Дисертації з теми "MACHINE LEARNING TOOL"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 дисертацій для дослідження на тему "MACHINE LEARNING TOOL".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Wusteman, Judith. "EBKAT : an explanation-based knowledge acquisition tool." Thesis, University of Exeter, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.280682.
Повний текст джерелаCooper, Clayton Alan. "Milling Tool Condition Monitoring Using Acoustic Signals and Machine Learning." Case Western Reserve University School of Graduate Studies / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=case1575539872711423.
Повний текст джерелаBUBACK, SILVANO NOGUEIRA. "USING MACHINE LEARNING TO BUILD A TOOL THAT HELPS COMMENTS MODERATION." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2011. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=19232@1.
Повний текст джерелаOne of the main changes brought by Web 2.0 is the increase of user participation in content generation mainly in social networks and comments in news and service sites. These comments are valuable to the sites because they bring feedback and motivate other people to participate and to spread the content. On the other hand these comments also bring some kind of abuse as bad words and spam. While for some sites their own community moderation is enough, for others this impropriate content may compromise its content. In order to help theses sites, a tool that uses machine learning techniques was built to mediate comments. As a test to compare results, two datasets captured from Globo.com were used: the first one with 657.405 comments posted through its site and the second with 451.209 messages captured from Twitter. Our experiments show that best result is achieved when comment learning is done according to the subject that is being commented.
Binsaeid, Sultan Hassan. "Multisensor Fusion for Intelligent Tool Condition Monitoring (TCM) in End Milling Through Pattern Classification and Multiclass Machine Learning." Scholarly Repository, 2007. http://scholarlyrepository.miami.edu/oa_dissertations/7.
Повний текст джерелаGert, Oskar. "Using Machine Learning as a Tool to Improve Train Wheel Overhaul Efficiency." Thesis, Linköpings universitet, Medie- och Informationsteknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-171121.
Повний текст джерелаEDIN, ANTON, and MARIAM QORBANZADA. "E-Learning as a tool to support the integration of machine learning in product development processes." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-279757.
Повний текст джерелаDetta forskningsarbete fokuserar på tillämpningar av elektroniska utlärningsmetoder som alternativ till lokala lektioner vid integrering av maskininlärning i produktutvecklingsprocessen. Framförallt är syftet att undersöka om det går att använda elektroniska utlärningsmetoder för att göra maskininlärning mer tillgänglig i produktutvecklingsprocessen. Detta ämne presenterar sig som intressant då en djupare förståelse kring detta banar väg för att effektivisera lärande på distans samt skalbarheten av kunskapsspridning. För att uppnå detta bads två grupper av anställda hos samma företagsgrupp, men tillhörande olika geografiska områden att ta del i ett upplägg av lektioner som författarna hade tagit fram. En grupp fick ta del av materialet genom seminarier, medan den andra bjöds in till att delta i en serie tele-lektioner. När båda deltagargrupper hade genomgått lektionerna fick några deltagare förfrågningar om att bli intervjuade. Några av deltagarnas direkta chefer och projektledare intervjuades även för att kunna jämföra deltagarnas åsikter med icke-deltagande intressenter. En kombination av en kvalitativ teoretisk analys tillsammans med svaren från intervjuerna användes som bas för de presenterade resultaten. Svarande indikerade att de föredrog träningarna som hölls på plats, men vidare kodning av intervjusvaren visade på undervisningsmetoden inte hade större påverkningar på deltagarnas förmåga att ta till sig materialet. Trots att resultatet pekar på att elektroniskt lärande är en teknik med många fördelar verkar det som att brister i teknikens förmåga att integrera mänsklig interaktion hindrar den från att nå sitt fulla potential och därigenom även hindrar dess integration i produktutvecklingsprocessen.
Bheemireddy, Shruthi. "MACHINE LEARNING-BASED ONTOLOGY MAPPING TOOL TO ENABLE INTEROPERABILITY IN COASTAL SENSOR NETWORKS." MSSTATE, 2009. http://sun.library.msstate.edu/ETD-db/theses/available/etd-09222009-200303/.
Повний текст джерелаHashmi, Muhammad Ali S. M. Massachusetts Institute of Technology. "Said-Huntington Discourse Analyzer : a machine-learning tool for classifying and analyzing discourse." Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/98543.
Повний текст джерелаThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 71-74).
Critical discourse analysis (CDA) aims to understand the link "between language and the social" (Mautner and Baker, 2009), and attempts to demystify social construction and power relations (Gramsci, 1999). On the other hand, corpus linguistics deals with principles and practice of understanding the language produced within large amounts of textual data (Oostdijk, 1991). In my thesis, I have aimed to combine, using machine learning, the CDA approach with corpus linguistics with the intention of deconstructing dominant discourses that create, maintain and deepen fault lines between social groups and classes. As an instance of this technological framework, I have developed a tool for understanding and defining the discourse on Islam in the global mainstream media sources. My hypothesis is that the media coverage in several mainstream news sources tends to contextualize Muslims largely as a group embroiled in conflict at a disproportionately large level. My hypothesis is based on the assumption that discourse on Islam in mainstream global media tends to lean toward the dangerous "clash of civilizations" frame. To test this hypothesis, I have developed a prototype tool "Said-Huntington Discourse Analyzer" that machine classifies news articles on a normative scale -- a scale that measures "clash of civilization" polarization in an article on the basis of conflict. The tool also extracts semantically meaningful conversations for a media source using Latent Dirichlet Allocation (LDA) topic modeling, allowing the users to discover frames of conversations on the basis of Said-Huntington index classification. I evaluated the classifier on human-classified articles and found that the accuracy of the classifier was very high (99.03%). Generally, text analysis tools uncover patterns and trends in the data without delineating the 'ideology' that permeates the text. The machine learning tool presented here classifies media discourse on Islam in terms of conflict and non-conflict, and attempts to put light on the 'ideology' that permeates the text. In addition, the tool provides textual analysis of news articles based on the CDA methodologies.
by Muhammad Ali Hashmi.
S.M.
McCoy, Mason Eugene. "A Twitter-Based Prediction Tool for Digital Currency." OpenSIUC, 2018. https://opensiuc.lib.siu.edu/theses/2302.
Повний текст джерелаLutero, Gianluca. "A Tool For Data Analysis Using Autoencoders." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/20510/.
Повний текст джерелаSpies, Lucas Daniel. "Machine-Learning based tool to predict Tire Noise using both Tire and Pavement Parameters." Thesis, Virginia Tech, 2019. http://hdl.handle.net/10919/91407.
Повний текст джерелаMaster of Science
Tire-Pavement Interaction Noise (TPIN) becomes the main noise source contributor for passenger vehicles traveling at speeds above 40 kph. Therefore, it represents one of the main contributors to noise environmental pollution in residential areas nearby highways. TPIN has been subject of exhaustive studies since the 1970s. Still, almost 50 years later, there is still not an accurate way to model it. This is a consequence of a large number of noise generation mechanisms involved in this phenomenon, and their high complexity nature. It is acknowledged that the main noise mechanisms involve tire vibration, and air pumping within the tire tread and pavement surface. Moreover, TPIN represents the only vehicle noise source strongly affected by an external factor such as pavement roughness. For the last decade, machine learning algorithms, based on the human brain structure, have been implemented to model TPIN. However, their development relay on experimental data, and do not provide strong physical insight into the problem. This research focused on the study of the correct configuration of such machine learning algorithms applied to the very specific task of TPIN prediction. Moreover, a customized configuration showed improvements on the TPIN prediction capabilities of these algorithms. During the second stage of this thesis, tire noise test was undertaken for different tires at different pavements surfaces on the Virginia Tech SMART road. The experimental data was used to develop an approach to account for the pavement roughness when predicting TPIN. Finally, the new machine learning algorithm configuration, along with the approach to account for pavement roughness were complemented using previous work to obtain what is the first reasonable accurate and complete computational tool to predict tire noise. This tool uses as inputs: 1) tire parameters, 2) pavement parameters, and 3) vehicle speed.
Kim, Eun Young. "Machine-learning based automated segmentation tool development for large-scale multicenter MRI data analysis." Diss., University of Iowa, 2013. https://ir.uiowa.edu/etd/4998.
Повний текст джерелаMukherjee, Anika. "Pattern Recognition and Machine Learning as a Morphology Characterization Tool for Assessment of Placental Health." Thesis, Université d'Ottawa / University of Ottawa, 2021. http://hdl.handle.net/10393/42731.
Повний текст джерелаJakob, Persson. "How to annotate in video for training machine learning with a good workflow." Thesis, Umeå universitet, Institutionen för tillämpad fysik och elektronik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-187078.
Повний текст джерелаArtificiell intelligens och maskininlärning används inom många olika områden, ett av dessa områden är bildigenkänning. Vid produktionen av ett TV-program eller av en film kan bildigenkänning användas för att hjälpa redigerarna att hitta specifika objekt, scener eller personer i videoinnehållet, vilket påskyndar produktionen. Men bildigenkänningsprogram fungerar inte alltid helt perfekt och kan inte användas i produktionen av ett TV-program eller film som det är tänkt att användas i det sammanhanget. För att förbättra bildigenkänningsprogram så behöver dess algoritm tränas på stora datasets av bilder och labels. Men att skapa dessa datasets tar tid och det behövs program som kan skapa datasets och återträna algoritmer för bildigenkänning så att de fungerar bättre. Syftet med detta examensarbete var att undersöka om det var möjligt att skapa ett verktyg som kan markera(annotera) objekt och personer i video och använda datat som träningsdata för algoritmer. Men även att skapa ett verktyg som kan återträna algoritmer för bildigenkänning så att de blir bättre utifrån datat man får från ett bildigenkänningprogram. Det var också viktigt att dessa verktyg hade ett bra arbetsflöde för användarna. Studien bestod av en teoretisk studie för att få mer kunskap om annoteringar i video och hur man skapar bra UX-design med ett bra arbetsflöde. Intervjuer hölls också för att få mer kunskap om kraven på produkten och vilka som skulle använda den. Det resulterade i ett användarscenario och ett arbetsflöde som användes tillsammans med kunskapen från den teoretiska studien för att skapa en hi-fi prototyp, där en iterativ process med användbarhetstestning användes. Detta resulterade i en slutlig hi-fi prototyp med bra design och ett bra arbetsflöde för användarna där det är möjligt att markera(annotera) objekt och personer med en bounding box och där det är möjligt att återträna algoritmer för bildigenkänning som har körts på video.
Massaccesi, Luciano. "Machine Learning Software for Automated Satellite Telemetry Monitoring." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/20502/.
Повний текст джерелаGoteti, Aniruddh. "Machine Learning Approach to the Design of Autonomous Construction Equipment applying Data-Driven Decision Support Tool." Thesis, Blekinge Tekniska Högskola, Institutionen för datalogi och datorsystemteknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-17635.
Повний текст джерелаPodapati, Sasidhar. "Fitness Function for a Subscriber." Thesis, Blekinge Tekniska Högskola, Institutionen för kommunikationssystem, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-13953.
Повний текст джерелаKnoth, Stefanie. "Topic Explorer Dashboard : A Visual Analytics Tool for an Innovation Management System enhanced by Machine Learning Techniques." Thesis, Linnéuniversitetet, Institutionen för datavetenskap och medieteknik (DM), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-105981.
Повний текст джерелаEvans, Steven William. "Groundwater Level Mapping Tool: Development of a Web Application to Effectively Characterize Groundwater Resources." BYU ScholarsArchive, 2019. https://scholarsarchive.byu.edu/etd/7738.
Повний текст джерелаKottorp, Max, and Filip Jäderberg. "Chatbot As a Potential Tool for Businesses : A study on chatbots made in collaboration with Bisnode." Thesis, KTH, Industriell ekonomi och organisation (Inst.), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-210768.
Повний текст джерелаFiebrink, Rebecca. "An exploration of feature selection as a tool for optimizing musical genre classification /." Thesis, McGill University, 2006. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=99372.
Повний текст джерелаMolinar, Torres Gabriela Alejandra [Verfasser]. "Machine Learning Tool for Transmission Capacity Forecasting of Overhead Lines based on Distributed Weather Data / Gabriela Alejandra Molinar Torres." Karlsruhe : KIT-Bibliothek, 2020. http://d-nb.info/1223985873/34.
Повний текст джерелаLee, Ji Hyun. "Development of a Tool to Assist the Nuclear Power Plant Operator in Declaring a State of Emergency Based on the Use of Dynamic Event Trees and Deep Learning Tools." The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1543069550674204.
Повний текст джерелаAyuso, Anna Maria E. "Automation of Drosophila gene expression pattern image annotation : development of web-based image annotation tool and application of machine learning methods." Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/66403.
Повний текст джерелаCataloged from PDF version of thesis.
Includes bibliographical references (p. 91-92).
Large-scale in situ hybridization screens are providing an abundance of spatio-temporal patterns of gene expression data that is valuable for understanding the mechanisms of gene regulation. Drosophila gene expression pattern images have been generated by the Berkeley Drosophila Genome Project (BDGP) for over 7,000 genes in over 90,000 digital images. These images are currently hand curated by field experts with developmental and anatomical terms based on the stained regions. These annotations enable the integration of spatial expression patterns with other genomic data sets that link regulators with their downstream targets. However, the manual curation has become a bottleneck in the process of analyzing the rapidly generated data therefore it is necessary to explore computational methods for the curation of gene expression pattern images. This thesis addresses improving the manual annotation process with a web-based image annotation tool and also enabling automation of the process using machine learning methods. First, a tool called LabelLife was developed to provide a systematic and flexible way of annotating images, groups of images, and shapes within images using terms from a controlled vocabulary. Second, machine learning methods for automatically predicting vocabulary terms for a given image based on image feature data were explored and implemented. The results of the applied machine learning methods are promising in terms of predictive ability, which has the potential to simplify and expedite the curation process hence increasing the rate that biologically significant data can be evaluated and new insights can be gained.
by Anna Maria E. Ayuso.
M.Eng.
Giulianini, Luca. "Progettazione e sviluppo di un tool di supporto alla rilevazione di alterazioni digitali in immagini del volto." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/23404/.
Повний текст джерелаMao, Jin, Lisa R. Moore, Carrine E. Blank, Elvis Hsin-Hui Wu, Marcia Ackerman, Sonali Ranade, and Hong Cui. "Microbial phenomics information extractor (MicroPIE): a natural language processing tool for the automated acquisition of prokaryotic phenotypic characters from text sources." BIOMED CENTRAL LTD, 2016. http://hdl.handle.net/10150/622562.
Повний текст джерелаRosa, Simone. "Analisi dei segnali vibratori di una macchina utensile per brocciatura." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2022.
Знайти повний текст джерелаModugula, Venkateswarulu Yashwanth Krishna, and Hegde Raghavendra Shridhar. "Costs & Benefits of an AI/IT Tool for the Swedish Antibiotics Supply Chain : An AI/IT Tool to address shortages of Antibiotics in Sweden." Thesis, Uppsala universitet, Institutionen för samhällsbyggnad och industriell teknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-433911.
Повний текст джерелаJohansson, Richard, and Heino Otto Engström. "Topic propagation over time in internet security conferences : Topic modeling as a tool to investigate trends for future research." Thesis, Linköpings universitet, Institutionen för datavetenskap, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-177748.
Повний текст джерелаEngelmann, James E. "An Information Management and Decision Support tool for Predictive Alerting of Energy for Aircraft." Ohio University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1595779161412401.
Повний текст джерелаVargas, Gonzalez Andres. "SketChart: A Pen-Based Tool for Chart Generation and Interaction." Master's thesis, University of Central Florida, 2014. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/6375.
Повний текст джерелаM.S.
Masters
Electrical Engineering and Computer Science
Engineering and Computer Science
Computer Science
Berkman, Anton, and Gustav Andersson. "Predicting the impact of prior physical activity on shooting performance." Thesis, Tekniska Högskolan, Högskolan i Jönköping, JTH, Datateknik och informatik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-46851.
Повний текст джерелаSuleiman, Iyad. "Integrating data mining and social network techniques into the development of a Web-based adaptive play-based assessment tool for school readiness." Thesis, University of Bradford, 2013. http://hdl.handle.net/10454/7293.
Повний текст джерелаLallé, Sébastien. "Assistance à la construction et à la comparaison de techniques de diagnostic des connaissances." Thesis, Grenoble, 2013. http://www.theses.fr/2013GRENM042/document.
Повний текст джерелаComparing and building knowledge diagnostic is a challenge in the field of Technology Enhanced Learning (TEL) systems. Knowledge diagnostic aims to infer the knowledge mastered or not by a student in a given learning domain (like mathematics for high school) using student traces recorded by the TEL system. Knowledge diagnostics are widely used, but they strongly depend on the learning domain and are not well formalized. Thus, there exists no method or tool to build, compare and evaluate different diagnostics applied on a given learning domain. Similarly, using a diagnostic in two different domain usually imply to implementing almost both from scratch. Yet, comparing and reusing knowledge diagnostics can lead to reduce the engineering cost, to reinforce the evaluation and finally help knowledge diagnostic designers to choose a diagnostic. We propose a method, refine in a first platform, to assist knowledge diagnostic designers to build and compare knowledge diagnostics, using a new formalization of the diagnostic and student traces. To help building diagnostics, we used a semi-automatic machine learning algorithm, guided by an ontology of the traces and the knowledge designed by the designer. To help comparing diagnostics, we use a set of comparison criteria (either statistical or specific to the field of TEL systems) applied on the results of each diagnostic on a given set of traces. The main contribution is that our method is generic over diagnostics, meaning that very different diagnostics can be built and compared, unlike previous work on this topic. We evaluated our work though three experiments. The first one was about applying our method on three different domains and set of traces (namely geometry, reading and surgery) to build and compare five different knowledge diagnostics in cross validation. The second experiment was about designing and implementing a new comparison criteria specific to TEL systems: the impact of knowledge diagnostic on a pedagogical decision, the choice of a type of help to give to a student. The last experiment was about designing and adding in our platform a new diagnostic, in collaboration with an expert in didactic
Dietrich, Stefan [Verfasser], Heiner [Akademischer Betreuer] Boeing, Heiner [Gutachter] Boeing, and Dagmar [Gutachter] Drogan. "Investigation of the machine learning method Random Survival Forest as an exploratory analysis tool for the identification of variables associated with disease risks in complex survival data / Stefan Dietrich ; Gutachter: Heiner Boeing, Dagmar Drogan ; Betreuer: Heiner Boeing." Berlin : Technische Universität Berlin, 2016. http://d-nb.info/1156334772/34.
Повний текст джерелаKanwar, John. "Smart cropping tools with help of machine learning." Thesis, Luleå tekniska universitet, Institutionen för system- och rymdteknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-74827.
Повний текст джерелаMaskinlärning har funnits en lång tid. Deras jobb varierar från flera olika ämnen. Allting från självkörande bilar till data mining. När en person tar en bild med en mobiltelefon händer det lätt att bilden är lite sned. Det händer också att en tar spontana bilder med sin mobil, vilket kan leda till att det kommer med något i kanten av bilden som inte bör vara där. Det här examensarbetet kombinerar maskinlärning med fotoredigeringsverktyg. Det kommer att utforska möjligheterna hur maskinlärning kan användas för att automatiskt beskära bilder estetsikt tilltalande samt hur maskinlärning kan användas för att skapa ett porträttbeskärningsverktyg. Det kommer även att gå igenom hur en räta-till-funktion kan bli implementerad med hjälp av maskinlärning. Till sist kommer det att jämföra dessa verktyg med andra programs automatiska beskärningsverktyg.
Nordin, Alexander Friedrich. "End to end machine learning workflow using automation tools." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/119776.
Повний текст джерелаCataloged from PDF version of thesis.
Includes bibliographical references (pages 79-80).
We have developed an open source library named Trane and integrated it with two open source libraries to build an end-to-end machine learning workflow that can facilitate rapid development of machine learning models. The three components of this workflow are Trane, Featuretools and ATM. Trane enumerates tens of prediction problems relevant to any dataset using the meta information about the data. Furthermore, Trane generates training examples required for training machine learning models. Featuretools is an open-source software for automatically generating features from a dataset. Auto Tune Models (ATM), an open source library, performs a high throughput search over modeling options to find the best modeling technique for a problem. We show the capability of these three tools and highlight the open-source development of Trane.
by Alexander Friedrich Nordin.
M. Eng.
Jalali, Mana. "Voltage Regulation of Smart Grids using Machine Learning Tools." Thesis, Virginia Tech, 2019. http://hdl.handle.net/10919/95962.
Повний текст джерелаWith advent of renewable energies into the power systems, innovative and automatic monitoring and control techniques are required. More specifically, voltage regulation for distribution grids with solar generation is a can be a challenging task. Moreover, due to frequency and intensity of the voltage changes, traditional utility-owned voltage regulation equipment are not useful in long term. On the other hand, smart inverters installed with solar panels can be used for regulating the voltage. Smart inverters can be programmed to inject or absorb reactive power which directly influences the voltage. Utility can monitor, control and sync the inverters across the grid to maintain the voltage within the desired limits. Machine learning and optimization techniques can be applied for automation of voltage regulation in smart grids using the smart inverters installed with solar panels. In this work, voltage regulation is addressed by reactive power control.
Viswanathan, Srinidhi. "ModelDB : tools for machine learning model management and prediction storage." Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/113540.
Повний текст джерелаCataloged from PDF version of thesis.
Includes bibliographical references (pages 99-100).
Building a machine learning model is often an iterative process. Data scientists train hundreds of models before finding a model that meets acceptable criteria. But tracking these models and remembering the insights obtained from them is an arduous task. In this thesis, we present two main systems for facilitating better tracking, analysis, and querying of scikit-learn machine learning models. First, we introduce our scikit-learn client for ModelDB, a novel end-to-end system for managing machine learning models. The client allows data scientists to easily track diverse scikit-learn workflows with minimal changes to their code. Then, we describe our extension to ModelDB, PredictionStore. While the ModelDB client enables users to track the different models they have run, PredictionStore creates a prediction matrix to tackle the remaining piece in the puzzle: facilitating better exploration and analysis of model performance. We implement a query API to assist in analyzing predictions and answering nuanced questions about models. We also implement a variety of algorithms to recommend particular models to ensemble utilizing the prediction matrix. We evaluate ModelDB and PredictionStore on different datasets and determine ModelDB successfully tracks scikit-learn models, and most complex model queries can be executed in a matter of seconds using our query API. In addition, the workflows demonstrate significant improvement in accuracy using the ensemble algorithms. The overall goal of this research is to provide a flexible framework for training scikit-learn models, storing their predictions/ models, and efficiently exploring and analyzing the results.
by Srinidhi Viswanathan.
M. Eng.
Borodavkina, Lyudmila 1977. "Investigation of machine learning tools for document clustering and classification." Thesis, Massachusetts Institute of Technology, 2000. http://hdl.handle.net/1721.1/8932.
Повний текст джерелаIncludes bibliographical references (leaves 57-59).
Data clustering is a problem of discovering the underlying data structure without any prior information about the data. The focus of this thesis is to evaluate a few of the modern clustering algorithms in order to determine their performance in adverse conditions. Synthetic Data Generation software is presented as a useful tool both for generating test data and for investigating results of the data clustering. Several theoretical models and their behavior are discussed, and, as the result of analysis of a large number of quantitative tests, we come up with a set of heuristics that describe the quality of clustering output in different adverse conditions.
by Lyudmila Borodavkina.
M.Eng.
Song, Qi. "Developing machine learning tools to understand transcriptional regulation in plants." Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/93512.
Повний текст джерелаDoctor of Philosophy
Abiotic stresses constitute a major category of stresses that negatively impact plant growth and development. It is important to understand how plants cope with environmental stresses and reprogram gene responses which in turn confers stress tolerance to plants. Genomics technology has been used in past decade to generate gene expression data under different abiotic stresses for the model plant, Arabidopsis. Recent new genomic technologies, such as DAP-seq, have generated large scale regulatory maps that provide information regarding which gene has the potential to regulate other genes in the genome. However, this technology does not provide context specific interactions. It is unknown which transcription factor can regulate which gene under a specific abiotic stress condition. To address this challenge, several computational tools were developed to identify regulatory interactions and co-regulating genes for stress response. In addition, using single cell RNA-seq data generated from the model plant organism Arabidopsis, preliminary analysis was performed to build model that classifies Arabidopsis root cell types. This analysis is the first step towards the ultimate goal of constructing cell-typespecific regulatory network for Arabidopsis, which is important for improving current understanding of stress response in plants.
Deng, Lihua [Verfasser]. "Understanding Toll-like Receptor Modulation Through Machine Learning / Lihua Deng." Berlin : Freie Universität Berlin, 2021. http://d-nb.info/1234984652/34.
Повний текст джерелаNagler, Dylan Jeremy. "SCHUBOT: Machine Learning Tools for the Automated Analysis of Schubert’s Lieder." Thesis, Harvard University, 2014. http://nrs.harvard.edu/urn-3:HUL.InstRepos:12705172.
Повний текст джерелаParikh, Neena (Neena S. ). "Interactive tools for fantasy football analytics and predictions using machine learning." Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/100687.
Повний текст джерелаCataloged from PDF version of thesis.
Includes bibliographical references (pages 83-84).
The focus of this project is multifaceted: we aim to construct robust predictive models to project the performance of individual football players, and we plan to integrate these projections into a web-based application for in-depth fantasy football analytics. Most existing statistical tools for the NFL are limited to the use of macro-level data; this research looks to explore statistics at a finer granularity. We explore various machine learning techniques to develop predictive models for different player positions including quarterbacks, running backs, wide receivers, tight ends, and kickers. We also develop an interactive interface that will assist fantasy football participants in making informed decisions when managing their fantasy teams. We hope that this research will not only result in a well-received and widely used application, but also help pave the way for a transformation in the field of football analytics.
by Neena Parikh.
M. Eng.
Green, Pamela Dilys. "Extracting group relationships within changing software using text analysis." Thesis, University of Hertfordshire, 2013. http://hdl.handle.net/2299/11896.
Повний текст джерелаDubey, Anshul. "Search and Analysis of the Sequence Space of a Protein Using Computational Tools." Diss., Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/14115.
Повний текст джерелаArango, Argoty Gustavo Alonso. "Computational Tools for Annotating Antibiotic Resistance in Metagenomic Data." Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/88987.
Повний текст джерелаDoctor of Philosophy
Antimicrobial resistance (AMR) is one of the biggest threats to human public health. It has been estimated that the number of deaths caused by AMR will surpass the ones caused by cancer on 2050. The seriousness of these projections requires urgent actions to understand and control the spread of AMR. In the last few years, metagenomics has stand out as a reliable tool for the analysis of the microbial diversity and the AMR. By the use of next generation sequencing, metagenomic studies can generate millions of short sequencing reads that are processed by computational tools. However, with the rapid adoption of metagenomics, a large amount of data has been generated. This situation requires the development of computational tools and pipelines to manage the data scalability, accessibility, and performance. In this thesis, several strategies varying from command line, web-based platforms to machine learning have been developed to address these computational challenges. In particular, by the development of computational pipelines to process metagenomics data in the cloud and distributed systems, the development of machine learning and deep learning tools to ease the computational cost of detecting antibiotic resistance genes in metagenomic data, and the integration of crowdsourcing as a way to curate and validate antibiotic resistance genes.
Schildt, Alexandra, and Jenny Luo. "Tools and Methods for Companies to Build Transparent and Fair Machine Learning Systems." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-279659.
Повний текст джерелаAI har snabbt vuxit från att vara ett vagt koncept till en ny teknik som många företag vill eller är i färd med att implementera. Forskare och organisationer är överens om att AI och utvecklingen inom maskininlärning har enorma potentiella fördelar. Samtidigt finns det en ökande oro för att utformningen och implementeringen av AI-system inte tar de etiska riskerna i beaktning. Detta har triggat en debatt kring vilka principer och värderingar som bör vägleda AI i dess utveckling och användning. Det saknas enighet kring vilka värderingar och principer som bör vägleda AI-utvecklingen, men också kring vilka praktiska verktyg som skall användas för att implementera dessa principer i praktiken. Trots att forskare, organisationer och myndigheter har föreslagit verktyg och strategier för att arbeta med etiskt AI inom organisationer, saknas ett helhetsperspektiv som binder samman de verktyg och strategier som föreslås i etiska, tekniska och organisatoriska diskurser. Rapporten syftar till överbrygga detta gap med följande syfte: att utforska och presentera olika verktyg och metoder som företag och organisationer bör ha för att bygga maskininlärningsapplikationer på ett rättvist och transparent sätt. Studien är av kvalitativ karaktär och datainsamlingen genomfördes genom en litteraturstudie och intervjuer med ämnesexperter från forskning och näringsliv. I våra resultat presenteras ett antal verktyg och metoder för att öka rättvisa och transparens i maskininlärningssystem. Våra resultat visar också att företag bör arbeta med en kombination av verktyg och metoder, både utanför och inuti utvecklingsprocessen men också i olika stadier i utvecklingsprocessen. Verktyg utanför utvecklingsprocessen så som etiska riktlinjer, utsedda roller, workshops och utbildningar har positiva effekter på engagemang och kunskap samtidigt som de ger värdefulla möjligheter till förbättringar. Dessutom indikerar resultaten att det är kritiskt att principer på hög nivå översätts till mätbara kravspecifikationer. Vi föreslår ett antal verktyg i pre-model, in-model och post-model som företag och organisationer kan implementera för att öka rättvisa och transparens i sina maskininlärningssystem.
Jarvis, Matthew P. "Applying machine learning techniques to rule generation in intelligent tutoring systems." Link to electronic thesis, 2004. http://www.wpi.edu/Pubs/ETD/Available/etd-0429104-112724.
Повний текст джерелаKeywords: Intelligent Tutoring Systems; Model Tracing; Machine Learning; Artificial Intelligence; Programming by Demonstration. Includes bibliographical references.
Zaccara, Rodrigo Constantin Ctenas. "Anotação e classificação automática de entidades nomeadas em notícias esportivas em Português Brasileiro." Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/45/45134/tde-06092012-135831/.
Повний текст джерелаThe main target of this research is to develop an automatic named entity classification tool to sport news written in Brazilian Portuguese. To reduce this scope, during training and analysis only sport news about São Paulo Championship of 2011 written by UOL2 (Universo Online) was used. The first artefact developed was the WebCorpus tool, which aims to make easier the process of add meta informations to words, through a rich web interface. Using this, all the corpora news are tagged manually. The database used by this tool was fed by the crawler tool, also developed during this research. The second artefact developed was the corpora UOLCP2011 (UOL Campeonato Paulista 2011). This corpora was manually tagged using the WebCorpus tool. During this process, seven classification concepts were used: person, place, organization, team, championship, stadium and fans. To develop the automatic named entity classification tool, three different approaches were analysed: maximum entropy, inverted index and merge tecniques using both. Each approach had three steps: algorithm development, training using machine learning tecniques and best score analysis.