Статті в журналах з теми "Magnetocaloric materials, hard magnetic materials"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Magnetocaloric materials, hard magnetic materials.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Magnetocaloric materials, hard magnetic materials".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Bessais, L., R. Guetari, K. Zehani, J. Moscovici, and N. Mliki. "Improving Hard Magnetic and Magnetocaloric Properties of Nanocrystalline Intermetallics." MRS Advances 1, no. 34 (2016): 2367–72. http://dx.doi.org/10.1557/adv.2016.243.

Повний текст джерела
Анотація:
ABSTRACTStructural and magnetic properties of nanocrystalline P6/mmm R(Fe,M)9C are presented. Their structure is explained with a model based on the R1–s(Fe,M)5+2s formula (s = vacancy rate) where s R atoms are statistically substituted by s transition metal pairs. The maximum coercivity is obtained for low Ga/Si content for auto-coherent diffraction domain size 30 nm. This controlled microstructure might lead to hard permanent magnet materials. Furthermore, the influence of small amount of Dy substitution on magnetocaloric properties of R-Fe systme is reported. The potential for using these low-cost iron based nanostructured RFe9 powders in magnetic refrigeration at room temperature is also discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Danylchenko, Petro, Róbert Tarasenko, Erik Čižmár, Vladimír Tkáč, Alexander Feher, Alžbeta Orendáčová, and Martin Orendáč. "Giant Rotational Magnetocaloric Effect in Ni(en)(H2O)4·2H2O: Experiment and Theory." Magnetochemistry 8, no. 4 (April 2, 2022): 39. http://dx.doi.org/10.3390/magnetochemistry8040039.

Повний текст джерела
Анотація:
An experimental study of the rotational magnetocaloric effect in Ni(en)(H2O)4SO4∙2H2O (en = ethylenediamine) single crystal is presented. The study was carried out at temperatures above 2 K and was associated with adiabatic crystal rotation between the easy plane and hard axis in magnetic fields up to 7 T. The magnetocaloric properties of the studied system were investigated by isothermal magnetization measurement. The experimental observations were completed with ab initio calculations of the anisotropy parameters. A large rotational magnetic entropy change ≈12 Jkg−1K−1 and ≈16.9 Jkg−1K−1 was achieved in 5 T and 7 T, respectively. The present study suggests a possible application of this material in low-temperature refrigeration since the adiabatic rotation of the single crystal in 7 T led to a cooldown of the sample from the initial temperature of 4.2 K down to 0.34 K. Finally, theoretical calculations show that S = 1 Ni(II)-based systems with easy-plane anisotropy can have better rotational magnetocaloric properties than costly materials containing rare-earth elements in their chemical structures.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Danylchenko, Petro, Róbert Tarasenko, Erik Čižmár, Vladimír Tkáč, Anna Uhrinová, Alžbeta Orendáčová, and Martin Orendáč. "Experimental Study of Magnetocaloric Effect in Tetraaquabis(Hydrogen Maleato)Nickel(II), [Ni(C4H3O4)2(H2O)4]—A Potential Realization of a Spin-1 Spatially Anisotropic Square Lattice with Ferromagnetic Interactions." Magnetochemistry 8, no. 9 (September 16, 2022): 106. http://dx.doi.org/10.3390/magnetochemistry8090106.

Повний текст джерела
Анотація:
An experimental study of the magnetocaloric effect in tetraaquabis(hydrogen maleato)nickel(II), [Ni(C4H3O4)2(H2O)4] powder sample is presented. The magnetocaloric properties of the studied sample were investigated using specific heat and magnetization measurements in magnetic fields up to 9 T in the temperature range from 0.4 to 50 K. A large conventional magnetocaloric effect was found at a temperature of about 3.5 K, where −ΔSM = 8.5 Jkg−1K−1 and 11.2 Jkg−1K−1 for a magnetic field of 5 T and 7 T, respectively. Assuming a substantial role of the crystal field, the temperature dependence of the magnetic specific heat in a zero magnetic field was compared with an S = 1 model with single-ion anisotropy parameters D and E (axial and rhombic). The best agreement was found for the parameters D/kB = −7.82 K and E/kB = −2.15 K. On the other hand, the experimental temperature dependence of −ΔSM shows higher values compared to the theoretical prediction for the mentioned model, indicating the presence of additional factors in the system, such as an exchange interaction between magnetic ions. The first exchange pathway can be realized through maleic rings between the nearest Ni(II) ions. The second exchange pathway can be realized through water molecules approximately along the a crystallographic axis. Broken-symmetry DFT calculations performed using the computational package ORCA provided the values of ferromagnetic exchange interactions, J1/kB = 1.50 K and J2/kB = 1.44 K (using B3LYP functional). The presence of such ferromagnetic correlations in the studied system may explain the enhanced magnetocaloric effect compared with the model of an anisotropic spin-1 paramagnet.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Pal, Arnab, Zhenjie Feng, Hao Wu, Ke Wang, Jingying Si, Jiafeng Chen, Yanhong Chen, et al. "Investigation of field-controlled magnetocaloric switching and magnetodielectric phenomena in spin-chain compound Er2BaNiO5." Journal of Physics D: Applied Physics 55, no. 13 (December 30, 2021): 135001. http://dx.doi.org/10.1088/1361-6463/ac44c3.

Повний текст джерела
Анотація:
Abstract The Haldane spin-chain compound Er2BaNiO5 has been known to possess magnetoelectric coupling below the magnetic ordering temperature. Here we report various low-temperature magnetic and magnetocaloric properties, and magnetodielectric (MD) effect above magnetic ordering temperature in this compound. The present compound displays a coexistence of conventional and inverse magnetocaloric effects with a large entropy change of 5.9 and −2.5 J kg−1 K−1, respectively. Further, it exhibits a remarkable switching between them, which can be tuned with temperature and magnetic field. In addition, evolution of two magnetic field-dependent metamagnetic transitions at 19.7 and 27.7 kOe, and their correlation with magnetocaloric switching effect, make this compound effective for potential applications. On the other hand, demonstration of intrinsic MD effect (1.9%) near and above antiferromagnetic ordering temperature, through a moderate coupling between electric dipoles and magnetic spins, establishes this compound as a useful candidate for future research. A detailed analysis of these findings, in a framework of different magnetic interactions and magnetocrystalline anisotropies, is discussed here. Overall, these results may provide a future pathway to tune the magnetic, MD, and magnetocaloric properties in this compound toward better application potential.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Fersi, Riadh, Najeh Mliki, and Lotfi Bessais. "Influence of Chemical Substitution and Light Element Insertion on the Magnetic Properties of Nanocrystalline Pr2Co7 Compound." Magnetochemistry 8, no. 2 (January 27, 2022): 20. http://dx.doi.org/10.3390/magnetochemistry8020020.

Повний текст джерела
Анотація:
It is well recognized that intermetallics based on rare-earth (R) and transition metals (T) display numerous interesting magnetic properties, leading to potential applications in different fields. The latest progress regarding magnetic properties and the magnetocaloric effect (MCE) in the nanostructured Pr2Co7 compound, as well as its carbides and hydrides, is reviewed in this paper. Some of this progress reveals remarkable MCE performance, which makes it attractive in the field of magnetic refrigeration at high temperatures. With the purpose of understanding the magnetic and magnetocaloric characteristics of these compounds, the crystal structure, microstructure, and magnetism are also brought into focus. The Pr2Co7 compound has interesting magnetic properties, such as a high Curie temperature TC and uniaxial magnetocrystalline anisotropy. It crystallizes in a hexagonal structure (2:7 H) of the Ce2Ni7 type and is stable at relatively low temperatures (Ta ≤ 1023 K), or it has a rhombohedral structure (2:7 R) of the Gd2Co7 type and is stable at high temperatures (Ta ≥ 1223 K). Studies of the magnetocaloric properties of the nanocrystalline Pr2Co7 compound have shown the existence of a large reversible magnetic entropy change (ΔSM) with a second-order magnetic transition. After its substitution, we showed that nanocrystalline Pr2Co7−xFex compounds that were annealed at Ta = 973 K crystallized in the 2:7 H structure similarly to the parent compound. The extended X-ray absorption fine-structure (EXAFS) spectra adjustments showed that Fe atoms preferably occupy the 12k site for x ≤ 1. The study of the magnetic properties of nanocrystalline Pr2Co7−xFex compounds revealed an increase in TC of about 26% for x = 0.5, as well as an improvement in the coercivity, Hc (12 kOe), and the (BH)max (9 MGOe) product. On the other hand, the insertion of C atoms into the Pr2Co7 cell led to a marked improvement in the TC value of 21.6%. The best magnetic properties were found for the Pr2Co7C0.25 compound annealed at 973 K, Hc = 10.3 kOe, and (BH)max = 11.5 MGOe. We studied the microstructure, hydrogenation, and magnetic properties of nanocrystalline Pr2Co7Hx hydrides. The crystal structure of the Pr2Co7 compound transformed from a hexagonal (P63/mmc) into an orthorhombic (Pbcn) and monoclinic (C2/c) structure during hydrogenation. The absorption of H by the Pr2Co7 compound led to an increase in the TC value from 600 K at x = 0 to 691 K at x = 3.75. The Pr2Co7H0.25 hydride had optimal magnetic properties: Hc = 6.1 KOe, (BH)max = 5.8 MGOe, and TC = 607 K. We tailored the mean field theory (MFT) and random magnetic anisotropy (RMA) methods to investigate the magnetic moments, exchange interactions, and magnetic anisotropy properties. The relationship between the microstructure and magnetic properties is discussed. The obtained results provide a fundamental reference for adapting the magnetic properties of the Pr2Co7, Pr2Co6.5Fe0.5, Pr2Co7C0.25, and Pr2Co7H0.25 compounds for potential permanent nanomagnets, high-density magnetic recording, and magnetic refrigeration applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Xing, Chengfen, Hu Zhang, Kewen Long, Yaning Xiao, Hanning Zhang, Zhijie Qiu, Dai He, Xingyu Liu, Yingli Zhang, and Yi Long. "The Effect of Different Atomic Substitution at Mn Site on Magnetocaloric Effect in Ni50Mn35Co2Sn13 Alloy." Crystals 8, no. 8 (August 18, 2018): 329. http://dx.doi.org/10.3390/cryst8080329.

Повний текст джерела
Анотація:
The effect of different atomic substitutions at Mn sites on the magnetic and magnetocaloric properties in Ni50Mn35Co2Sn13 alloy has been studied in detail. The substitution of Ni or Co for Mn atoms might lower the Mn content at Sn sites, which would reduce the d-d hybridization between Ni 3d eg states and the 3d states of excess Mn atoms at Sn sites, thus leading to the decrease of martensitic transformation temperature TM in Ni51Mn34Co2Sn13 and Ni50Mn34Co3Sn13 alloys. On the other hand, the substitution of Sn for Mn atoms in Ni50Mn34Co2Sn14 would enhance the p-d covalent hybridization between the main group element (Sn) and the transition metal element (Mn or Ni) due to the increase of Sn content, thus also reducing the TM by stabilizing the parent phase. Due to the reduction of TM, a magnetostructural martensitic transition from FM austenite to weak-magnetic martensite is realized in Ni51Mn34Co2Sn13 and Ni50Mn34Co2Sn14, resulting in a large magnetocaloric effect around room temperature. For a low field change of 3 T, the maximum ∆SM reaches as high as 30.9 J/kg K for Ni50Mn34Co2Sn14. A linear dependence of ΔSM upon μ0H has been found in Ni50Mn34Co2Sn14, and the origin of this linear relationship has been discussed by numerical analysis of Maxwell’s relation.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Dhungana, Surendra, Jacob Casey, Dipesh Neupane, Arjun K. Pathak, Sunil Karna, and Sanjay R. Mishra. "Effect of Metal-Oxide Phase on the Magnetic and Magnetocaloric Properties of La0.7Ca0.3MnO3-MO (MO=CuO, CoO, and NiO) Composite." Magnetochemistry 8, no. 12 (November 22, 2022): 163. http://dx.doi.org/10.3390/magnetochemistry8120163.

Повний текст джерела
Анотація:
The study reports the synthesis and characterization of the magnetic and magnetocaloric effects of metal-oxide (MO) modified La0.7Ca0.3MnO3 perovskites manganite. The powder composite samples, with a nominal composition of (1 − x)La0.7Ca0.3MnO3-xMO (Wt.% x = 0.0, 2.5, 5.0), were prepared using the facile autocombustion method, followed by an annealing process. The phase purity and structure were confirmed by X-ray diffraction. Temperature and field-dependent magnetization measurements and Arrott analysis revealed mixed first- and second-order phase transition (ferromagnetic to paramagnetic) in composite samples. The phase transition temperature shifted to lower temperatures with the addition of MO in the composite. A large magnetic entropy change (4.75 JKg−1K−1 at 1T and 8.77 JKg−1K−1 at 5T) was observed in the La0.7Ca0.3MnO3 (LCMO) sample and was suppressed, due to the presence of the MO phase in the composite samples. On the other hand, the addition of MO as a secondary phase in the LCMO samples enhanced their relative cooling power (RCP). The RCP of all composite samples increased with respect to the pristine LCMO, except for LCMO–5%NiO. The highest RCP value of 267 JKg−1 was observed in LCMO–5%CuO samples, which was 23.4% higher than the 213 JKg−1 observed for the pure LCMO at a magnetic field of 5T. The enhanced RCP of these composites makes them attractive for potential refrigeration applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Zhou, Huaijuan, Guozhao Dong, Ge Gao, Ran Du, Xiaoying Tang, Yining Ma, and Jinhua Li. "Hydrogel-Based Stimuli-Responsive Micromotors for Biomedicine." Cyborg and Bionic Systems 2022 (October 10, 2022): 1–12. http://dx.doi.org/10.34133/2022/9852853.

Повний текст джерела
Анотація:
The rapid development of medical micromotors draws a beautiful blueprint for the noninvasive or minimally invasive diagnosis and therapy. By combining stimuli-sensitive hydrogel materials, micromotors are bestowed with new characteristics such as stimuli-responsive shape transformation/morphing, excellent biocompatibility and biodegradability, and drug loading ability. Actuated by chemical fuels or external fields (e.g., magnetic field, ultrasound, light, and electric field), hydrogel-based stimuli-responsive (HBSR) micromotors can be utilized to load therapeutic agents into the hydrogel networks or directly grip the target cargos (e.g., drug-loaded particles, cells, and thrombus), transport them to sites of interest (e.g., tumor area and diseased tissues), and unload the cargos or execute a specific task (e.g., cell capture, targeted sampling, and removal of blood clots) in response to a stimulus (e.g., change of temperature, pH, ion strength, and chemicals) in the physiological environment. The high flexibility, adaptive capacity, and shape morphing property enable the HBSR micromotors to complete specific medical tasks in complex physiological scenarios, especially in confined, hard-to-reach tissues, and vessels of the body. Herein, this review summarizes the current progress in hydrogel-based medical micromotors with stimuli responsiveness. The thermo-responsive, photothermal-responsive, magnetocaloric-responsive, pH-responsive, ionic-strength-responsive, and chemoresponsive micromotors are discussed in detail. Finally, current challenges and future perspectives for the development of HBSR micromotors in the biomedical field are discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Gutfleisch, O., T. Gottschall, M. Fries, D. Benke, I. Radulov, K. P. Skokov, H. Wende, et al. "Mastering hysteresis in magnetocaloric materials." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 374, no. 2074 (August 13, 2016): 20150308. http://dx.doi.org/10.1098/rsta.2015.0308.

Повний текст джерела
Анотація:
Hysteresis is more than just an interesting oddity that occurs in materials with a first-order transition. It is a real obstacle on the path from existing laboratory-scale prototypes of magnetic refrigerators towards commercialization of this potentially disruptive cooling technology. Indeed, the reversibility of the magnetocaloric effect, being essential for magnetic heat pumps, strongly depends on the width of the thermal hysteresis and, therefore, it is necessary to understand the mechanisms causing hysteresis and to find solutions to minimize losses associated with thermal hysteresis in order to maximize the efficiency of magnetic cooling devices. In this work, we discuss the fundamental aspects that can contribute to thermal hysteresis and the strategies that we are developing to at least partially overcome the hysteresis problem in some selected classes of magnetocaloric materials with large application potential. In doing so, we refer to the most relevant classes of magnetic refrigerants La–Fe–Si-, Heusler- and Fe 2 P-type compounds. This article is part of the themed issue ‘Taking the temperature of phase transitions in cool materials’.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Alymov, M. I., I. M. Milyaev, V. S. Yusupov, and A. I. Milyaev. "Nanocrystalline Hard Magnetic Materials." Advanced Materials & Technologies, no. 2 (2017): 010–18. http://dx.doi.org/10.17277/amt.2017.02.pp.010-018.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Andreenko, A. S., Konstantin P. Belov, S. A. Nikitin, and A. M. Tishin. "Magnetocaloric effects in rare-earth magnetic materials." Uspekhi Fizicheskih Nauk 158, no. 8 (1989): 553. http://dx.doi.org/10.3367/ufnr.0158.198908a.0553.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Andreenko, A. S., Konstantin P. Belov, S. A. Nikitin, and Aleksandr M. Tishin. "Magnetocaloric effects in rare-earth magnetic materials." Soviet Physics Uspekhi 32, no. 8 (August 31, 1989): 649–64. http://dx.doi.org/10.1070/pu1989v032n08abeh002745.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Bohigas, Xavier, Javier Tejada, Francesc Torres, José Ignacio Arnaudas, Enrique Joven, and Agustı́n del Moral. "Magnetocaloric effect in random magnetic anisotropy materials." Applied Physics Letters 81, no. 13 (September 23, 2002): 2427–29. http://dx.doi.org/10.1063/1.1506777.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Fruchart, D., M. Bacmann, P. de Rango, O. Isnard, S. Liesert, S. Miraglia, S. Obbade, J. L. Soubeyroux, E. Tomey, and P. Wolfers. "Hydrogen in hard magnetic materials." Journal of Alloys and Compounds 253-254 (May 1997): 121–27. http://dx.doi.org/10.1016/s0925-8388(96)03063-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Coey, J. M. D. "Hard Magnetic Materials: A Perspective." IEEE Transactions on Magnetics 47, no. 12 (December 2011): 4671–81. http://dx.doi.org/10.1109/tmag.2011.2166975.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

McCormick, P. G., J. Ding, E. H. Feutrill, and R. Street. "Mechanically alloyed hard magnetic materials." Journal of Magnetism and Magnetic Materials 157-158 (May 1996): 7–10. http://dx.doi.org/10.1016/0304-8853(95)01268-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Singleton, E. W., and G. C. Hadjipanayis. "Magnetic viscosity studies in hard magnetic materials." Journal of Applied Physics 67, no. 9 (May 1990): 4759–61. http://dx.doi.org/10.1063/1.344777.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Ram, N. Raghu, M. Prakash, U. Naresh, N. Suresh Kumar, T. Sofi Sarmash, T. Subbarao, R. Jeevan Kumar, G. Ranjith Kumar, and K. Chandra Babu Naidu. "Review on Magnetocaloric Effect and Materials." Journal of Superconductivity and Novel Magnetism 31, no. 7 (April 3, 2018): 1971–79. http://dx.doi.org/10.1007/s10948-018-4666-z.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Parekh, Kinnari, R. V. Upadhyay, and R. V. Mehta. "Magnetocaloric effect in temperature-sensitive magnetic fluids." Bulletin of Materials Science 23, no. 2 (April 2000): 91–95. http://dx.doi.org/10.1007/bf02706548.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Balli, Mohamed, Osmann Sari, L. Zamni, A. Robert, J. Forchelet, and Daniel Fruchart. "Bulk Transition Elements Based Materials for Magnetic Cooling Application." Solid State Phenomena 170 (April 2011): 248–52. http://dx.doi.org/10.4028/www.scientific.net/ssp.170.248.

Повний текст джерела
Анотація:
In this paper we investigate the performances of two bulk magnetocaloric refrigerants based on La(Fe,Co)13-xSix and prepared by powder metallurgy. Both materials were developed especially for a magnetic cooling machine. We have determined the magnetocaloric effect in term of temperature change under magnetic field using a test-bench with practical running conditions. ΔT was measured under 2 T and close to room temperature range. The obtained results will be compared with those of some reference materials reported in the literature. In addition, a composite material based on La(Fe,Co)13-xSix is proposed for magnetic systems using Ericsson and AMR cycles for refrigeration close to room temperature.
Стилі APA, Harvard, Vancouver, ISO та ін.
21

MIYAZAKI, Yoshiki, Koichiro WAKI, Yuuki ARAI, Katsutoshi MIZUNO, Keisuke YOSHIZAWA, and Ken NAGASHIMA. "Characteristics of a Magnetic Refrigerator with New Magnetocaloric Materials." Quarterly Report of RTRI 55, no. 2 (2014): 119–24. http://dx.doi.org/10.2219/rtriqr.55.119.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Huang, Songling, Dunhui Wang, Zhida Han, Zhenghua Su, Shaolong Tang, and Youwei Du. "Magnetic and magnetocaloric properties of quenched Hf1−xTaxFe2 materials." Journal of Alloys and Compounds 394, no. 1-2 (May 2005): 80–82. http://dx.doi.org/10.1016/j.jallcom.2004.10.047.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Buschow, K. H. J. "New developments in hard magnetic materials." Reports on Progress in Physics 54, no. 9 (September 1, 1991): 1123–213. http://dx.doi.org/10.1088/0034-4885/54/9/001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Kirchmayr, H. R. "Permanent magnets and hard magnetic materials." Journal of Physics D: Applied Physics 29, no. 11 (November 14, 1996): 2763–78. http://dx.doi.org/10.1088/0022-3727/29/11/007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Zhao, Ruike, Yoonho Kim, Shawn A. Chester, Pradeep Sharma, and Xuanhe Zhao. "Mechanics of hard-magnetic soft materials." Journal of the Mechanics and Physics of Solids 124 (March 2019): 244–63. http://dx.doi.org/10.1016/j.jmps.2018.10.008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Kronmüller, H., and D. Goll. "Modern nanocrystalline/nanostructured hard magnetic materials." Journal of Magnetism and Magnetic Materials 272-276 (May 2004): E319—E320. http://dx.doi.org/10.1016/j.jmmm.2003.11.384.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Fujii, H., I. Sasaki, and K. Koyama. "Interstitial alloys as hard magnetic materials." Journal of Magnetism and Magnetic Materials 242-245 (April 2002): 59–65. http://dx.doi.org/10.1016/s0304-8853(01)01189-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Grössinger, R., X. C. Kou, and M. Katter. "Hard magnetic materials in pulsed fields." Physica B: Condensed Matter 177, no. 1-4 (March 1992): 219–22. http://dx.doi.org/10.1016/0921-4526(92)90099-e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

HAN, JingZhi, HongLin DU, ChangSheng WANG, ShunQuan LIU, and JinBo YANG. "Study of novel hard magnetic materials." SCIENTIA SINICA Physica, Mechanica & Astronomica 43, no. 10 (September 1, 2013): 1188–205. http://dx.doi.org/10.1360/132013-307.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Kronmüller, Helmut, and Dagmar Goll. "Micromagnetism of advanced hard magnetic materials." International Journal of Materials Research 100, no. 5 (May 2009): 640–51. http://dx.doi.org/10.3139/146.110092.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Asti, G. "Recent developments in hard magnetic materials." Hyperfine Interactions 45, no. 1-4 (March 1989): 21–33. http://dx.doi.org/10.1007/bf02405870.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Kronmüller, H. "Micromagnetism of hard magnetic nanocrystalline materials." Nanostructured Materials 6, no. 1-4 (January 1995): 157–68. http://dx.doi.org/10.1016/0965-9773(95)00039-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Elamalayil Soman, Deepak, Jelena Loncarski, Lisa Gerdin, Petter Eklund, Sandra Eriksson, and Mats Leijon. "Development of Power Electronics Based Test Platform for Characterization and Testing of Magnetocaloric Materials." Advances in Electrical Engineering 2015 (January 31, 2015): 1–7. http://dx.doi.org/10.1155/2015/670624.

Повний текст джерела
Анотація:
Magnetocaloric effects of various materials are getting more and more interesting for the future, as they can significantly contribute towards improving the efficiency of many energy intensive applications such as refrigeration, heating, and air conditioning. Accurate characterization of magnetocaloric effects, exhibited by various materials, is an important process for further studies and development of the suitable magnetocaloric heating and cooling solutions. The conventional test facilities have plenty of limitations, as they focus only on the thermodynamic side and use magnetic machines with moving bed of magnetocaloric material or magnet. In this work an entirely new approach for characterization of the magnetocaloric materials is presented, with the main focus on a flexible and efficient power electronic based excitation and a completely static test platform. It can generate a periodically varying magnetic field using superposition of an ac and a dc magnetic field. The scale down prototype uses a customized single phase H-bridge inverter with essential protections and an electromagnet load as actuator. The preliminary simulation and experimental results show good agreement and support the usage of the power electronic test platform for characterizing magnetocaloric materials.
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Sun, N. K., D. Li, and Z. D. Zhang. "Magnetic transitions and magnetocaloric effects in Fe0.75Mn1.35As." Journal of Materials Science 44, no. 13 (July 2009): 3472–75. http://dx.doi.org/10.1007/s10853-009-3463-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Pecharsky, Vitalij K., and Karl A. Gschneidner Jr. "Magnetocaloric effect and magnetic refrigeration." Journal of Magnetism and Magnetic Materials 200, no. 1-3 (October 1999): 44–56. http://dx.doi.org/10.1016/s0304-8853(99)00397-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Hadjipanayis, G. C., S. Nafis, and W. Gong. "A STUDY OF THE HARD MAGNETIC PROPERTIES IN DIFFERENT HARD MAGNETIC MATERIALS." Le Journal de Physique Colloques 49, no. C8 (December 1988): C8–657—C8–658. http://dx.doi.org/10.1051/jphyscol:19888298.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Lyubina, Julia. "Magnetocaloric materials for energy efficient cooling." Journal of Physics D: Applied Physics 50, no. 5 (January 5, 2017): 053002. http://dx.doi.org/10.1088/1361-6463/50/5/053002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Brück, E. "Introduction to special issue on magnetocaloric materials." Journal of Magnetism and Magnetic Materials 321, no. 21 (November 2009): 3533–34. http://dx.doi.org/10.1016/j.jmmm.2009.07.006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Svobodny, Th, and Z. Kalva. "Magnetocaloric Effect in Ferromagnetic and Superconducting Materials." physica status solidi (b) 208, no. 1 (July 1998): 187–96. http://dx.doi.org/10.1002/(sici)1521-3951(199807)208:1<187::aid-pssb187>3.0.co;2-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Herbst, J. F., C. D. Fuerst, and R. D. McMichael. "Structural, magnetic, and magnetocaloric properties of (Hf0.83Ta0.17)Fe2+x materials." Journal of Applied Physics 79, no. 8 (1996): 5998. http://dx.doi.org/10.1063/1.362133.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Risser, M., C. Vasile, B. Keith, T. Engel, and C. Muller. "Construction of consistent magnetocaloric materials data for modelling magnetic refrigerators." International Journal of Refrigeration 35, no. 2 (March 2012): 459–67. http://dx.doi.org/10.1016/j.ijrefrig.2011.11.001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Songlin, Dagula, O. Tegus, E. Brück, F. R. de Boer, and K. H. J. Buschow. "Magnetic and magnetocaloric properties of Mn5Ge3−Sb." Journal of Alloys and Compounds 337, no. 1-2 (May 2002): 269–71. http://dx.doi.org/10.1016/s0925-8388(01)01935-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Kou, Ronghui, Jianrong Gao, Zhihua Nie, Yandong Wang, Dennis E. Brown, and Yang Ren. "Magnetic transitions and magnetocaloric effect of Gd4Nd1Si2Ge2." Journal of Alloys and Compounds 826 (June 2020): 154117. http://dx.doi.org/10.1016/j.jallcom.2020.154117.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Wang, C. L., J. Liu, Y. Mudryk, Y. J. Zhu, B. Fu, Y. Long, and V. K. Pecharsky. "Magnetic and magnetocaloric properties of DyCo2Cx alloys." Journal of Alloys and Compounds 777 (March 2019): 152–56. http://dx.doi.org/10.1016/j.jallcom.2018.10.169.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Zhang, Jia-qi, Na Li, Ming Feng, Bei-cheng Pan, and Hai-bo Li. "Magnetic and magnetocaloric properties of La0.65−xEuxCa0.35MnO3." Journal of Alloys and Compounds 467, no. 1-2 (January 2009): 88–90. http://dx.doi.org/10.1016/j.jallcom.2007.12.045.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Kumar, Pramod, Niraj K. Singh, K. G. Suresh, and A. K. Nigam. "Magnetic and magnetocaloric properties of SmxGd1−xMn2Si2." Journal of Alloys and Compounds 427, no. 1-2 (January 2007): 42–45. http://dx.doi.org/10.1016/j.jallcom.2006.03.025.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Burobina, Veronika. "Magnetocaloric effect in zero-applied magnetic fields." Materials Letters 276 (October 2020): 128259. http://dx.doi.org/10.1016/j.matlet.2020.128259.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Nirmala, R., A. K. Nigam, and S. K. Malik. "Magnetic and magnetocaloric properties of Tb5Si2Sb2." Solid State Communications 146, no. 3-4 (April 2008): 121–23. http://dx.doi.org/10.1016/j.ssc.2008.02.011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Taskaev, Sergey, Vladimir Khovaylo, Maxim Ulyanov, Dmitriy Bataev, Anastasiya Basharova, Marina Kononova, Daniil Plakhotskiy, Mikhail Bogush, and Dmitriy Zherebtsov. "Magnetic and magnetocaloric properties of as-cast Gd2In." Letters on Materials 11, no. 1 (2021): 104–8. http://dx.doi.org/10.22226/2410-3535-2021-1-104-108.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Pandey, Sudip. "Magnetic, Thermal And Magnetocaloric Properties Of Ni50Mn35In14.5B0.5 Ribbons." Advanced Materials Letters 8, no. 7 (July 1, 2017): 768–72. http://dx.doi.org/10.5185/amlett.2017.1452.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії