Статті в журналах з теми "Magnetized discharges"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Magnetized discharges.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Magnetized discharges".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Chen, Francis F. "Nonlinear diffusion in magnetized discharges." Plasma Sources Science and Technology 7, no. 4 (November 1, 1998): 458–61. http://dx.doi.org/10.1088/0963-0252/7/4/003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Chen, Francis F., and Davide Curreli. "Central peaking of magnetized gas discharges." Physics of Plasmas 20, no. 5 (May 2013): 057102. http://dx.doi.org/10.1063/1.4801740.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Carter, Mark D., Dan Hoffman, Steve Shannon, Philip M. Ryan, and D. Buchberger. "Global Modeling of Magnetized Capacitive Discharges." IEEE Transactions on Plasma Science 35, no. 5 (October 2007): 1413–19. http://dx.doi.org/10.1109/tps.2007.906124.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kim, June Young, Jinyoung Choi, Y. S. Hwang, and Kyoung-Jae Chung. "Electric potential in partially magnetized E × B discharges." AIP Advances 11, no. 8 (August 1, 2021): 085113. http://dx.doi.org/10.1063/5.0061693.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Labun, A. H., C. E. Capjack, and H. J. J. Seguin. "Electron dynamics in magnetized CO2laser and He discharges." Journal of Applied Physics 68, no. 8 (October 15, 1990): 3935–46. http://dx.doi.org/10.1063/1.346279.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Winterberg, F. "Laser Compression and Ignition of Z-Pinch Magnetized Dense Fusion Targets." Zeitschrift für Naturforschung A 55, no. 11-12 (December 1, 2000): 909–11. http://dx.doi.org/10.1515/zna-2000-11-1213.

Повний текст джерела
Анотація:
Abstract With thin wire multimegampere shear flow stabilized fast z-pinch discharges, magnetic fields of hundreds of megagauss can be reached in the vicinity of the discharge channel. Then, if by laser-ablation-propulsion pieces of solid DT are simultaneously shot onto the discharge channel from several sides, the DT is compressed upon impact to high densities, with the magnetic field acting as a cushion to make the compression isentropic. The highly compressed and magnetized DT target can then be ignited at one point by a pulsed laser beam launching a thermonuclear detonation wave propagating along the discharge channel. Estimates indicate thermonuclear gains large in comparison to hohlraum targets.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Houriez, Luc S., Hossein Mehrpour Bernety, Jesse A. Rodríguez, Benjamin Wang, and Mark A. Cappelli. "Experimental study of electromagnetic wave scattering from a gyrotropic gaseous plasma column." Applied Physics Letters 120, no. 22 (May 30, 2022): 223101. http://dx.doi.org/10.1063/5.0095038.

Повний текст джерела
Анотація:
We experimentally demonstrate the controlled scattering of incident transverse-electric electromagnetic waves from a gyrotropic magnetized plasma cylindrical discharge. Scattered electromagnetic waves can bend left and right by changing the external magnetic field of a plasma rod. Measured scattered wavefronts are in good agreement with electromagnetic simulations. A gyrotropic response is observed for incident wave frequencies ranging from 3.5 to 5.6 GHz for conditions corresponding to a ratio of cyclotron frequency to plasma frequency, [Formula: see text] 0.16. The observation of a gyrotropic response from cylindrical plasma discharges paves the way for their use as building blocks for future devices such as magnetized plasma photonic crystals, topological insulators, plasma metamaterials, non-reciprocal waveguide structures, and other devices, which require a tunable gyrotropic response from centimeter to meter-scale materials with application-specific geometry.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Carter, M. D., P. M. Ryan, D. Hoffman, W. S. Lee, D. Buchberger, and V. Godyak. "Combined rf and transport effects in magnetized capacitive discharges." Journal of Applied Physics 100, no. 7 (October 2006): 073305. http://dx.doi.org/10.1063/1.2355436.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Trieschmann, Jan, Mohammed Shihab, Daniel Szeremley, Abd Elfattah Elgendy, Sara Gallian, Denis Eremin, Ralf Peter Brinkmann, and Thomas Mussenbrock. "Ion energy distribution functions behind the sheaths of magnetized and non-magnetized radio frequency discharges." Journal of Physics D: Applied Physics 46, no. 8 (February 1, 2013): 084016. http://dx.doi.org/10.1088/0022-3727/46/8/084016.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Lampe, M., G. Joyce, W. M. Manheimer, and S. P. Slinker. "Quasi-neutral particle simulation of magnetized plasma discharges: general formalism and application to ECR discharges." IEEE Transactions on Plasma Science 26, no. 6 (1998): 1592–609. http://dx.doi.org/10.1109/27.747877.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Hyde, A., and O. Batishchev. "A mass-energy balance model for strongly magnetized argon discharges." Physics of Plasmas 28, no. 7 (July 2021): 073504. http://dx.doi.org/10.1063/5.0040344.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Asghar, Atif H., Omar B. Ahmed, and Ahmed Rida Galaly. "Inactivation of E. coli Using Atmospheric Pressure Plasma Jet with Dry and Wet Argon Discharges." Membranes 11, no. 1 (January 9, 2021): 46. http://dx.doi.org/10.3390/membranes11010046.

Повний текст джерела
Анотація:
The acceleration of inactivating viable cells of Escherichia coli (E. coli), by using new direct and indirect innovative methods, is the targeted method of using an atmospheric pressure plasma jet (APPJ) operated by an AC high-voltage power source with variable frequency up to 60 kHz and voltage ranging from 2.5 to 25 kV. Discharges using dry argon (0% O2) discharges and different wet argon discharges using admixtures with O2/Ar ratios ranging from 0.25% to 1.5% were studied. The combined effects of dry and wet argon discharges, direct and indirect exposure using a mesh controller, and hollow magnets were studied to reach a complete bacterial inactivation in short application times. Survival curves showed that the inactivation rate increased as the wettability increased. The application of magnetized non-thermal plasma discharge with a 1.5% wetness ratio causes a fast inactivation rate of microbes on surfaces, and a dramatic decrease of the residual survival of the bacterial ratio due to an increase in the jet width and the enhanced ability of fast transport of the charges to viable cells, especially at the edge of the Petri dish. The membrane damage of E. coli mechanism factors in the activation process by APPJ is discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Asghar, Atif H., Omar B. Ahmed, and Ahmed Rida Galaly. "Inactivation of E. coli Using Atmospheric Pressure Plasma Jet with Dry and Wet Argon Discharges." Membranes 11, no. 1 (January 9, 2021): 46. http://dx.doi.org/10.3390/membranes11010046.

Повний текст джерела
Анотація:
The acceleration of inactivating viable cells of Escherichia coli (E. coli), by using new direct and indirect innovative methods, is the targeted method of using an atmospheric pressure plasma jet (APPJ) operated by an AC high-voltage power source with variable frequency up to 60 kHz and voltage ranging from 2.5 to 25 kV. Discharges using dry argon (0% O2) discharges and different wet argon discharges using admixtures with O2/Ar ratios ranging from 0.25% to 1.5% were studied. The combined effects of dry and wet argon discharges, direct and indirect exposure using a mesh controller, and hollow magnets were studied to reach a complete bacterial inactivation in short application times. Survival curves showed that the inactivation rate increased as the wettability increased. The application of magnetized non-thermal plasma discharge with a 1.5% wetness ratio causes a fast inactivation rate of microbes on surfaces, and a dramatic decrease of the residual survival of the bacterial ratio due to an increase in the jet width and the enhanced ability of fast transport of the charges to viable cells, especially at the edge of the Petri dish. The membrane damage of E. coli mechanism factors in the activation process by APPJ is discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Beckmann, M., P. Frank, and G. Himmel. "Nonlinear dynamics of low-frequency drift waves." Journal of Plasma Physics 55, no. 1 (February 1996): 3–23. http://dx.doi.org/10.1017/s0022377800018626.

Повний текст джерела
Анотація:
The nonlinear behaviour of unstable drift waves in magnetized plasmas is analysed analytically. Most attention is paid to low-frequency waves created in electron density and temperature gradients of opposite sign. This situation is typically encountered in radiofrequency-produced discharges. The model developed explains nonlinear features such as mode competition, amplitude saturation and magnetic field hysteresis, which are observed experimentally.
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Kovtun, Yu, T. Wauters, A. Goriaev, S. Möller, D. López-Rodríguez, K. Crombé, S. Brezinsek, et al. "Comparative analysis of the plasma parameters of ECR and combined ECR + RF discharges in the TOMAS plasma facility." Plasma Physics and Controlled Fusion 63, no. 12 (November 12, 2021): 125023. http://dx.doi.org/10.1088/1361-6587/ac3471.

Повний текст джерела
Анотація:
Abstract The toroidal magnetized system (TOMAS) plasma facility aims at complementary research on wall conditioning methods, plasma production and plasma–surface interaction studies. This paper explores for the first time the parameters in helium electron-cyclotron resonance (ECR) plasma and combined ECR + radio-frequency (RF) discharges in TOMAS. The ECR discharge in this work, at 2.45 GHz and 87.6 mT, is the main one for creating and maintaining the plasma, while the addition of RF power at 25 MHz allows to broaden the achievable electron temperature and density at a given gas flow, as evidenced by triple Langmuir probe measurements. This effect of the combined ECR + RF discharge provides flexibility to study particular aspects of wall conditioning techniques relevant to larger devices, or to approach plasma conditions relevant to fusion edge plasmas for particular surface interaction studies.
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Sadowski, M. J., and M. Scholz. "The main issues of research on dense magnetized plasmas in PF discharges." Plasma Sources Science and Technology 17, no. 2 (May 1, 2008): 024001. http://dx.doi.org/10.1088/0963-0252/17/2/024001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Zheng, Bocong, Keliang Wang, Timothy Grotjohn, Thomas Schuelke, and Qi Hua Fan. "Enhancement of Ohmic heating by Hall current in magnetized capacitively coupled discharges." Plasma Sources Science and Technology 28, no. 9 (September 24, 2019): 09LT03. http://dx.doi.org/10.1088/1361-6595/ab419d.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Wang, Li, De-Qi Wen, Peter Hartmann, Zoltán Donkó, Aranka Derzsi, Xi-Feng Wang, Yuan-Hong Song, You-Nian Wang, and Julian Schulze. "Electron power absorption dynamics in magnetized capacitively coupled radio frequency oxygen discharges." Plasma Sources Science and Technology 29, no. 10 (October 20, 2020): 105004. http://dx.doi.org/10.1088/1361-6595/abb2e7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Kokura, H. "Basic experiments on in-situ magnetized boronization by electron cyclotron resonance discharges." Journal of Nuclear Materials 241-243, no. 1 (February 11, 1997): 1217–21. http://dx.doi.org/10.1016/s0022-3115(96)00702-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Kokura, H., K. Sasaki, H. Toyoda, T. Mizuuchi, K. Kondo, F. Sano, T. Obiki, and H. Sugai. "Basic experiments on in-situ magnetized boronization by electron cyclotron resonance discharges." Journal of Nuclear Materials 241-243 (February 1997): 1217–21. http://dx.doi.org/10.1016/s0022-3115(97)80223-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Zheng, Bocong, Yangyang Fu, De-qi Wen, Keliang Wang, Thomas Schuelke, and Qi Hua Fan. "Influence of metastable atoms in low pressure magnetized radio-frequency argon discharges." Journal of Physics D: Applied Physics 53, no. 43 (July 31, 2020): 435201. http://dx.doi.org/10.1088/1361-6463/ab9f68.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Hatami, M. M., and A. R. Niknam. "Characteristics of Positive Ions in the Sheath Region of Magnetized Collisional Electronegative Discharges." Plasma Science and Technology 16, no. 6 (June 2014): 552–56. http://dx.doi.org/10.1088/1009-0630/16/6/02.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Aman-ur-Rehman and J. K. Lee. "Effective viscosity model for electron heating in warm magnetized inductively coupled plasma discharges." Physics of Plasmas 16, no. 8 (August 2009): 083504. http://dx.doi.org/10.1063/1.3208694.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Magarotto, M., D. Melazzi, and D. Pavarin. "3D-VIRTUS: Equilibrium condition solver of radio-frequency magnetized plasma discharges for space applications." Computer Physics Communications 247 (February 2020): 106953. http://dx.doi.org/10.1016/j.cpc.2019.106953.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Königl, Arieh. "Magnetized Accretion Disks and the Origin of Bipolar Outflows." International Astronomical Union Colloquium 163 (1997): 551–60. http://dx.doi.org/10.1017/s0252921100043189.

Повний текст джерела
Анотація:
AbstractCentrifugally driven winds from the surfaces of magnetized accretion disks are an attractive mechanism for removing the angular momentum of the accreted matter and of producing bipolar outflows and jets in compact astronomical objects. In this contribution, I first review steady–state disk–wind models that have been constructed for the different density regimes of circumstellar disks and comment on their expected stability. I then consider several nonsteady effects, including disk formation in molecular cloud-core collapse, magnetic flux transport through the disk, and the role of magnetic fields in the FU Orionis outburst phenomenon. I conclude with a discussion of some of the unique observational properties of disk-driven outflows in young stellar objects and in active galactic nuclei. These characteristics are a consequence of the highly stratified density and velocity structures of centrifugally driven outflows, their large momentum discharges (which result in the efficient uplifting of dust from the disk), and, in the case of molecular disks around lowluminosity objects, their comparatively low initial degrees of ionization (which can lead to rapid heating by ambipolar diffusion).
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Smolyakov, A. I., O. Chapurin, W. Frias, O. Koshkarov, I. Romadanov, T. Tang, M. Umansky, Y. Raitses, I. D. Kaganovich, and V. P. Lakhin. "Fluid theory and simulations of instabilities, turbulent transport and coherent structures in partially-magnetized plasmas of $\mathbf{E}\times \mathbf{B}$ discharges." Plasma Physics and Controlled Fusion 59, no. 1 (November 15, 2016): 014041. http://dx.doi.org/10.1088/0741-3335/59/1/014041.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Takahashi, Norio. "3D analysis of magnetization distribution magnetized by capacitor-discharge impulse magnetizer." Journal of Materials Processing Technology 108, no. 2 (January 2001): 241–45. http://dx.doi.org/10.1016/s0924-0136(00)00763-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Kim, Sang-Yoon, Gui-Seck Bae, Jun-Hyeong Lee, Young-Man Yoon, and Chang-Hyun Kim. "Effects of Magnetite (Fe3O4) as an Electrical Conductor of Direct Interspecies Electron Transfer on Methane Production from Food Wastewater in a Plug Flow Reactor." Processes 11, no. 10 (October 18, 2023): 3001. http://dx.doi.org/10.3390/pr11103001.

Повний текст джерела
Анотація:
This study was conducted in order to examine the impact of magnetite (Fe3O4), a conductive material capable of promoting direct interspecies electron transfer (DIET) among microorganisms, on the efficiency of anaerobic digestion in a plug flow reactor (PFR) using food wastewater (FW) as the substrate. The effects of recovering and replenishing magnetite discharged along with the digestate during continuous operation of the PFR were also evaluated. A PFR with a total volume of 17 L was utilized as the reactor for anaerobic digestion. The inoculum was obtained from Icheon Biogas Research Facility, which operated with a mixture of pig slurry and FW in a 7:3 (w/w) ratio. FW was used as the substrate (volatile solids (VS) content of 85,865 mg-VS/L). The PFR was set for operation at 39 °C, and after a stabilization period of approximately 82 days, the hydraulic retention time (HRT) was set at 40 days. The study was conducted in three stages: stage 1 (83~122 days), stage 2 (123~162 days), and stage 3 (163~202 days). For the maintenance of an organic loading rate of 2.12 kg-VS/m3/d, 0.3 L/d of substrate was added every 24 h, and analysis of an equal amount of discharged digestate was performed. The experimental treatments included a control without the addition of magnetite after the stabilization period, treatment (T1) with addition of magnetite (20 mM in digestate) and subsequent recovery and replenishment of magnetite on the discharge of digestate, and treatment (T2) with addition of magnetite (20 mM) without the replenishment of magnetite. Analytical parameters included the characteristics of the discharged digestate (pH, NH4+-N, chemical oxygen demand (CODCr), total volatile fatty acids (TVFAs), and alkalinity), and methane production (Mp). During the period of operation of the PFR after the stabilization period, no significant differences in pH and NH4+-N, based on the recovery and replenishment of magnetite, were observed, and a stably functioning PFR was observed. However, in stage 2, due to the increased degradation of organic matter caused by DIET, the CODCr of T1 and T2 decreased by 9.42% compared with the control. In stage 3, the magnetite content in the reactor in T2 decreased by a maximum of 9.42% compared to T1. In stage 3, the Mp for T2 was similar to that of the control, with a maximum discharge of magnetite of 3.06%, and the Mp decreased by 5.40% compared to T1. Regarding the ratio of methanogens in the community, the results of an analysis of the digestate from stage 3 showed an increase in the community of acetotrophic methanogens, specifically Methanosarcina. The findings of this study confirm that DIET was effectively promoted by maintaining the concentration of 20 mM magnetite in the PFR while using FW as a substrate.
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Chesta, E., N. B. Meezan, and M. A. Cappelli. "Stability of a magnetized Hall plasma discharge." Journal of Applied Physics 89, no. 6 (March 15, 2001): 3099–107. http://dx.doi.org/10.1063/1.1346656.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Mehrpour Bernety, Hossein, Luc S. Houriez, Jesse A. Rodríguez, Benjamin Wang, and Mark A. Cappelli. "A characterization of plasma properties of a heterogeneous magnetized low pressure discharge column." AIP Advances 12, no. 11 (November 1, 2022): 115220. http://dx.doi.org/10.1063/5.0124845.

Повний текст джерела
Анотація:
An approach is presented for characterizing heterogeneous magnetized plasma discharge tubes through the scattering of electromagnetic plane waves. Here, we formulate the analytical problem of electromagnetic scattering from a gyrotropic plasma column. The scattering accounts for the heterogeneous composition of the cylindrical discharge plasma and facilitates determining its propensity for gyrotropic scattering, particularly when electron collisional damping may be prevalent. The analytical results are validated using computational simulations. Scattered fields from the magnetized plasma are measured experimentally, and, by comparing the analytical and experimental results, the unknown parameters of the discharge, i.e., characteristic plasma and electron collisional damping frequencies, are determined. The technique is relatively straight-forward to use and removes the need for commercial computational electromagnetic simulations when experimental data on scattering characteristics of such cylindrical discharge plasmas are available.
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Sarma, Bornali, Sourabh S. Chauhan, A. M. Wharton, and A. N. Sekar Iyengar. "Comparative study on nonlinear dynamics of magnetized and un-magnetized dc glow discharge plasma." Physica Scripta 88, no. 6 (November 13, 2013): 065005. http://dx.doi.org/10.1088/0031-8949/88/06/065005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Yasserian, K., M. Aslaninejad, M. Ghoranneviss, and F. M. Aghamir. "Sheath formation in a collisional electronegative magnetized discharge." Journal of Physics D: Applied Physics 41, no. 10 (May 1, 2008): 105215. http://dx.doi.org/10.1088/0022-3727/41/10/105215.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Yankov, V. V. "Creation of Spin-magnetized Gas by Plasma Discharge." Physica Scripta 57, no. 3 (March 1, 1998): 460–62. http://dx.doi.org/10.1088/0031-8949/57/3/021.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Cherukulappurath Mana, A., E. Faudot, and F. Brochard. "Positive self-bias in a magnetized CCP discharge." Physics of Plasmas 30, no. 3 (March 2023): 030703. http://dx.doi.org/10.1063/5.0138969.

Повний текст джерела
Анотація:
Radio frequency (RF) plasmas are commonly used for surface treatments and plasma heating processes. Controlling the heat flux from the plasma to the RF electrode is a crucial issue for optimizing these processes and is, therefore, the subject of considerable research in the low- and high-temperature plasma physics communities. In an asymmetric capacitively coupled plasma discharge, the ions accelerated by the direct current (DC) self-bias are the prime factor of the wall heating process. In this work, investigations have been performed with the aim to act on the DC self-bias in a linear magnetized RF environment. The lateral side and one face of the electrode have been covered by ceramic in order to limit the electron flux toward these surfaces. The variations in DC self-bias voltage as a function of the gas pressure, coupled RF power, and tilt angle between the RF electrode and the axial magnetic field have been studied. A new regime was discovered at low pressures, higher magnetic fields, and grazing angles for which the self-bias is positive. An analytical model was developed, which is in agreement with the experimental results.
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Kim, Pill-Soo, and Yong Kim. "Thermal Modeling of Capacitor Discharge Impulse Magnetizer." IEEJ Transactions on Industry Applications 116, no. 4 (1996): 397–403. http://dx.doi.org/10.1541/ieejias.116.397.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Mikelashvili, Vladimer, Shalva Kekutia, Jano Markhulia, Liana Saneblidze, Zaur Jabua, László Almásy, and Manfred Kriechbaum. "Folic acid conjugation of magnetite nanoparticles using pulsed electrohydraulic discharges." Journal of the Serbian Chemical Society, no. 00 (2020): 53. http://dx.doi.org/10.2298/jsc200414053m.

Повний текст джерела
Анотація:
The sonochemical coprecipitation reaction with moderate ultrasound irradiation in low vacuum environment was used to obtain aqueous colloidal suspensions of iron oxide nanoparticles (IONPs). Synthesized magnetite nanoparticles were conjugated directly by Folic Acid using electrohydraulic discharges as a processing technique before modification of the surface of the nanoparticles. Electrohydraulic discharges were applied in two operational modes with high and low power pulsed direct currents between the electrodes. The physical and chemical properties of the obtained samples were studied using X-Ray Powder Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Dynamic Light Scattering (DLS), and Small Angle X-Ray Scattering (SAXS). The investigation has proved an inverse cubic spinel structure of magnetite with Folic Acid attachment to the magnetite surface (mean crystallite diameter in the samples D = 27~29 ? 2 nm by XRD and SAXS). It was found that the processing with electrohydraulic discharges increases the colloidal stability of the Folic acid-magnetite nanoparticle dispersions.
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Bamberg, E., E. Magory, N. Balal, and V. L. Bratman. "Permanent Helical Undulators with Strong Fields." Journal of Physics: Conference Series 2687, no. 3 (January 1, 2024): 032045. http://dx.doi.org/10.1088/1742-6596/2687/3/032045.

Повний текст джерела
Анотація:
Abstract Undulators containing magnetized rare-earth helices can provide a significantly higher oscillatory electron velocity than the widely used planar Halbach undulators. Using Wire Electrical Discharge Machining (WEDM), it is possible to manufacture NdFeB helices with a period of 1 mm or less with high accuracy. In this work, we describe the results of manufacturing and studying prototypes of undulators in the form of one or two axially and radially magnetized helices. More efficient hybrid systems of two axially oppositely magnetized and two steel non-premagnetized helices with a field on the axis of the order of 1 T are also shown. Micro-undulators of this type can significantly increase the efficiency of XFELs and Inverse FELs.
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Mikelashvili, Vladimer, Shalva Kekutia, Jano Markhulia, Liana Saneblidze, Nino Maisuradze, Manfred Kriechbaum, and László Almásy. "Synthesis and Characterization of Citric Acid-Modified Iron Oxide Nanoparticles Prepared with Electrohydraulic Discharge Treatment." Materials 16, no. 2 (January 12, 2023): 746. http://dx.doi.org/10.3390/ma16020746.

Повний текст джерела
Анотація:
Chemical co-precipitation from ferrous and ferric salts at a 1:1.9 stoichiometric ratio in NH4OH base with ultrasonication (sonolysis) in a low vacuum environment has been used for obtaining colloidal suspensions of Fe3O4 nanoparticles coated with citric acid. Before coating, the nanoparticles were processed by electrohydraulic discharges with a high discharge current (several tens of amperes) in a water medium using a pulsed direct current. Magnetite nanoparticles were obtained with an average crystallite diameter D = 25–28 nm as obtained by XRD and particle sizes of 25 nm as measured by small-angle X-ray scattering. Magnetometry showed that all samples were superparamagnetic. The saturation magnetization for the citric acid covered samples after electrohydraulic processing showed higher value (58 emu/g) than for the directly coated samples (50 emu/g). Ultraviolet-visible spectroscopy and Fourier transform infrared spectroscopy showed the presence and binding of citric acid to the magnetite surface by chemisorption of carboxylate ions. Hydrodynamic sizes obtained from DLS and zeta potentials were 93 and 115 nm, −26 and −32 mV for the citric acid covered nanoparticles and 226 nm and 21 mV for the bare nanoparticles, respectively. The hydraulic discharge treatment resulted in a higher citric acid coverage and better particle dispersion. The developed method can be used in nanoparticle synthesis for biomedical applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Abbas, Qusay Adnan, Ala F. Ahmed, and Falah A. H. Mutlak. "Spectroscopic analysis of magnetized hollow cathode discharge plasma characteristics." Optik 242 (September 2021): 167260. http://dx.doi.org/10.1016/j.ijleo.2021.167260.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

NAKAGAWA, Toshiki, Yoshitake SATO, Eiko TANAKA, Hiraku IWAYA, Daisuke KUWAHARA, and Shunjiro SHINOHARA. "Study on Magnetized RF Discharge with Very Small-Diameter." Plasma and Fusion Research 10 (2015): 3401037. http://dx.doi.org/10.1585/pfr.10.3401037.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Krafft, C., G. Matthieussent, P. Thévenet, and J. Godiot. "High density magnetized plasma produced in a laboratory discharge." Journal de Physique III 1, no. 12 (December 1991): 2047–59. http://dx.doi.org/10.1051/jp3:1991250.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Ellis, R. F., G. D. Tsakiris, C. Z. Wang, and D. A. Boyd. "Upper hybrid emission from a magnetized gas discharge plasma." Plasma Physics and Controlled Fusion 28, no. 1B (January 1, 1986): 327–45. http://dx.doi.org/10.1088/0741-3335/28/1b/008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Hagelaar, G. J. M. "Modelling electron transport in magnetized low-temperature discharge plasmas." Plasma Sources Science and Technology 16, no. 1 (January 31, 2007): S57—S66. http://dx.doi.org/10.1088/0963-0252/16/1/s06.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Degeling, Alex, Nikolai Mikhelson, Rod Boswell, and Nader Sadeghi. "Characterization of helicon waves in a magnetized inductive discharge." Physics of Plasmas 5, no. 3 (March 1998): 572–79. http://dx.doi.org/10.1063/1.872749.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

BINWAL, Shikha, Jay K. JOSHI, Shantanu Kumar KARKARI, Predhiman Krishan KAW, Lekha NAIR, Huw LEGGATE, Aoife SOMERS, and Miles M. TURNER. "Spatial Temperature Profile in a Magnetised Capacitively Coupled Discharge." Walailak Journal of Science and Technology (WJST) 16, no. 6 (July 9, 2018): 385–90. http://dx.doi.org/10.48048/wjst.2019.4784.

Повний текст джерела
Анотація:
A floating emissive probe has been used to obtain the spatial electron temperature (Te) profile in a 13.56 MHz parallel plate capacitive coupled plasma. The effect of an external transverse magnetic field and pressure on the electron temperature profile has been discussed. In the un-magnetised case, the bulk region of the plasma has a uniform Te. Upon application of the magnetic field, the Te profile becomes non-uniform and skewed. With increase in pressure, there is an overall reduction in electron temperature. The regions adjacent to the electrodes witnessed a higher temperature than the bulk for both cases. The emissive probe results have also been compared with particle-in-cell simulation results for the un-magnetised case.
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Bastykova, N. Kh, S. K. Kodanova, T. S. Ramazanov, and Zh A. Moldabekov. "Charging processes of dust particles in magnetized gas discharge plasma." Recent Contributions to Physics 72, no. 1 (March 28, 2020): 42–48. http://dx.doi.org/10.26577/rcph.2020.v72.i1.05.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Zielinski, J. J., H. J. van der Meiden, T. W. Morgan, D. C. Schram, and G. De Temmerman. "Characterization of a high-power/current pulsed magnetized arc discharge." Plasma Sources Science and Technology 21, no. 6 (October 23, 2012): 065003. http://dx.doi.org/10.1088/0963-0252/21/6/065003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Gerst, D., S. Cuynet, M. Cirisan, and S. Mazouffre. "Plasma drift in a low-pressure magnetized radio frequency discharge." Plasma Sources Science and Technology 22, no. 1 (January 28, 2013): 015024. http://dx.doi.org/10.1088/0963-0252/22/1/015024.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Binwal, S., J. K. Joshi, S. K. Karkari, P. K. Kaw, and L. Nair. "Passive inference of collision frequency in magnetized capacitive argon discharge." Physics of Plasmas 25, no. 3 (March 2018): 033506. http://dx.doi.org/10.1063/1.5001972.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Gerst, Dennis, Mihaela Cirisan, and Stéphane Mazouffre. "Strip-Like Structure in a Low-Pressure Magnetized RF Discharge." IEEE Transactions on Plasma Science 39, no. 11 (November 2011): 2570–71. http://dx.doi.org/10.1109/tps.2011.2155098.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії