Статті в журналах з теми "Magnetic inhomogeneities"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Magnetic inhomogeneities.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Magnetic inhomogeneities".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Rudnick, Lawrence. "Manifestations of Magnetic Field Inhomogeneities." Journal of Astrophysics and Astronomy 32, no. 4 (December 2011): 549–55. http://dx.doi.org/10.1007/s12036-011-9113-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Gogola, D., A. Krafčík, O. Štrbák, and I. Frollo. "Magnetic Resonance Imaging of Surgical Implants Made from Weak Magnetic Materials." Measurement Science Review 13, no. 4 (August 1, 2013): 165–68. http://dx.doi.org/10.2478/msr-2013-0026.

Повний текст джерела
Анотація:
Materials with high magnetic susceptibility cause local inhomogeneities in the main field of the magnetic resonance (MR) tomograph. These inhomogeneities lead to loss of phase coherence, and thus to a rapid loss of signal in the image. In our research we investigated inhomogeneous field of magnetic implants such as magnetic fibers, designed for inner suture during surgery. The magnetic field inhomogeneities were studied at low magnetic planar phantom, which was made from four thin strips of magnetic tape, arranged grid-wise. We optimized the properties of imaging sequences with the aim to find the best setup for magnetic fiber visualization. These fibers can be potentially exploited in surgery for internal stitches. Stitches can be visualized by the magnetic resonance imaging (MRI) method after surgery. This study shows that the imaging of magnetic implants is possible by using the low field MRI systems, without the use of complicated post processing techniques (e.g., IDEAL).
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Wu, Huiyan, Kerong Zhu, Guoyong Xu, and Hu Wang. "Magnetic inhomogeneities in electron-doped manganites ()." Physica B: Condensed Matter 407, no. 4 (February 2012): 770–73. http://dx.doi.org/10.1016/j.physb.2011.12.022.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Gaunt, Paul. "Magnetic coercivity." Canadian Journal of Physics 65, no. 10 (October 1, 1987): 1194–99. http://dx.doi.org/10.1139/p87-195.

Повний текст джерела
Анотація:
The theory of magnetic hardening and its impact on the design of permanent magnets is presented. The statistical theory of domain-wall pinning by sample inhomogeneities is outlined, and its relevance to the latest generation of permanent magnets is discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Shcherbakov, A. G., M. J. Fernandez-Figueroa, F. Martin-Parra, E. De Castro та M. Cornide. "The HeI λ10830 Å Observations of Two Rs Cvn Systems ζ and λ And". Symposium - International Astronomical Union 157 (1993): 167–69. http://dx.doi.org/10.1017/s0074180900174054.

Повний текст джерела
Анотація:
Magnetically active late-type stars have inhomogeneities on their surfaces that cause various observable effects in the spectral lines and light curves. Such inhomogeneities are magnetic starspots, plages etc. in active regions on the photospheric and chromospheric level. The variations of the spectral lines and light curves originating in these inhomogeneities undergo modulations following stellar rotation.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Makarov, P., V. Ustyugov, and V. Scheglov. "Modelling of electromagnetic wave propagation in magnetically inhomogeneous media." Proceedings of the Komi Science Centre of the Ural Division of the Russian Academy of Sciences, no. 5 (December 20, 2022): 100–105. http://dx.doi.org/10.19110/1994-5655-2022-5-100-105.

Повний текст джерела
Анотація:
This paper discusses the FDTD-algorithm for modeling electromagnetic wave propagation in randomly inhomogeneous magnetic media. We present the modeling results of square wave signals propagation in time-independent nanocomposite films with magnetic inhomogeneities of two types: with a random distribution of inhomogeneities throughout the film thickness and the “close packing” in the center.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ekomasov, E. G., and R. R. Murtazin. "Modeling of the nucleation of magnetic inhomogeneities in ferromagnets with inhomogeneities material parameters." Letters on Materials 2, no. 1 (2012): 9–12. http://dx.doi.org/10.22226/2410-3535-2012-1-9-12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Michaud, G. "Particle transport and surface abundance inhomogeneities." Symposium - International Astronomical Union 176 (1996): 321–28. http://dx.doi.org/10.1017/s0074180900083339.

Повний текст джерела
Анотація:
The various mechanisms leading to the appearance of horizontal inhomogeneities at the surface of ApBp stars are critically reviewed. The effect of magnetic fields is essential but is it more to control locally, on the surface, the appearance of anomalies that are caused by the vertical transport of particles, or is it to create directly the horizontal inhomogeneities by horizontal transport? The time scales for horizontal and vertical transport will be discussed in this context.The processes discussed include: a) ambipolar diffusion of protons and hydrogen in the presence of magnetic fields; b) the guiding of diffusion by magnetic fields; c) the horizontal component of radiative accelerations; d) mass loss; e) light induced drift.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Seppenwoolde, Jan-Henry, Mathilda van Zijtveld, and Chris J. G. Bakker. "Spectral characterization of local magnetic field inhomogeneities." Physics in Medicine and Biology 50, no. 2 (January 7, 2005): 361–72. http://dx.doi.org/10.1088/0031-9155/50/2/013.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ling, C. D., E. Granado, J. J. Neumeier, J. W. Lynn, and D. N. Argyriou. "Magnetic inhomogeneities in electron-doped Ca1−xLaxMnO3." Journal of Magnetism and Magnetic Materials 272-276 (May 2004): 246–48. http://dx.doi.org/10.1016/j.jmmm.2003.11.102.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

G�mez Sal, J. C., N. Marcano, and J. I. Espeso. "Evidences of Intrinsic Inhomogeneities in Magnetic Systems." Czechoslovak Journal of Physics 54, S4 (December 2004): 265–72. http://dx.doi.org/10.1007/s10582-004-0079-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Vrba, Vlastimil, Vít Procházka, and Marcel Miglierini. "Identification of spatial magnetic inhomogeneities by nuclear forward scattering of synchrotron radiation." Journal of Synchrotron Radiation 26, no. 4 (June 12, 2019): 1310–15. http://dx.doi.org/10.1107/s1600577519005344.

Повний текст джерела
Анотація:
Spatially confined magnetic inhomogeneities were revealed by measuring nuclear forward scattering time spectra on the same sample in two different geometric arrangements. They differ by 180° rotation of the sample around one of the polarization axes. A basic theoretical description of this phenomenon and its relation to a spatial distribution of nuclei featuring different magnetic moments is provided. From an experimental point of view, the violation of rotational invariance was observed for an inhomogeneous Fe81Mo8Cu1B10 metallic glass. The development of magnetic inhomogeneities and their relation to the evolution of time spectra was studied during thermal annealing.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Kilanski, L., M. Szymański, B. Brodowska, M. Górska, R. Szymczak, A. Podgórni, A. Avdonin, et al. "Magnetic Order and Magnetic Inhomogeneities in SnCrTe-PbCrTe Solid Solutions." Acta Physica Polonica A 126, no. 5 (November 2014): 1203–6. http://dx.doi.org/10.12693/aphyspola.126.1203.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Gubernatorov, V. V., S. A. Ol’kov, and T. S. Sycheva. "New Look at Substructure Formation during Recrystallization of Soft Magnetic Materials." Solid State Phenomena 168-169 (December 2010): 416–19. http://dx.doi.org/10.4028/www.scientific.net/ssp.168-169.416.

Повний текст джерела
Анотація:
Changes in the orientation and substructure of crystallites in metals were studied during the migration of grain boundaries in the recrystallization process. It is determined that the changes are caused by a significant moving force of recrystallization and the presence of inhomogeneities in the structure of metals. These inhomogeneities, having the structure and properties different from the basic metal, form a substantial contribution to the moving force of recrystallization.
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Kusmartsev, F. V. "Inhomogeneities in antiferromagnetic solids." Journal de Physique IV 12, no. 9 (November 2002): 253–56. http://dx.doi.org/10.1051/jp4:20020407.

Повний текст джерела
Анотація:
We find that in narrow hand anti-ferro-magnetic (AF) solids described by general t-J model there may arise electronic molecules or clusters consisting of holes. These holes are segregated around the topological defects such as loops of anti-phase domain walls. The loops are naturally self-organized into the closed loops of triangular, square, rectangular or other form depending on physical situations. This kind of electron molecules is spontaneously formed in AF background and constitute a new type of elementary excitations of the AF solids. We find that the size and shape of these e-molecules depend mostly on the AF coupling J and the bandwidth $4t$ as well as on the inter-site Coulomb repulsion between holes.
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Xu, Siyao, and Alex Lazarian. "Shock Acceleration with Oblique and Turbulent Magnetic Fields." Astrophysical Journal 925, no. 1 (January 1, 2022): 48. http://dx.doi.org/10.3847/1538-4357/ac3824.

Повний текст джерела
Анотація:
Abstract We investigate shock acceleration in a realistic astrophysical environment with density inhomogeneities. The turbulence induced by the interaction of the shock precursor with upstream density fluctuations amplifies both upstream and downstream magnetic fields via the turbulent dynamo. The dynamo-amplified turbulent magnetic fields (a) introduce variations of shock obliquities along the shock face, (b) enable energy gain through a combination of shock drift and diffusive processes, (c) give rise to various spectral indices of accelerated particles, (d) regulate the diffusion of particles both parallel and perpendicular to the magnetic field, and (e) increase the shock acceleration efficiency. Our results demonstrate that upstream density inhomogeneities and dynamo amplification of magnetic fields play an important role in shock acceleration, and thus shock acceleration depends on the condition of the ambient interstellar environment. The implications on understanding radio spectra of supernova remnants are also discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Magadeev, E. B., and R. M. Vakhitov. "Solitary magnetic inhomogeneities in a thin ferromagnetic film." Doklady Physics 56, no. 7 (July 2011): 366–69. http://dx.doi.org/10.1134/s1028335811070123.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Grasso, Dario. "Magnetic fields and gravitational waves from neutrino inhomogeneities." Nuclear Physics B - Proceedings Supplements 110 (July 2002): 189–91. http://dx.doi.org/10.1016/s0920-5632(02)01480-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Grasso, D. "Magnetic fields and gravitational waves from neutrino inhomogeneities." Nuclear Physics B - Proceedings Supplements 110, no. 2 (July 2002): 189–91. http://dx.doi.org/10.1016/s0920-5632(02)80123-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Magadeev, E. B., and R. M. Vakhitov. "Generation of magnetic inhomogeneities at solitary ferromagnet defects." Theoretical and Mathematical Physics 184, no. 1 (July 2015): 1011–19. http://dx.doi.org/10.1007/s11232-015-0313-z.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Urtiev, F. A., K. Yu Platonov, and G. D. Fleishman. "Resonant transition radiation in plamsa with magnetic inhomogeneities." Journal of Experimental and Theoretical Physics 102, no. 1 (January 2006): 84–90. http://dx.doi.org/10.1134/s1063776106010109.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Wendt, R. E., M. R. Wilcott, W. Nitz, P. H. Murphy, and R. N. Bryan. "MR imaging of susceptibility-induced magnetic field inhomogeneities." Radiology 168, no. 3 (September 1988): 837–41. http://dx.doi.org/10.1148/radiology.168.3.3406413.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Jensen, J. H., and R. Chandra. "NMR relaxation in tissues with weak magnetic inhomogeneities." Magnetic Resonance in Medicine 44, no. 1 (2000): 144–56. http://dx.doi.org/10.1002/1522-2594(200007)44:1<144::aid-mrm21>3.0.co;2-o.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Weis, Ján, Ivan Frollo, and Luboš Budinský. "Magnetic Field Distribution Measurement by the Modified FLASH Method." Zeitschrift für Naturforschung A 44, no. 12 (December 1, 1989): 1151–54. http://dx.doi.org/10.1515/zna-1989-1203.

Повний текст джерела
Анотація:
Abstract Magnetic field inhomogeneities cause blurring and distortion of images gained by nuclear magnetic resonance. In order to adjust the magnetic coils finely, a precise and rapid method for measuring the magnetic field is needed. We describe a gradient echo technique of the FLASH version for mapping static magnetic fields.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Van Anh Nguyen, Thi, and Yasushi Endo. "Evaluation of the magnetization dynamics in various thick YIG films using our proposed measurement technique." AIP Advances 12, no. 3 (March 1, 2022): 035234. http://dx.doi.org/10.1063/9.0000302.

Повний текст джерела
Анотація:
This paper describes the evaluation of magnetization dynamics in YIG polycrystalline films with various thicknesses using our proposed measurement technique. The saturation magnetostriction ( λs) are approximately less than −1.0×10−6 regardless of the film thickness and are lower than that of bulk polycrystalline YIG, which might be attributed to the structural and/or magnetic inhomogeneities. On the other hand, the in-plane effective damping constant ( αeff) decreases approximately from 0.00384±0.00029 to 0.00316±0.00013 with the increase of film thickness, and their values are much higher than those of nano-meter thick and micro-meter thick YIG films deposited on GGG substrates. The reason for this difference may be that the extrinsic damping originating from the magnetic inhomogeneities are enhanced in the film plane. In addition, αeff slightly increases as λs decreases. This tendency is opposite to those of Ni-Fe and Fe-Si polycrystalline films, and the correlation between αeff and λs does not appear. Therefore, these results suggest that magnetic inhomogeneities are mainly influenced to both αeff and λs in the film plane.
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Bessonova V. A., Telegin A. V., Nosov A. P., and Sukhorukov Yu. P. "Features of absorption of thin films La-=SUB=-0.69-=/SUB=-Ba-=SUB=-0.31-=/SUB=-MnO-=SUB=-3-delta-=/SUB=- obtained using the method of pulsed laser deposition." Optics and Spectroscopy 130, no. 9 (2022): 1097. http://dx.doi.org/10.21883/eos.2022.09.54826.3223-22.

Повний текст джерела
Анотація:
The electrical, optical, and magneto-optical properties of La0.69Ba0.31MnO3-delta thin films with a Curie temperature near room temperature are studied. It is shown that in the region of the phase transition there is a sharp change in the behavior of the temperature dependences of the electrical resistance and optical transparency of the films, which is associated with the insulator-metal transition. In a narrow temperature region near the transition, a change in the external magnetic field leads to the appearance of negative magnetoresistance and magnetotransmission of unpolarized light in the spectral range from 1 to 12 μm. It is shown that the effect of magnetic transmission (magnetoabsorption) in films is mainly due to the contribution of free charge carriers. The magnetic transmission spectra are sensitive to the magnetic and electronic inhomogeneities of the films. Keywords: Thin films, manganites, magnetoabsorption, colossal magnetoresistance, IR spectroscopy, metal-insulator transition, magnetic inhomogeneities.
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Khokhlova, V. L. "Study of Inhomogeneities on the Surface of Magnetic CP Stars." International Astronomical Union Colloquium 90 (1986): 125–32. http://dx.doi.org/10.1017/s0252921100091338.

Повний текст джерела
Анотація:
AbstractThe formulation and solution of the inverse problem to determine local Stokes parameters on the surface of a star, in particular magnetic chemically peculiar star, and hence to determine surface abundance distribution and magnetic field geometry is reviewed.
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Vakhitov, R. M., and A. R. Yumaguzin. "The structure and properties of magnetic inhomogeneities arising in nonuniform magnetic fields." Technical Physics 46, no. 5 (May 2001): 553–58. http://dx.doi.org/10.1134/1.1372944.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Ekomasov, Evgeniy G., Azamat M. Gumerov, Ramil R. Murtazin, Roman V. Kudryavtsev, Andrey E. Ekomasov, and Natalya N. Abakumova. "Resonant Dynamics of the Domain Walls in Multilayer Ferromagnetic Structure." Solid State Phenomena 233-234 (July 2015): 51–54. http://dx.doi.org/10.4028/www.scientific.net/ssp.233-234.51.

Повний текст джерела
Анотація:
The domain walls dynamics and generation and evolution of magnetic inhomogeneities of soliton type, emerging in a thin flat layer with the parameters of the magnetic anisotropy, which are different from other two thick layers of the five-layer ferromagnetic structure, were investigated.
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Magadeev, E. B., and R. M. Vakhitov. "Structure of Magnetic Inhomogeneities in Films with Topological Features." JETP Letters 115, no. 2 (January 2022): 114–18. http://dx.doi.org/10.1134/s0021364022020060.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Kulikova, D. P., E. P. Nikolaeva, and A. P. Pyatakov. "Nucleation of Magnetic Micro-Inhomogeneities by an Electric Field." Bulletin of the Russian Academy of Sciences: Physics 83, no. 12 (December 2019): 1524–25. http://dx.doi.org/10.3103/s1062873819120116.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Solin, N. I., and V. A. Kazantsev. "Linear expansion, phase separation, and magnetic inhomogeneities in La0.92Ca0.08MnO3." Physics of the Solid State 55, no. 9 (September 2013): 1846–54. http://dx.doi.org/10.1134/s1063783413090308.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Wong Wai, H., and Vincent Kotsubo. "5572127 Inhomogeneities in static magnetic fields near superconducting coils." Magnetic Resonance Imaging 15, no. 4 (January 1997): XVI. http://dx.doi.org/10.1016/s0730-725x(97)89060-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Di Stefano, M. G., R. S. Newrock, H.-K. Sin, and S. A. Dodds. "Inhomogeneities and critical magnetic fields of aluminum-tellurium composites." Physica C: Superconductivity 153-155 (June 1988): 479–80. http://dx.doi.org/10.1016/0921-4534(88)90692-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Bernal, O. O., B. Becker, J. A. Mydosh, G. J. Nieuwenhuys, A. A. Menovský, P. M. Paulus, H. B. Brom, D. E. MacLaughlin, and H. G. Lukefahr. "NMR detection of temperature-dependent magnetic inhomogeneities in URu2Si2." Physica B: Condensed Matter 281-282 (June 2000): 236–37. http://dx.doi.org/10.1016/s0921-4526(99)01192-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Marinescu, M., and N. Marinescu. "Magnetic leakage fields from extended inhomogeneities in ferromagnetic plates." IEEE Transactions on Magnetics 30, no. 5 (September 1994): 2960–63. http://dx.doi.org/10.1109/20.312558.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Gruhn, W., and Z. Bąk. "Interlayer coupling in magnetic superlattices with electron density inhomogeneities." physica status solidi (b) 241, no. 1 (January 2004): 183–88. http://dx.doi.org/10.1002/pssb.200301905.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Mikata, Y. "Analytical treatment on the effective material properties of a composite material with spheroidal and ellipsoidal inhomogeneities in an isotropic matrix." Journal of Micromechanics and Molecular Physics 01, no. 03n04 (October 2016): 1640012. http://dx.doi.org/10.1142/s2424913016400129.

Повний текст джерела
Анотація:
Effective material properties of a composite with spheroidal and ellipsoidal inhomogeneities in an isotropic matrix are investigated analytically using the dilute approximation and the Mori–Tanaka approximation together with the Eshelby's equivalent inclusion method. Both uniaxially aligned and uniformly randomly oriented spheroidal and ellipsoidal inhomogeneities are treated. For a spheroid, both oblate and prolate spheroidal inhomogeneities are considered. It is analytically shown that a composite with uniaxially aligned anisotropic ellipsoidal inhomogeneities in an isotropic matrix is anisotropic in general in thermal conductivity. It is also analytically shown that a composite with uniformly randomly oriented anisotropic ellipsoidal inhomogeneities in an isotropic matrix is exactly isotropic in thermal conductivity. Various special cases are also treated for the effective thermal conductivity of a composite with ellipsoidal and spheroidal inhomogeneities. Similar results are also obtained for the effective elastic moduli. Newly obtained expressions for the effective elastic moduli of a composite with isotropic spheroidal inhomogeneities are rather involved. Conversely, an effective thermal conductivity of a composite with anisotropic ellipsoidal inhomogeneities is relatively simple. An effective thermal conductivity of a composite with isotropic spheroidal inhomogeneities reduces to a known result (Kerner, E. H. [1956] “The electrical conductivity of composite media,” Proceedings of the Physical Society London Section B 69, 802–807; Hashin, Z. and Shtrikman, S. [1962] “A variational approach to the theory of the effective magnetic permeability of multiphase materials,” Journal of Applied Physics 33, 3125–3131.) as the spheroid aspect ratio approaches 1 (i.e., a sphere). The effective thermal conductivity of a composite with uniformly randomly oriented isotropic spheroidal inhomogeneities in an isotropic matrix obtained in this paper as a special case is similar to the one obtained by Hatta and Taya (Hatta, H. and Taya, M. [1985] “Effective thermal conductivity of a misoriented short fiber composite,” Journal Applied Physics 58, 2478–2486.) in some respects, but is different. Numerical results are shown for a composite with oblate spheroidal voids in an isotropic matrix.
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Ekomasov, E. G., Sh A. Azamatov, and R. R. Murtazin. "Studying the nucleation and evolution of magnetic inhomogeneities of the soliton and breather type in magnetic materials with local inhomogeneities of anisotropy." Physics of Metals and Metallography 105, no. 4 (April 2008): 313–21. http://dx.doi.org/10.1134/s0031918x08040017.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Gerasimchuk, V. S., and A. A. Shitov. "Dynamics of large-scale magnetic inhomogeneities in seignette-magnetics with linear magnetoelectric effect." Bulletin of the Russian Academy of Sciences: Physics 73, no. 7 (July 2009): 902–4. http://dx.doi.org/10.3103/s1062873809070120.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Hurski, L. I., N. A. Kalanda, M. V. Yarmolich, I. A. Bobrikov, A. L. Zhaludkevich, P. N. Kireev та D. A. Krivchenya. "SMALL-ANGLE SCATTERING OF NEUTRONS ON Sr2FeMoO6–δ SAMPLES WITH DIFFERENT-DEGREE SUPERSTRUCTURAL ORDERING OF Fe/Mo CATIONS". Doklady BGUIR 18, № 2 (31 березня 2020): 5–13. http://dx.doi.org/10.35596/1729-7648-2020-18-2-5-13.

Повний текст джерела
Анотація:
Single-phase Sr2FeMoO6-δ samples with different-degreesuperstructiral ordering Fe/Mo cations superstructural ordering (P, 76, 86 and 93 %) were obtained by the solid-phase technique. Based on the results of measuring the magnetic characteristics in the samples, we found that an increase in magnetization (26.41, 32.36 and 42.66 A·m2·kg–1), magnetic moment (1.33, 3.07 and 3.58 μB/f.u.) and Curie temperatures (422, 428 and 437 K) withparameter P (76, 86 and 93 %) can be explained by the presence of antistructural defects, as well as antiferromagnetic inclusions. This determines the redistribution of electron density, which is accompanied by the change in electronic configuration of a part of Fe/Mo cations. Based on the temperature dependences of the magnetic moment of the samples measured in ZFC and FC modes, and on small-angle polarized neutron scattering (SANS), we found that the samples are in a magnetically inhomogeneous state. An important result to mention is that we detected the difference between the slope of the SANS curves of samples with different oxygen content, which demonstrates a different microstructure of inhomogeneities. The main inhomogeneities are magnetic inclusions with the dimensions depending on the superstructural ordering of Fe/Mo cations. According to the Porod law, it was shown that the Sr2FeMoO6-δ samples with wave vector values 0.1 > q > 0.002 Å–1 contain polydisperse grains with a smooth surface. For q > 0.1 Å–1 a deviation from the Porod law is observed, confirming the presence of magnetic inhomogeneities with a diameter < 6 nm in the grains.
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Вахитов, Р. М., А. А. Ахметова та Р. В. Солонецкий. "Вихреподобные образования на дефектах магнитоодноосных пленок". Физика твердого тела 61, № 3 (2019): 453. http://dx.doi.org/10.21883/ftt.2019.03.47235.248.

Повний текст джерела
Анотація:
AbstractMagnetic inhomogeneities formed at columnar defects of potential-well type in uniaxial films are theoretically studied. It is shown that under some conditions, vortex-like structures occur at such defects; they have a magnetization distribution with three segments of magnetic moments’ rotation. It follows from the analysis of the structure and properties of the vortex-like inhomogeneities, depending on the material parameters, that they are determined mainly by the defect sizes and the depth of the potential well. The experimental data concerning their existence are provided.
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Donati, J. F. "Temperature, Abundance and Magnetic Mapping of Stellar Atmospheres." International Astronomical Union Colloquium 137 (1993): 136–49. http://dx.doi.org/10.1017/s0252921100017619.

Повний текст джерела
Анотація:
AbstractIn this paper, I review recent progress in the domain of indirect imaging of stellar atmospheres. Since all stars other than the Sun are too far away for us to disclose any feature on their surface directly, one has to use an indirect tool to image their atmosphere. This method (Doppler Imaging) takes advantage of a star’s rotation to identify and characterise inhomogeneities on its surface. This is done by studying both how inhomogeneities (carried in and out of the observer’s view by rotation) modulate photometric and spectroscopic data with time, and how surface features distort the shape of line profiles at a given rotational phase. In the last decade, Doppler Imaging has first been applied to abundance mapping of magnetic Ap stars, then extended to temperature and magnetic mapping of cool active stars. Allowing a solar-like way of studying the surface of stars, this technique provides a wealth of information about stellar atmospheres and, in particular, about the physical processes which dictate their dynamics and energy balance.
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Frollo, Ivan, Peter Andris, Jiri Pribil, Tomas Dermek, and Daniel Gogola. "Soft Magnetic Material Testing Using Magnetic Resonance Imaging." Advanced Materials Research 740 (August 2013): 618–23. http://dx.doi.org/10.4028/www.scientific.net/amr.740.618.

Повний текст джерела
Анотація:
Soft magnetic field samples were placed into the homogenous magnetic field of an imager based on nuclear magnetic resonance. Several samples made of a soft magnetic material (cut from a data disc) were tested. Theoretical computations on a magnetic double layer were performed. For experimental verification an MRI 0.178 Testa ESAOTE Opera imager was used. For our experiments a homogeneous circular holder (reference medium) - a container filled with doped water - was designed. The resultant image corresponds to the magnetic field variations in the vicinity of the samples. For data detection classical gradient-echo and spin-echo imaging methods, susceptible to magnetic field inhomogeneities, were used. Experiments proved that the proposed method is perspective for soft magnetic material testing using magnetic resonance imaging methods (MRI).
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Mégessier, C., T. Lanz, and J. D. Landstreet. "Magnetic Field and Silicon diffusion in Bp-Si Stars." Symposium - International Astronomical Union 132 (1988): 329–32. http://dx.doi.org/10.1017/s0074180900035245.

Повний текст джерела
Анотація:
SiII lines of magnetic Bp-Si stars in open clusters have been observed with the CAT (ESO) in order to get a mapping of the Silicon abundance distribution over the stellar surface, in the frame of the oblique rotator model. We point out the influence of the Zeeman splitting and of the abundance inhomogeneities on the line profiles.
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Chen, X., and P. Gaunt. "Domain wall pinning by magnetic inhomogeneities in Sm(CoNi)2.5." Journal of Applied Physics 67, no. 9 (May 1990): 4592–94. http://dx.doi.org/10.1063/1.344849.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Meshcheryakov, V. F., A. G. Vasil’ev, K. V. Timonin, and I. A. Khorin. "Structural inhomogeneities and magnetic properties of Co/Cu multilayer films." Crystallography Reports 47, no. 6 (November 2002): 1063–71. http://dx.doi.org/10.1134/1.1523528.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Singh, Gyanendra, P. C. Joshi, and R. C. Budhani. "Magnetic inhomogeneities and spin reorientation dependent magnetoresistance in HoNi5thin films." Journal of Applied Physics 109, no. 11 (June 2011): 113915. http://dx.doi.org/10.1063/1.3587191.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Alperovich, L., I. Chaikovsky, Y. Gurvich, and A. Melnikov. "An analysis of weak inhomogeneities in the strong magnetic fields." Physica B: Condensed Matter 298, no. 1-4 (April 2001): 364–68. http://dx.doi.org/10.1016/s0921-4526(01)00336-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Magadeev, E. B., and R. M. Vakhitov. "Topology of solitary magnetic inhomogeneities in a thin ferromagnetic film." Theoretical and Mathematical Physics 171, no. 3 (June 2012): 862–69. http://dx.doi.org/10.1007/s11232-012-0081-y.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії