Добірка наукової літератури з теми "Lysobacter capsici AZ78"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Lysobacter capsici AZ78".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Lysobacter capsici AZ78"

1

Brescia, Francesca, Anthi Vlassi, Ana Bejarano, Bernard Seidl, Martina Marchetti-Deschmann, Rainer Schuhmacher, and Gerardo Puopolo. "Characterisation of the Antibiotic Profile of Lysobacter capsici AZ78, an Effective Biological Control Agent of Plant Pathogenic Microorganisms." Microorganisms 9, no. 6 (June 17, 2021): 1320. http://dx.doi.org/10.3390/microorganisms9061320.

Повний текст джерела
Анотація:
Determining the mode of action of microbial biocontrol agents plays a key role in their development and registration as commercial biopesticides. The biocontrol rhizobacterium Lysobacter capsici AZ78 (AZ78) is able to inhibit a vast array of plant pathogenic oomycetes and Gram-positive bacteria due to the release of antimicrobial secondary metabolites. A combination of MALDI-qTOF-MSI and UHPLC-HRMS/M was applied to finely dissect the AZ78 metabolome and identify the main secondary metabolites involved in the inhibition of plant pathogenic microorganisms. Under nutritionally limited conditions, MALDI-qTOF-MSI revealed that AZ78 is able to release a relevant number of antimicrobial secondary metabolites belonging to the families of 2,5-diketopiperazines, cyclic lipodepsipeptides, macrolactones and macrolides. In vitro tests confirmed the presence of secondary metabolites toxic against Pythium ultimum and Rhodococcus fascians in AZ78 cell-free extracts. Subsequently, UHPLC-HRMS/MS was used to confirm the results achieved with MALDI-qTOF-MSI and investigate for further putative antimicrobial secondary metabolites known to be produced by Lysobacter spp. This technique confirmed the presence of several 2,5-diketopiperazines in AZ78 cell-free extracts and provided the first evidence of the production of the cyclic depsipeptide WAP-8294A2 in a member of L. capsici species. Moreover, UHPLC-HRMS/MS confirmed the presence of dihydromaltophilin/Heat Stable Antifungal Factor (HSAF) in AZ78 cell-free extracts. Due to the production of HSAF by AZ78, cell-free supernatants were effective in controlling Plasmopara viticola on grapevine leaf disks after exposure to high temperatures. Overall, our work determined the main secondary metabolites involved in the biocontrol activity of AZ78 against plant pathogenic oomycetes and Gram-positive bacteria. These results might be useful for the future development of this bacterial strain as the active ingredient of a microbial biopesticide that might contribute to a reduction in the chemical input in agriculture.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Vlassi, Anthi, Andrea Nesler, Alexandra Parich, Gerardo Puopolo, and Rainer Schuhmacher. "Volatile-Mediated Inhibitory Activity of Rhizobacteria as a Result of Multiple Factors Interaction: The Case of Lysobacter capsici AZ78." Microorganisms 8, no. 11 (November 9, 2020): 1761. http://dx.doi.org/10.3390/microorganisms8111761.

Повний текст джерела
Анотація:
Plant beneficial rhizobacteria may antagonize soilborne plant pathogens by producing a vast array of volatile organic compounds (VOCs). The production of these compounds depends on the medium composition used for bacterial cell growth. Accordingly, Lysobacter capsici AZ78 (AZ78) grown on a protein-rich medium was previously found to emit volatile pyrazines with toxic activity against soilborne phypathogenic fungi and oomycetes. However, the discrepancy between the quantity of pyrazines in the gaseous phase and the minimum quantity needed to achieve inhibition of plant pathogens observed, lead us to further investigate the volatile-mediated inhibitory activity of AZ78. Here, we show that, besides VOCs, AZ78 cells produce ammonia in increased amounts when a protein-rich medium is used for bacterial growth. The production of this volatile compound caused the alkalinization of the physically separated culture medium where Rhizoctonia solani was inoculated subsequently. Results achieved in this work clearly demonstrate that VOC, ammonia and the growth medium alkalinization contribute to the overall inhibitory activity of AZ78 against R. solani. Thus, our findings suggest that the volatile-mediated inhibitory activity of rhizobacteria in protein-rich substrates can be regarded as a result of multiple factors interaction, rather than exclusively VOCs production.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Puopolo, Gerardo, Oscar Giovannini, and Ilaria Pertot. "Lysobacter capsici AZ78 can be combined with copper to effectively control Plasmopara viticola on grapevine." Microbiological Research 169, no. 7-8 (July 2014): 633–42. http://dx.doi.org/10.1016/j.micres.2013.09.013.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Cimmino, A., G. Puopolo, M. Perazzolli, A. Andolfi, D. Melck, I. Pertot, and A. Evidente. "Cyclo(L-PRO-L-TYR), The Fungicide Isolated From Lysobacter Capsici AZ78: A Structure–Activity Relationship Study." Chemistry of Heterocyclic Compounds 50, no. 2 (April 23, 2014): 290–95. http://dx.doi.org/10.1007/s10593-014-1475-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Puopolo, Gerardo, Maria Cristina Palmieri, Oscar Giovannini, and Ilaria Pertot. "Impact of temperature on the survival and the biocontrol efficacy of Lysobacter capsici AZ78 against Phytophthora infestans." BioControl 60, no. 5 (April 18, 2015): 681–89. http://dx.doi.org/10.1007/s10526-015-9672-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Cimmino, A., G. Puopolo, M. Perazzolli, A. Andolfi, D. Melck, I. Pertot, and A. Evidente. "ChemInform Abstract: Cyclo(L-Pro-L-Tyr), the Fungicide Isolated from Lysobacter capsici AZ78: A Structure-Activity Relationship Study." ChemInform 45, no. 42 (October 2, 2014): no. http://dx.doi.org/10.1002/chin.201442226.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Segarra, Guillem, Gerardo Puopolo, Oscar Giovannini, and Ilaria Pertot. "Stepwise flow diagram for the development of formulations of non spore-forming bacteria against foliar pathogens: The case of Lysobacter capsici AZ78." Journal of Biotechnology 216 (December 2015): 56–64. http://dx.doi.org/10.1016/j.jbiotec.2015.10.004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Puopolo, G., A. Cimmino, M. C. Palmieri, O. Giovannini, A. Evidente, and I. Pertot. "Lysobacter capsici AZ78 produces cyclo(l -Pro-l -Tyr), a 2,5-diketopiperazine with toxic activity against sporangia of Phytophthora infestans and Plasmopara viticola." Journal of Applied Microbiology 117, no. 4 (August 21, 2014): 1168–80. http://dx.doi.org/10.1111/jam.12611.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Tomada, Selena, Paolo Sonego, Marco Moretto, Kristof Engelen, Ilaria Pertot, Michele Perazzolli, and Gerardo Puopolo. "Dual RNA-Seq of Lysobacter capsici AZ78 - Phytophthora infestans interaction shows the implementation of attack strategies by the bacterium and unsuccessful oomycete defense responses." Environmental Microbiology 19, no. 10 (August 14, 2017): 4113–25. http://dx.doi.org/10.1111/1462-2920.13861.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Bejarano, Ana, Michele Perazzolli, Ilaria Pertot, and Gerardo Puopolo. "The Perception of Rhizosphere Bacterial Communication Signals Leads to Transcriptome Reprogramming in Lysobacter capsici AZ78, a Plant Beneficial Bacterium." Frontiers in Microbiology 12 (August 18, 2021). http://dx.doi.org/10.3389/fmicb.2021.725403.

Повний текст джерела
Анотація:
The rhizosphere is a dynamic region governed by complex microbial interactions where diffusible communication signals produced by bacteria continuously shape the gene expression patterns of individual species and regulate fundamental traits for adaptation to the rhizosphere environment. Lysobacter spp. are common bacterial inhabitants of the rhizosphere and have been frequently associated with soil disease suppressiveness. However, little is known about their ecology and how diffusible communication signals might affect their behavior in the rhizosphere. To shed light on the aspects determining rhizosphere competence and functioning of Lysobacter spp., we carried out a functional and transcriptome analysis on the plant beneficial bacterium Lysobacter capsici AZ78 (AZ78) grown in the presence of the most common diffusible communication signals released by rhizosphere bacteria. Mining the genome of AZ78 and other Lysobacter spp. showed that Lysobacter spp. share genes involved in the production and perception of diffusible signal factors, indole, diffusible factors, and N-acyl-homoserine lactones. Most of the tested diffusible communication signals (i.e., indole and glyoxylic acid) influenced the ability of AZ78 to inhibit the growth of the phytopathogenic oomycete Pythium ultimum and the Gram-positive bacterium Rhodococcus fascians. Moreover, RNA-Seq analysis revealed that nearly 21% of all genes in AZ78 genome were modulated by diffusible communication signals. 13-Methyltetradecanoic acid, glyoxylic acid, and 2,3-butanedione positively influenced the expression of genes related to type IV pilus, which might enable AZ78 to rapidly colonize the rhizosphere. Moreover, glyoxylic acid and 2,3-butanedione downregulated tRNA genes, possibly as a result of the elicitation of biological stress responses. On its behalf, indole downregulated genes related to type IV pilus and the heat-stable antifungal factor, which might result in impairment of twitching motility and antibiotic production in AZ78. These results show that diffusible communication signals may affect the ecology of Lysobacter spp. in the rhizosphere and suggest that diffusible communication signals might be used to foster rhizosphere colonization and functioning of plant beneficial bacteria belonging to the genus Lysobacter.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Lysobacter capsici AZ78"

1

Tomada, Selena. "A genomic and transcriptomic approach to characterize a novel biocontrol bacterium Lysobacter capsici AZ78." Doctoral thesis, 2017. http://hdl.handle.net/10449/37925.

Повний текст джерела
Анотація:
In the European Union (EU) the authorization of new active substances based on microbial agents is strictly regulated by several Regulations of the European Commission. A large amount of information is needed to achieve the authorization as: a) phylogenetic characterization, b) virulence traits; c) efficacy; d) mechanism of action; e) secondary metabolites production; f) toxic effects on the environment, human and animal. In the last years, there is an increasing interest in biopesticides based on microbial strains, including the bacterial genus Lysobacter, because of its biocontrol features. Specifically, L. capsici AZ78 is can effectively control phytopathogenic oomycetes, such as Plasmopara viticola e Phytophthora infestans. Although, some information about the biocontrol activity of the Lysobacter genus is available, the data that can be used to complete the registration dossier of L. capsici AZ78 are few. Therefore, the aim of the study was to characterize L. capsici AZ78. The genome of L. capsici AZ78 was sequenced and compared with two close-related pathogenic bacteria to confirm the lack of virulence factors to plant and human. The genome of L. capsici AZ78 includes a broad range of specific genes encoding lytic enzyme and in vitro trials confirmed the lytic activity on different substrates. The genome annotation showed the presence of genes involved in the biosynthesis of antibiotics and the antimicrobial activity of L. capsici AZ78 was tested in vitro against bacteria, oomycetes and fungi. The genome mining allowed the identification of genes encoding Type 4 Pilus (T4P), an interestingly motility mechanism that is involved in the host colonization, such as fungal hyphae. Moreover, the identification of a compound that positively modulates the expression of T4P genes and increases the bacterial efficacy against P. viticola, could be an important information for the final formulation of the bacterium. Genes involved in the resistance to environmental stressors and in the environmental fitness of L. capsici AZ78 under field conditions, were identified. Finally, the analysis of the L. capsici AZ78 transcriptome provided a complete overview of the mechanism of action displayed by the bacterium in the interaction with P. infestans. In conclusion the scientific literature produced during this work includes information that can speed up the preparation of the registration dossier of L. capsici AZ78.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії