Добірка наукової літератури з теми "Magnetic materials with perpendicular magnetic anisotropy"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Magnetic materials with perpendicular magnetic anisotropy".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Magnetic materials with perpendicular magnetic anisotropy"

1

Sbiaa, R., H. Meng, and S. N. Piramanayagam. "Materials with perpendicular magnetic anisotropy for magnetic random access memory." physica status solidi (RRL) - Rapid Research Letters 5, no. 12 (October 4, 2011): 413–19. http://dx.doi.org/10.1002/pssr.201105420.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kang, Kyongha. "MnBi nanoparticles with perpendicular magnetic anisotropy." Journal of Alloys and Compounds 439, no. 1-2 (July 2007): 201–4. http://dx.doi.org/10.1016/j.jallcom.2006.04.079.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

En-Yong, Jiang, Wang Zhong-Jie, and Li Jen-e. "Perpendicular magnetic anisotropy of NdFe films." Journal of Physics: Condensed Matter 2, no. 27 (July 9, 1990): 6089–92. http://dx.doi.org/10.1088/0953-8984/2/27/014.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kijima-Aoki, Hanae, Yasushi Endo, Takamichi Miyazaki, Tsutomu Nojima, Kenji Ikeda, Nobukiyo Kobayashi, Shigehiro Ohnuma, and Hiroshi Masumoto. "Shape effect of Co nanoparticles on the electric and magnetic properties of Co–SiO2 nanogranular films." AIP Advances 12, no. 3 (March 1, 2022): 035229. http://dx.doi.org/10.1063/9.0000310.

Повний текст джерела
Анотація:
Controlling the magnetic anisotropy of nanoparticles is a crucial but challenging step for developing new magnetic functions. Here, we demonstrate a simple approach to controlling the shape of Co nanoparticles in a Co-SiO2 nanogranular film from oblate to prolate spheroid by varying the substrate rotation speed during the tandem fabrication process without changing the film composition (Co:SiO2 = 3:7). Changing the nanoparticles from oblate to prolate, increasing perpendicular length of ellipsoidal nanoparticles, changes the magnetic anisotropy axis of Co–SiO2 nanogranular films from in-plane to out-of-plane, which indicates that the shape anisotropy profoundly affects the magnetic properties. Despite the small tunneling current of a few tens of nanoamperes, a maximum tunneling magnetoresistance effect of up to 2.8 % was realized under an applied magnetic field of 12 kOe in the film plane. Achieving both in-plane and perpendicular spin-dependent tunneling, the anisotropic nanogranular films imply direction controllable tunneling materials as future topological nanoarchitecture. Such high-resistivity nanogranular films with a controllable magnetic nanoparticle shape facilitate the design of new magneto-optical devices with high withstand voltages.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ching-Ming Lee, Lin-Xiu Ye, Jia-Mou Lee, Tung-Hsien Hsieh, Jhih-Wei Syu, Wen-Jaun Chen, Chao-Yuan Huang, and Te-Ho Wu. "Magnetic Properties of Ultrathin TbFeCo Magnetic Films With Perpendicular Magnetic Anisotropy." IEEE Transactions on Magnetics 45, no. 10 (October 2009): 4023–26. http://dx.doi.org/10.1109/tmag.2009.2024887.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Sbiaa, R., H. Meng, and S. N. Piramanayagam. "ChemInform Abstract: Materials with Perpendicular Magnetic Anisotropy for Magnetic Random Access Memory." ChemInform 44, no. 14 (March 20, 2013): no. http://dx.doi.org/10.1002/chin.201314222.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Lodder, J. Cock. "Magnetic Microstructures of Perpendicular Magnetic-Recording Media." MRS Bulletin 20, no. 10 (October 1995): 59–63. http://dx.doi.org/10.1557/s0883769400045383.

Повний текст джерела
Анотація:
Magnetic recording has been the dominant recording technology for information storage since the invention of the computer. Currently, 1-Gbit/in. longitudinal magnetic recording (LMR) systems have been realized and densities of 10 Gbit/in., having bit areas less than 0.1 μm, are being developed. To reach this goal, a drastic scaling down of the track pitch, bit-cell length, head gap, medium thickness, and head-medium spacing is required. If this trend of increasing densities continues, an areal density of more than 300 Gbit/in. is predicted in the 21st century, based on computer simulation using the perpendicular magnetic recording (PMR) mode instead of the current LMR scheme. Magnetic-recording technologies and related materials have already been discussed in another issue of the MRS Bulletin, and hence in this paper, we concentrate on Co-Cr-X material used as a medium for PMR.The PMR mode has been studied since 1975 and at present, Co-Cr-X (e.g., X = Ta) films with perpendicular anisotropy are the most promising media material. In general, such media should have the following properties: easy axis of magnetization perpendicular to the film plane, suitable coercivity (Hc) and remanent magnetization (Mr) for storing the information and reading it at a high signal-to-noise (S/N) level, uniform columnar size with a small diameter, magnetically uncoupled columns having a magnetization reversal based on rotation instead of a domain-wall motion, chemical stability under various environmental conditions, and a small surface roughness. In order to achieve the desired magnetic anisotropy and coercivity, a columnar morphology (small diameter) with an hep [0001] texture and exchange-decoupled, columnar boundaries—to create a magnetic microstructure for single domain switching columns with high coercivity—should be obtained. An overview of the preparation, microstructure, and magnetic properties of Co-Cr thin films is given in Reference 8. Depending on the deposition parameters, a so-called initial layer (with an in-plane magnetization) can be present.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Amoroso, Danila, Paolo Barone, and Silvia Picozzi. "Interplay between Single-Ion and Two-Ion Anisotropies in Frustrated 2D Semiconductors and Tuning of Magnetic Structures Topology." Nanomaterials 11, no. 8 (July 21, 2021): 1873. http://dx.doi.org/10.3390/nano11081873.

Повний текст джерела
Анотація:
The effects of competing magnetic interactions in stabilizing different spin configurations are drawing renewed attention in order to unveil emerging topological spin textures and to highlight microscopic mechanisms leading to their stabilization. The possible key role of the two-site exchange anisotropy in selecting specific helicity and vorticity of skyrmionic lattices has only recently been proposed. In this work, we explore the phase diagram of a frustrated localized magnet characterized by a two-dimensional centrosymmetric triangular lattice, focusing on the interplay between the two-ion anisotropy and the single-ion anisotropy. The effects of an external magnetic field applied perpendicularly to the magnetic layer, are also investigated. By means of Monte Carlo simulations, we find an abundance of different spin configurations, going from trivial to high-order Q skyrmionic and meronic lattices. In closer detail, we find that a dominant role is played by the two-ion over the single-ion anisotropy in determining the planar spin texture; the strength and the sign of single ion anisotropy, together with the magnitude of the magnetic field, tune the perpendicular spin components, mostly affecting the polarity (and, in turn, the topology) of the spin texture. Our analysis confirms the crucial role of the anisotropic symmetric exchange in systems with dominant short-range interactions; at the same time, we predict a rich variety of complex magnetic textures, which may arise from a fine tuning of competing anisotropic mechanisms.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Jaworowicz, J., N. Vernier, J. Ferré, A. Maziewski, D. Stanescu, D. Ravelosona, A. S. Jacqueline, C. Chappert, B. Rodmacq, and B. Diény. "Magnetic logic using nanowires with perpendicular anisotropy." Nanotechnology 20, no. 21 (May 5, 2009): 215401. http://dx.doi.org/10.1088/0957-4484/20/21/215401.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Pashko, Anna G., R. G. Bareev, V. Osadchenko, N. Lobasheva, and G. S. Kandaurova. "Dynamic Chains of Spiral Magnetic Domains." Solid State Phenomena 168-169 (December 2010): 227–29. http://dx.doi.org/10.4028/www.scientific.net/ssp.168-169.227.

Повний текст джерела
Анотація:
In this paper we present the results of investigation of spiral dynamic domains of a highly anisotropic iron garnet film with a perpendicular anisotropy in magnetic field with a constant dimensional gradient. The experiment showed how the presence of gradient of constant field affects the main parameters of spiral dynamic domains – geometrical form, life time, amount of orbits.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Magnetic materials with perpendicular magnetic anisotropy"

1

Rasin, Boris. "Perpendicular magnetic anisotropy in ion beam sputtered Co/Ni multilayers." Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/58071.

Повний текст джерела
Анотація:
Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2009.
Cataloged from PDF version of thesis.
Includes bibliographical references (p. 34-35).
Co/Ni multilayers display perpendicular magnetic anisotropy and have applications in magnetic devices that could lead to a large increase in the density of magnetic storage. Co/Ni 10-(2 Å Co/ 8Å Ni) and 10-(2 Å Co/ 4 Å Ni) multilayers were deposited with ion beam sputtering on either ion beam sputtered copper or direct current magnetron sputtered gold buffer layers of various thicknesses. The effect of the the roughness and the degree of (1 1 1) texture of the buffer layers and the multilayers on the perpendicular magnetic anisotropy of the deposited multilayers was examined. In addition the effect of the deposition method used to fabricate the samples, ion beam sputtering, was analyzed. The magnetic behavior of the multilayers was examined with alternating gradient magnetometry and vibrating sample magnetometery, the structure of the buffer layers and the multilayers was characterized with X-ray diffraction, and the roughness of the surface of the multilayers was characterized with atomic force microscopy. None of the deposited films showed perpendicular magnetic anisotropy and instead showed parallel magnetic anisotropy which was found to have occurred for every sample due to either a low degree of (1 1 1) texture in the buffer layer and the Co/Ni multilayer, a too high degree of roughness in the buffer layer and the Co/Ni multilayer or a combination of these two factors. In addition it was hypothesized that as the samples were deposited with sputtering, diffusion and alloying at the multilayer interfaces may have contributed to the multilayers having parallel magnetic anisotropy instead of perpendicular magnetic anisotropy.
by Boris Rasin.
S.B.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Niesen, Alessia [Verfasser]. "Heusler materials with perpendicular magnetic anisotropy. Thin films for spintronics / Alessia Niesen." Bielefeld : Universitätsbibliothek Bielefeld, 2019. http://d-nb.info/1183256590/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Gottwald, Matthias. "Nouveaux systèmes modèles à aimantation perpendiculaire pour l'étude des effets de transfert de spin." Thesis, Nancy 1, 2011. http://www.theses.fr/2011NAN10053/document.

Повний текст джерела
Анотація:
Les effets de transfert de spin sont devenus un sujet de recherche majeur ces quinze dernières années. Cependant, un manque de vérifications expérimentales pour beaucoup de modèles décrivant les effets de transfert de spin peut être constaté. Ceci est surtout lié à un manque de systèmes magnétiques modèles permettant un contrôle précis des paramètres pertinents utilisés dans les modèles théoriques. Dans ce travail deux systèmes magnétiques à aimantation perpendiculaire ont été analysés : les alliages amorphes de Co1-xTbx élaborés par pulvérisation cathodique et les super-réseaux [Co/Ni](111) élaborés par épitaxie par jets moléculaires. L'anisotropie et l'aimantation, qui sont des paramètres pertinents dans beaucoup de modèles sur le transfert de spin, sont variables dans une large gamme. L'origine de cette anisotropie est discutée. La structure des domaines magnétiques est analysée et les résultats des mesures de transport sont interprétés. Pour les super-réseaux [Co/Ni](111) une forte polarisation en spin au niveau de Fermi est démontrée grâce à des expériences de photo émission résolue en spin et un coefficient d'amortissement intrinsèque [alpha] très faible est trouvé. Il est conclu que les alliages amorphes de Co1-xTbx et les super-réseaux [Co/Ni](111) sont des systèmes modèles pour le transfert de spin
Spin transfer torque effects have become a research subject of high interest during the last 15 years. However, in order to probe the fundamental physics of spin transfer torque model systems are needed. For a model system it must be as simple as possible to tune the significant parameters (magnetic and structural). In this work we analyze the suitability of two materials for this need. The studied materials are amorphous Co1-xTbx alloys elaborated by sputtering and MBE grown [Co/Ni](111) superlattices. Both systems show perpendicular magnetic anisotropy (PMA), which provides a uniaxial anisotropy to the system. This anisotropy and the magnetization, which are significant parameters for many models on spin transfer torque, can be tuned in a large range of values. The origin of this PMA is discussed. The domain structure is analyzed and transport measurements are interpreted. In addition we show a strong spin polarization of the electrons close to the Fermi level by doing photoemission experiments. A small intrinsic Gilbert damping parameter [alpha] is found by FMR spectroscopy. We conclude that both materials are good candidates to be used as model systems for spin transfer torque
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kane, Margaret Marie. "Fabrication and characterization of perpendicular magnetic anisotropy thin-film CoCrPt grown on a Ti underlayer." Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/98555.

Повний текст джерела
Анотація:
Thesis: S.B., Massachusetts Institute of Technology, Department of Materials Science and Engineering, 2015.
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 57-58).
CoCrPt has potential applications as a memory storage technology because of its perpendicular magnetic anisotropy (PMA) characteristics. An underlayer can be used to ensure the out-of-plane magnetization required for PMA functionalities. Ti, with a lattice constant of a = 2.95 Å can be used to encourage uniaxial c-axis growth in CoCrPt (lattice constant a ~/= 2.55 Å, dependent on exact composition). In this report, varying thicknesses of Ti (t = 0, 20, 40, 60, 70, 80, 90, 100nm) and CoCrPt (t = 50, 75, 90, 100, 125, 150nm) were sputtered onto naturally oxidized silicon substrates. Using various characterization methods, these films were investigated in order to better understand the system. The exact composition of the CoCrPt films was found to be approximately Co₆₀.₂Cr₁₆.₄Pt₂₃.₄, with a Curie temperature of about 600 °C. The addition of a Ti underlayer resulted in an increase in coercivity to approximately 1250 Oe for t > 60nm. However, switching field distribution and saturation magnetization appear to be independent of underlayer thickness. All samples show evidence of out-of-plane growth and the roughness of the films increases until it also plateaus at about t = 60nm. When CoCrPt thickness is varied on a constant Ti underlayer, the PMA properties of the materials decrease with increasing thickness due to increased disorder and potential relaxation of the lattice in thicker films. The switching field distribution shows a significant increase, implying that a thicker film has a more homogenous distribution of grain sizes. XRD peaks confirm out-of-plane growth and suggest a trend of increasing c lattice constant as the thickness of the film increases.
by Margaret Marie Kane.
S.B.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Zhang, Jinshuo Ph D. Massachusetts Institute of Technology. "Geometrical control of domain walls and the study of domain wall properties of materials with perpendicular magnetic anisotropy." Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/108968.

Повний текст джерела
Анотація:
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Materials Science and Engineering, 2017.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 155-168).
Magnetic based devices such as hard disk drives (HDDs) are widely used in the computer industry because of their high memory capacity, non-volatility and low cost compared to semiconductor-based solid state disk drives (SSDs). However, they also suffer from low energy efficiency and low speed, due to the requirement for mechanical motion in order to access the data. In my thesis, I will first give a brief introduction to the motivation and background in the study of magnetic domain walls (DWs), which have attracted great attention due to their ability to be moved by field and/or current and corresponding potential applications in high speed memory or logic devices. I will then discuss how to geometrically control the behaviors of DWs in a ferromagnetic nanowire. I will first discuss how natural geometry distortions such as edge tapering from sputtering on an undercut resist profile and wire width variation from the patterning process would affect DW behavior, including static configurations, stability and dynamics under current pulsing. I will then discuss how similar geometrical effects will affect the properties of materials with perpendicular magnetic anisotropy (PMA). The same geometry modulation will have different effects depending on the origin of the PMA. Such results are confirmed by observing the magnetic reversal process. Besides the study on 180DWs, we will then discuss the field and current effects on 360 degree DWs (360DWs), which have many unique properties compared to 180DWs and are an alternative candidate for DW based devices. I will then discuss control of 360DW behavior by designing a geometrical heterostructure. We have found that by utilizing the asymmetric Oersted field originated from the heterostructure, we are able to control the 360DWs depending on their chirality. The structure can function as a 360DW chirality filter, which provides extra freedom in DW-based applications. These studies were conducted by a combination of micromagnetic simulations and experimental implementations. Techniques being used including OOMMF micromagnetic simulations, Comsolfinite element simulations, electrical measurements, magnetic force microscopy and other characterization techniques.
by Jinshuo Zhang.
Ph. D.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Wismayer, Matthew P. "Small angle neutron scattering studies of magnetic recording media." Thesis, St Andrews, 2008. http://hdl.handle.net/10023/471.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Nguyen, Ngoc-Minh. "Propagation de parois magnétiques dans des films et des pistes à anisotropie magnétique perpendiculaire." Thesis, Paris 11, 2012. http://www.theses.fr/2012PA112356.

Повний текст джерела
Анотація:
Cette thèse est consacrée à l’étude des mécanismes de propagation de parois magnétiques dans des films et des pistes magnétiques basés sur des matériaux à anisotropie magnétique perpendiculaire qui sont très prometteurs pour les mémoires magnétiques non volatiles d’ultra haute densité. Je me suis principalement intéressé à l’influence des défauts structuraux sur les mécanismes de dépiegeage de parois en utilisant la technique de microscopie Kerr ainsi que des mesures de transport. Trois résultats importants ont été mis en évidence : (1) Dans des vannes de spin de type CoNi/Cu/CoNi, il existe une forte influence du champ dipolaire généré par la couche dure qui peut influencer la nucléation parasite de paroi magnétique dans la couche libre et créer une propagation asymétrique sous l’effet d’un courant polarisé. J’ai aussi montré que dans des pistes sub-50nm, le renversement de l’aimantation s’effectue par des événements multiples de nucléation à cause de la présence de centres de piégeage fort qui bloquent la propagation ; (2) En visualisant la géométrie des domaines magnétiques et en étudiant les lois de reptation, j’ai montré la présence d’une faible densité de défauts structuraux et de faibles champs de propagation dans les multicouches texturés/amorphe de CoNi-CoFeB et cristallisés de Ta-CoFeB-MgO ; (3) J’ai finalement mis en évidence un effet du transfert de spin à de faibles densités de courant (≈5x1011 A/cm2) dans les pistes de CoNi-CoFeB. J’ai aussi montré une forte influence du champ d’Oesterd sur la propagation de parois liée à la présence de faibles champs de propagation. Finalement, dans le cas des pistes basées sur des films cristallisés de Ta-CoFeB-MgO, j’ai pu mesurer la vitesse sur 10 ordres de grandeur et montrer que les parois se propagent à des champs de propagation ultra faibles (0,1mT)
This work is focused on the study of magnetic domain wall propagation mechanisms in the thin films and wires based on materials with perpendicular magnetic anisotropy which are promissing for the non-volatile magnetic memory of ultra high density. I’m interested in the influence of structural defects on the mechanisms of domain wall propagation by using the Kerr microscopy technique and the transport measurements. Three important results were obtained: (1) In the spin valve structure of CoNi/Cu/CoNi, a strong influence of the dipolar magnetic field induced by the hard layer can generate a parasitic nucleation in the soft layer and create an asymmetric domain wall propagation driven by a spin polarized current. I also demonstrated that in sub-50nm wires, the nature of magnetization reversal process is the multiple nucleation events because of strong pinning centers that hinder the domain wall motion; (2) By observing the magnetic domain geometry et studying the creep law, I have pointed out that in the CoNi-CoFeB multilayers and the crystallized Ta-CoFeB-MgO multilayers, the structural defect density is low and the propagation fields can be reduced; (3) I found a spin-transfer effect with low current density (≈5x1011 A/cm2) in CoNi-CoFeB wires. I also demonstrated that the Oersted field can strongly influence the domain wall motion, especially in the material with low propagation field. Finally, in the Ta-CoFeB-MgO wires, I could measure a wide range of domain wall velocity and I show that the domain wall can move at a very low propagation field (0.1mT)
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Marcon, Paul. "Calcul ab-initio des propriétés physiques d'hétérostructures associant des matériaux ferromagnétiques à anisotropie magnétique perpendiculaire et des dichalcogénures de métaux de transition." Electronic Thesis or Diss., Toulouse 3, 2023. http://www.theses.fr/2023TOU30273.

Повний текст джерела
Анотація:
La possibilité de synthétiser des hétérostructures formées de matériaux 2D offre des perspectives majeures pour l'amélioration des composants spintroniques actuels ou la réalisation de nouveaux dispositifs. Le contrôle et la bonne compréhension des propriétés physiques de ces systèmes constituent de fait un enjeu technologique majeur. Au cours de cette thèse, nous avons étudié, à l'aide de calculs ab initio basés sur la théorie de la fonctionnelle de la densité (DFT), des hétérostructures formées de monocouches de dichalcogénures de métaux de transition (TMDCs) et de cristaux ferromagnétiques présentant une anisotropie magnétique perpendiculaire. Trois objectifs principaux ont été définis : (i) comprendre comment utiliser la proximité magnétique pour lever la dégénérescence des vallées et quantifier l'effet Zeeman des vallées ; (ii) évaluer la possibilité d'injecter un gaz d'électrons polarisé en spin dans des vallées spécifiques du feuillet de TMDC ; (iii) examiner l'impact de la proximité sur le couplage spin-orbite dans le feuillet de TMDC et sur les phénomènes Rashba et Dresselhaus dans ces systèmes. Nous avons d'abord étudié des multicouches possédant une électrode constituée d'un métal et d'une barrière isolante non 2D. Dans le système Fe/MgO/MoS2, nous avons calculé qu'un transfert d'électrons spontané s'opère de la couche de Fe vers le monofeuillet de MoS2, donnant lieu à la formation d'un gaz d'électrons non polarisé en spin. Nous avons établi un modèle expliquant la compétition entre les effets spin-orbite de type Rashba et Dresselhaus et les effets de proximité magnétique sur les bandes de valence de MoS2 : Ce modèle nous a permis de montrer que les effets de proximité sont prédominants pour une faible épaisseur de MgO (<0.42 nm), et tendent à disparaître au profit des effets spin-orbite pour à plus forte épaisseur (> 1.06 nm). Nous avons prédit qu'il est possible d'obtenir des effets spin-orbites plus forts en remplaçant l'électrode de Fe par une électrode non-magnétique de V. Afin d'augmenter les effets de proximité magnétique, nous avons finalement décider d'étudier des hétérostructures [Co1Ni2]n/h-BN/WSe2, dans lesquelles [Co1Ni2]n est un super réseau à anisotropie magnétique perpendiculaire et h-BN un isolant bidimensionnel. Pour ce système, nous prédisons qu'il serait possible d'avoir une polarisation en spin des vallées aux points K et K'. Finalement, nous avons étudié les propriétés particulières de l'hétérostructure de van der Waals Graphène/CrI3/WSe2,dans laquelle l'électrode magnétique est également remplacée par des matériaux 2D
The ability to synthesize heterostructures made up of 2D materials provides significant opportunities for improving current spintronic components or developing new devices. Thus, the control and deep understanding of the physical properties of these systems become a critical technological challenge. During this thesis, we examined heterostructures composed of transition metal dichalcogenide (TMDC) monolayers and ferromagnetic crystals exhibiting perpendicular magnetic anisotropy, using ab initio calculations based on density functional theory (DFT). We focus on three main goals: (i) understanding how to use magnetic proximity to lift valley degeneracy and quantify the valley Zeeman effect; (ii) assessing the possibility of injecting spin-polarized electron gas into specific valleys of the TMDC sheet; (iii) investigating the impact of proximity on spin-orbit coupling in the TMDC sheet and on the Rashba and Dresselhaus phenomena in these systems. We first studied multilayers with an electrode made up of a metal and a non-2D insulating barrier. In the Fe/MgO/MoS2 system, we computed that a spontaneous electron transfer occurs from the Fe layer to the MoS2 monolayer, leading to the formation of a non-spin-polarized electron gas. We established a model explaining the competition between Rashba and Dresselhaus-type spin-orbit effects and magnetic proximity effect on the MoS2 valence bands: This model allowed us to show that proximity effect predominate for thin MgO (<0.42 nm) and tend to disappear in favor of spin-orbit effects for thicker layers (> 1.06 nm). We predicted that stronger spin-orbit effects can be achieved by replacing the Fe electrode with a non-magnetic V electrode. To boost the magnetic proximity effects, we finally decided to study [Co1Ni2]n/h-BN/WSe2 heterostructures, in which [Co1Ni2]n is a superlattice with perpendicular magnetic anisotropy, and h-BN is a two-dimensional insulator. For this system, we predict that it could be possible to have a spin polarization of the valleys at the K and K' points. Ultimately, we explored the unique properties of the van der Waals heterostructure Graphene/CrI3/WSe2, where the magnetic electrode is also replaced by 2D materials
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kugler, Zoe [Verfasser]. "Perpendicular anisotropy in magnetic tunnel junctions / Zoe Kugler." Bielefeld : Universitätsbibliothek Bielefeld, Hochschulschriften, 2012. http://d-nb.info/1023862891/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Moutafis, Christoforos. "Magnetic elements with perpendicular anisotropy : statics and dynamics of magnetic bubbles and vortices." Thesis, University of Cambridge, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.611377.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Magnetic materials with perpendicular magnetic anisotropy"

1

F, Martín-Hernández, and Geological Society of London, eds. Magnetic fabric: Methods and applications. London: Geological Society, 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Weinberger, P. Magnetic anisotropies in nanostructured matter. Boca Raton: Taylor & Francis, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Mazgaj, Witold. Wyznaczanie rozkładu pola magnetycznego w materiałach magnetycznie miękkich z uwzględnieniem histerezy i anizotropii: Calculation of magnetic field distribution in soft magnetic materials taking into account hysteresis and anisotropy = [Raschet raspredelenii︠a︡ magnitnogo poli︠a︡ v magnitno-mi︠a︡gkikh materialakh s uchetom gisterezisa i anizotropii]. Kraków: Wydawnictwo PK, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

A, Serdi͡ukov, ed. Electromagnetics of bi-anisotropic materials: Theory and applications. Australia: Gordon and Breach Science, 2001.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Eriksson, Olle, Anders Bergman, Lars Bergqvist, and Johan Hellsvik. Applications of Density Functional Theory. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198788669.003.0003.

Повний текст джерела
Анотація:
In this chapter we give examples of how density functional theory describes some of the most basic magnetic properties of a material. This involves spin and orbital moments, Heisenberg exchange parameters and magnetic form factors. Relativistic effects couple spin and orbital space and make magnetic materials anisotropic, which means that the ground state magnetization is oriented parallel or perpendicular to high symmetry directions of the crystalline structure. We also illustrate how well density functional theory describes cohesive properties and how magnetism influence these properties. These examples serve to give a general picture of how well density functional theory, as described in the previous chapters, can reproduce relevant features of magnetic materials, as well as to illustrate that the onset of spin-polarization can have drastic influence on all properties of a material.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

al, et. Magnetic Fabric: Methods and Applications. Geological Society of London, 2005.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Weinberger, P. Magnetic Anisotropies in Nanostructured Matter. Taylor & Francis Group, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Weinberger, P., and P. Weinberger. Magnetic Anisotropies in Nanostructured Matter. Taylor & Francis Group, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Weinberger, P. Magnetic Anisotropies in Nanostructured Matter. Taylor & Francis Group, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Magnetic Anisotropies in Nano-Structured Matter. Chapman & Hall/CRC, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Magnetic materials with perpendicular magnetic anisotropy"

1

Kulkarni, Prabhanjan, Somnath Bhattacharyya, and Prasanta Chowdhury. "Perpendicular Magnetic Anisotropy in Magnetic Thin Films." In Advances in Magnetic Materials, 581–626. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2017. http://dx.doi.org/10.1201/9781315371573-10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Xiao, John Q., A. Gavrin, and C. L. Chien. "Perpendicular Anisotropy and Domain Structure in Granular Magnetic Solids." In Magnetic Hysteresis in Novel Magnetic Materials, 505–9. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5478-9_52.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ravelosona, Dafiné. "Dynamics of Domain Wall Motion in Wires with Perpendicular Anisotropy." In Nanoscale Magnetic Materials and Applications, 185–217. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-85600-1_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Szewczyk, Roman. "Explicitness of Parameters Identification in Anhysteretic Curve of Magnetic Materials with Strong Perpendicular Anisotropy." In Advances in Intelligent Systems and Computing, 664–71. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13273-6_62.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Buschow, K. H. J., and F. R. de Boer. "Magnetic Anisotropy." In Physics of Magnetism and Magnetic Materials, 97–103. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/0-306-48408-0_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Poulopoulos, P., M. Angelakeris, D. Niarchos, and N. K. Flevaris. "Instability of Perpendicular-Magnetization Hysteresis Features in Pt-Ni and Pd-[CoPd] Multilayers." In Magnetic Hysteresis in Novel Magnetic Materials, 533–36. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5478-9_57.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Falco, Charles M., Brad N. Engel, and J. M. Slaughter. "Magnetic Anisotropy of Ultra-Thin Films and Multilayers." In Magnetic Hysteresis in Novel Magnetic Materials, 479–83. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5478-9_49.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Cullen, J. R. "Random Anisotropy in Magnetic Materials." In NATO ASI Series, 367–76. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-2590-9_41.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Nikitin, S. A., T. I. Ivanova, and I. S. Tereshina. "Magnetic Phase Transitions and Magnetic Crystalline Anisotropy in SmFe11-xCoxTi Compounds." In Magnetic Hysteresis in Novel Magnetic Materials, 663–67. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5478-9_72.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Skomski, Ralph, Priyanka Manchanda, and Arti Kashyap. "Anisotropy and Crystal Field." In Handbook of Magnetism and Magnetic Materials, 1–83. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63101-7_3-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Magnetic materials with perpendicular magnetic anisotropy"

1

Cha, In Ho, Yong Jin Kim, Gyu Won Kim, and Young Keun Kim. "Perpendicular Magnetic Anisotropy of Non-Magnetic Materials/Ferromagnetic Materials/MgO Trilayer." In 2016 International Conference of Asian Union of Magnetics Societies (ICAUMS). IEEE, 2016. http://dx.doi.org/10.1109/icaums.2016.8479769.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

El-Ghazaly, A., N. Sato, R. M. White, and S. X. Wang. "Material optimization with perpendicular anisotropy for closed-loop magnetic inductors." In 2015 IEEE International Magnetics Conference (INTERMAG). IEEE, 2015. http://dx.doi.org/10.1109/intmag.2015.7157049.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Hirayama, E., S. Kanai, K. Sato, M. Yamanouchi, H. Sato, S. Ikeda, F. Matsukura, and H. Ohno. "In-plane Anisotropy of a CoFeB-MgO Magnetic Tunnel Junction with Perpendicular Magnetic Easy Axis." In 2014 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2014. http://dx.doi.org/10.7567/ssdm.2014.ps-12-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Bennett, Wayne R., Donald C. Person, and Charles M. Falco. "Magnetic Properties and Structural Characterization of Fe/Tb Multilayers*." In Optical Data Storage. Washington, D.C.: Optica Publishing Group, 1987. http://dx.doi.org/10.1364/ods.1987.thc3.

Повний текст джерела
Анотація:
Amorphous ferrimagnetic rare-earth transition metal (RETM) thin films are considered to be potential candidate materials for magneto-optic (MO) recording applications [1-3]. These films are grown to have a perpendicular uniaxial anisotropy, such that the net magnetization lies normal to the film plane [4,5]. Recently, investigators have reported superior magnetic properties for artificially layered RETM structures grown by dc-sputtering [6].
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Yoo, Jin-Hyeong, James B. Restorff, Marilyn Wun-Fogle, and Alison B. Flatau. "Induced Magnetic Anisotropy in Stress-Annealed Galfenol Laminated Rods." In ASME 2008 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2008. http://dx.doi.org/10.1115/smasis2008-636.

Повний текст джерела
Анотація:
The recent discovery of Iron-Gallium alloy (Galfenol) as a “large” magnetostrictive material (as high as 400 ppm) offers a particularly promising transducer material that combines largely desirable mechanical attributes with superior magnetic properties [1]. The high permeability of this material makes it easy to magnetize, however it also causes a relatively low cutoff frequency in dynamic applications, above which eddy currents form and introduce significant power losses. To reduce the eddy current losses, magnetostrictive drivers used in dynamic applications are commonly laminated. A second transducer design consideration is the introduction of an initial alignment of domains inside of the material to maximize the magnetostriction performance. It is common to achieve this by imposing an external compressive prestress to align magnetic moments perpendicular to the direction of actuation. An alternative to the application of an external prestress is to build-in a uniaxial magnetic anisotropy through stress annealing [2]. Stress annealing is a high temperature process with simultaneous application of an external load and subsequent cooling under load in which the magnetic moment alignment developed at temperature is retained upon removal from the stress annealing fixture. The external load needed to build in a useful uniaxial magnetic anisotropy in Galfenol is greater than the buckling load for Galfenol laminae sized for use in high frequency dynamic applications. In this study, prior work on stress annealing of solid rods of single and polycrystalline samples of Galfenol is successfully extended to thin laminae of Galfenol by introducing fixtures to avoid buckling of the laminae under compression during the heat treatment process. Values of the uniaxial anisotropy, cubic anisotropy, saturation magnetic induction, and saturation magnetostriction were obtained from measurements of the magnetization and magnetostriction of stress-annealed Galfenol strip as a function of compressive and tensile stress. These values were derived from fitting magnetization and magnetostriction curves to the energy expression formula [3]. Data are presented that demonstrate the magnetic uniaxial anisotropy developed by stress annealing of laminated Galfenol rods. An annealing temperature of 500 °C and a compressive stress of 200 MPa produced a uniaxial anisotropy of 11.3 kJ/m3 in this study.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Miura, S., H. Honjo, K. Kinoshita, K. Tokutome, H. Koike, S. Ikeda, T. Endoh, and H. Ohno. "Properties of Perpendicular-Anisotropy Magnetic Tunnel Junctions Fabricated over The Cu Via." In 2014 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2014. http://dx.doi.org/10.7567/ssdm.2014.a-6-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Pan, C. T., S. C. Shen, and H. P. Chou. "Design and Fabrication of High Power Electromagnetic Microactuator With Perpendicular Magnetic Anisotropy." In ASME 2001 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/imece2001/mems-23827.

Повний текст джерела
Анотація:
Abstract A novel microactuator has presented by this research. The high power electromagnetic microactuator combines of innovative hard magnetic Fe/Pt process, high Ni/Fe permalloy magnetic circuit design technique, bulk micromachining and excimer laser ablation. The hard magnetic material is Fe/Pt which is deposited under low temperature by sputter on the suspension diaphragm to offer perpendicular magnetic anisotropy field. The magnetic circuit with close loop is applied to concentrate the magnetic flux and increases magnetic force. Therefore, the magnetic field induced by the magnetic field of the planar coil and Ni/Fe permalloy can be enhanced, which will interact with Fe/Pt and induce huge displacement, large force output and high frequency. The high power electromagnetic microactuator has been demonstrated magnetic force 2 times larger than conventional magnetic microactuator.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Miura, S., H. Honjo, K. Tokutome, N. Kasai, S. Ikeda, T. Endoh, and H. Ohno. "Properties of perpendicular-anisotropy magnetic tunnel junctions prepared by different MTJ etching process." In 2013 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2013. http://dx.doi.org/10.7567/ssdm.2013.ps-12-11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Hirayama, S., S. Kasai, and S. Mitani. "Modeling and Evaluation of Interface Perpendicular Magnetic Anisotropy in Ta/NiFe/Pt Trilayers." In 2016 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2016. http://dx.doi.org/10.7567/ssdm.2016.ps-12-10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Itoh, Y., and T. Suzuki. "Magnetic and Magneto-optical Properties of TbFeCo/Pt and TbFeCo/NdCo Multilayers." In Optical Data Storage. Washington, D.C.: Optica Publishing Group, 1998. http://dx.doi.org/10.1364/ods.1998.pdp.2.

Повний текст джерела
Анотація:
The optimization of novel materials for short wavelength magneto-optical recording is key for future high density recording. TbFeCo amorphous films currently used exhibit a substantial reduction in Kerr activity with decreasing wavelength [1], and therefore, it is desirable to enhance it by adding some element. Polarized Pt atoms are known to enhance the magneto-optical effect at short wavelengths, as demonstrated in Co/Pt multilayers [2]-[4], NdFeCo films also show the increase of the Kerr rotation angle at such wavelengths [5], [6], Accordingly, TbFeCo films containing Pt or Nd are potential candidates for future short wavelength recording media. However, very little systematic studies have been carried out to examine the effect of Pt in rare-earth transition-metal (RE-TM) amorphous films [7], [8]. And Nd-TM alloy has a problem that the films generally show in-plane magnetization, although the high perpendicular magnetic anisotropy must be taken into consideration in practical use. In order to achieve high Kerr activity at short wavelengths with a high perpendicular anisotropy, multilayers such as TbFeCo/Pt and TbFeCo/NdCo were fabricated. The present study aims to understand the roles of Pt and NdCo layer in TbFeCo on both magnetic and magneto-optical properties.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії