the magnetic NPs into the CeO2 without significant change of their size and magnetic properties. We have thus demonstrated that the proposed synthesis method is suitable for preparation of extremely fine CeO2 nanopowders and their nanocomposites with NPs. The morphology and magnetic nature of the obtained nanocomposites make them a promising candidate for magnetoresponsive catalysis.
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Lin, Xi, Bao Nguyen Quoc, and Mathias Ulbricht. "Magnetoresponsive Poly(ether sulfone)-Based Iron Oxide cum Hydrogel Mixed Matrix Composite Membranes for Switchable Molecular Sieving." ACS Applied Materials & Interfaces 8, no. 42 (October 11, 2016): 29001–14. http://dx.doi.org/10.1021/acsami.6b09369.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії