Добірка наукової літератури з теми "Lunar Soft-Landing"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Lunar Soft-Landing".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Lunar Soft-Landing"

1

Bojun, Zhang, and Liu Zhanchao. "Iterative Guidance Algorithm for Lunar Soft Landing." Journal of Physics: Conference Series 2235, no. 1 (May 1, 2022): 012017. http://dx.doi.org/10.1088/1742-6596/2235/1/012017.

Повний текст джерела
Анотація:
Abstract A closed-form explicit guidance algorithm for the deceleration, attitude adjustment and final landing phases before lunar probe soft landing is presented in this paper. Guidance with a variable-thrust engine is extended from the iterative guidance mode (IGM) to satisfy the terminal velocity, position, and attitude constraints. The closed form expression, obtained by integrating the acceleration and shutdown time, is analysed to obtain an explicit ex-pression for the velocity and position requirements and vertical touchdown of the spacecraft toward a designated landing site with high terminal accuracy. The influence of the attitude constraint on the motion equation is analysed to calculate the attitude, which is the physical control variable for the guidance loop. The variable thrust IGM formulation ensures the least switch of the thrust magnitude profile based on the analysis result of the residual flight altitude. The simulation results demonstrate that the proposed multi-constrained iterative guidance method can help accomplish an accurate lunar soft landing and that employed the algorithm is simple and easy to implement in engineering practice.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lin, Qing, and Jie Ren. "Investigation on the Horizontal Landing Velocity and Pitch Angle Impact on the Soft-Landing Dynamic Characteristics." International Journal of Aerospace Engineering 2022 (January 25, 2022): 1–16. http://dx.doi.org/10.1155/2022/3277581.

Повний текст джерела
Анотація:
The dynamic analysis of the soft landing of the lunar probe is very important to the design of the probe. The initial movement and attitude parameters of the probe during landing have a direct influence on the landing impact. In order to investigate the lunar probe soft-landing dynamic impact by different initial horizontal velocities, pitch angles, and inclinations of the lunar slope, an inertial force-based 7-DOF soft-landing dynamic model is applied under two conditions: the upward and downward slope landing surfaces. The impact on the dynamic characteristics of soft landing is analyzed in terms of body displacement, body overload, and the forces of the primary and secondary buffer struts due to the change of initial horizontal velocity and initial pitch angle of the probe. The result shows that, in 2-2 landing mode, the stress conditions on the primary and secondary struts are obviously impacted by initial horizontal velocity, and the initial pitch angle affects the body overload and the loading state of the secondary buffer strut. The body overload and landing impact could be significantly mitigated if the lunar probe’s horizontal landing speed is limited within 1 m/s, the pitch angle is limited within 12°, and the landing is along the uphill terrain with the inclination of the lunar slope less and equal to 9°. The analysis can directly determine the range of the horizontal speed and pitch attitude angle to ensure the safety of landing, and provide a reference for the reasonable control design of the lander’s horizontal speed and pitch attitude.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Shijie, Xu, and Zhu Jianfeng. "A new strategy for lunar soft landing." Journal of the Astronautical Sciences 55, no. 3 (September 2007): 373–87. http://dx.doi.org/10.1007/bf03256530.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kim, Yeong-Bae, Hyun-Jae Jeong, Shin-Mu Park, Jae Hyuk Lim, and Hoon-Hee Lee. "Prediction and Validation of Landing Stability of a Lunar Lander by a Classification Map Based on Touchdown Landing Dynamics’ Simulation Considering Soft Ground." Aerospace 8, no. 12 (December 6, 2021): 380. http://dx.doi.org/10.3390/aerospace8120380.

Повний текст джерела
Анотація:
In this paper, a method for predicting the landing stability of a lunar lander by a classification map of the landing stability is proposed, considering the soft soil characteristics and the slope angle of the lunar surface. First, the landing stability condition in terms of the safe (=stable), sliding (=unstable), and tip-over (=statically unstable) possibilities was checked by dropping a lunar lander onto flat lunar surfaces through finite-element (FE) simulation according to the slope angle, friction coefficient, and soft/rigid ground, while the vertical touchdown velocity was maintained at 3 m/s. All of the simulation results were classified by a classification map with the aid of logistic regression, a machine-learning classification algorithm. Finally, the landing stability status was efficiently predicted by Monte Carlo (MC) simulation by just referring to the classification map for 10,000 input datasets, consisting of the friction coefficient, slope angles, and rigid/soft ground. To demonstrate the performance, two virtual lunar surfaces were employed based on a 3D terrain map of the LRO mission. Then, the landing stability was validated through landing simulation of an FE model of a lunar lander requiring high computation cost. The prediction results showed excellent agreement with those of landing simulations with a negligible computational cost of around a few seconds.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Wang, Dayi, Xiangyu Huang, and Yifeng Guan. "GNC system scheme for lunar soft landing spacecraft." Advances in Space Research 42, no. 2 (July 2008): 379–85. http://dx.doi.org/10.1016/j.asr.2007.08.031.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Banerjee, Avijit, and Radhakant Padhi. "Multi-phase MPSP Guidance for Lunar Soft Landing." Transactions of the Indian National Academy of Engineering 5, no. 1 (March 2020): 61–74. http://dx.doi.org/10.1007/s41403-020-00090-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Park, Bong-Gyun, Jong-Sun Ahn, and Min-Jea Tahk. "Two-Dimensional Trajectory Optimization for Soft Lunar Landing Considering a Landing Site." International Journal of Aeronautical and Space Sciences 12, no. 3 (September 30, 2011): 288–95. http://dx.doi.org/10.5139/ijass.2011.12.3.288.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Qu, Mo Feng. "Lunar Soft - Landing Trajectory of Mechanics Optimization Based on the Improved Ant Colony Algorithm." Applied Mechanics and Materials 721 (December 2014): 446–49. http://dx.doi.org/10.4028/www.scientific.net/amm.721.446.

Повний текст джерела
Анотація:
Based on research carried out for the most fuel-lunar soft landing trajectory optimization problem. First, by improving the function approximation method, the lunar soft landing trajectory optimization problem into a parameter optimization problem, and the optimization variables and state variables have a clear physical meaning. Then use the decimal ant colony algorithm adds local search strategy to study the optimization problem. Finally, the optimization algorithm to optimize term direction angle simulation and error analysis.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Yin, Ke, Songlin Zhou, Qiao Sun, and Feng Gao. "Lunar Surface Fault-Tolerant Soft-Landing Performance and Experiment for a Six-Legged Movable Repetitive Lander." Sensors 21, no. 17 (August 24, 2021): 5680. http://dx.doi.org/10.3390/s21175680.

Повний текст джерела
Анотація:
The cascading launch and cooperative work of lander and rover are the pivotal methods to achieve lunar zero-distance exploration. The separated design results in a heavy system mass that requires more launching costs and a limited exploration area that is restricted to the vicinity of the immovable lander. To solve this problem, we have designed a six-legged movable repetitive lander, called “HexaMRL”, which congenitally integrates the function of both the lander and rover. However, achieving a buffered landing after a failure of the integrated drive units (IDUs) in the harsh lunar environment is a great challenge. In this paper, we systematically analyze the fault-tolerant capacity of all possible landing configurations in which the number of remaining normal legs is more than two and design the landing algorithm to finish a fault-tolerant soft-landing for the stable configuration. A quasi-incentre stability optimization method is further proposed to increase the stability margin during supporting operations after landing. To verify the fault-tolerant landing performance on the moon, a series of experiments, including five-legged, four-legged and three-legged soft-landings with a vertical landing velocity of −1.9 m/s and a payload of 140 kg, are successfully carried out on a 5-DoF lunar gravity ground-testing platform. The HexaMRL with fault-tolerant landing capacity will greatly promote the development of a next-generation lunar prober.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Yuan, Qi, Heng Chen, Hong Nie, Guang Zheng, Chen Wang, and Likai Hao. "Soft-Landing Dynamic Analysis of a Manned Lunar Lander Em-Ploying Energy Absorption Materials of Carbon Nanotube Buckypaper." Materials 14, no. 20 (October 19, 2021): 6202. http://dx.doi.org/10.3390/ma14206202.

Повний текст джерела
Анотація:
With the rapid development of the aerospace field, traditional energy absorption materials are becoming more and more inadequate and cannot meet the requirements of having a light weight, high energy absorption efficiency, and high energy absorption density. Since existing studies have shown that carbon nanotube (CNT) buckypaper is a promising candidate for energy absorption, owing to its extremely high energy absorption efficiency and remarkable mass density of energy absorption, this study explores the application of buckypaper as the landing buffer material in a manned lunar lander. Firstly, coarse-grained molecular dynamics simulations were implemented to investigate the compression stress-strain relationships of buckypapers with different densities and the effect of the compression rate within the range of the landing velocity. Then, based on a self-designed manned lunar lander, buckypapers of appropriate densities were selected to be the energy absorption materials within the landing mechanisms of the lander. For comparison, suitable aluminum honeycomb materials, the most common energy absorption materials in lunar landers, were determined for the same landing mechanisms. Afterwards, the two soft-landing multibody dynamic models are established, respectively, and their soft-landing performances under three severe landing cases are analyzed, respectively. The results depicted that the landers, respectively, adopting the two energy absorption materials well, satisfy the soft-landing performance requirements in all the cases. It is worth mentioning that the lander employing the buckypaper is proved to demonstrate a better soft-landing performance, mainly reflected in reducing the mass of the energy absorption element by 8.14 kg and lowing the maximum center-of-mass overload of the lander by 0.54 g.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Lunar Soft-Landing"

1

Hawkins, Alisa Michelle. "Constrained trajectory optimization of a soft lunar landing from a parking orbit." Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/32431.

Повний текст джерела
Анотація:
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2005.
Includes bibliographical references (p. 141-144).
A trajectory optimization study for a soft landing on the Moon, which analyzed the effects of adding operationally based constraints on the behavior of the minimum fuel trajectory, has been completed. Metrics of trajectory evaluation included fuel expenditure, terminal attitude, thrust histories, etc.. The vehicle was initialized in a circular parking orbit and the trajectory divided into three distinct phases: de-orbit, descent, and braking. Analysis was initially performed with two-dimensional translational motion, and the minimally constrained optimal trajectory was found to be operationally infeasible. Operational constraints, such as a positive descent orbit perilune height and a vertical terminal velocity, were imposed to obtain a viable trajectory, but the final vehicle attitude and landing approach angle remained largely horizontal. This motivated inclusion of attitude kinematics and constraints to the system. With rotational motion included, the optimal solution was feasible, but the trajectory still had undesirable characteristics. Constraining the throttle to maximum during braking produced a steeper approach, but used the most fuel. The results suggested a terminal vertical descent was a desirable fourth segment of the trajectory. which was imposed by first flying to an offset point and then enforcing a vertical descent, and provided extra safely margin prior to landing. In this research, the relative effects of adding operational constraints were documented and can be used as a baseline study for further detailed trajectory optimization.
by Alisa Michelle Hawkins.
S.M.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Lunar Soft-Landing"

1

Zhang, He, Deng-Yun Yu, and Ze-Zhou Sun. Detector Technology of Lunar Soft Landing. Springer, 2020.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Lunar Soft-Landing"

1

Yu, Deng-Yun, Ze-Zhou Sun, and He Zhang. "Environment Analysis of Lunar Soft Landing Exploration." In Technology of Lunar Soft Lander, 21–49. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-6580-9_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Pragallapati, Naveen, and N. V. S. L. Narasimham. "A TEP-Based Approach for Optimal Thrust Direction of Lunar Soft Landing." In Advances in Intelligent Systems and Computing, 159–69. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3174-8_15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Yu, Deng-Yun, Ze-Zhou Sun, and He Zhang. "Landing Gear Technology of Lunar Lander." In Technology of Lunar Soft Lander, 367–99. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-6580-9_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Lunar Soft-Landing"

1

Zhiyuan Li and Hongjue Li. "Lunar soft landing trajectory optimization methods." In International Conference on Cyberspace Technology (CCT 2014). Institution of Engineering and Technology, 2014. http://dx.doi.org/10.1049/cp.2014.1365.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Qiao, Yandi, Zexu Zhang, Feng Chen, Xingyan Wang, and Jing Wang. "Three-Dimensional Trajectory Optimization for soft lunar landing considering landing constraints*." In 2020 IEEE 16th International Conference on Control & Automation (ICCA). IEEE, 2020. http://dx.doi.org/10.1109/icca51439.2020.9264583.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Jing-Yang, Zhou, Zhou Di, and Duan Guang-ren. "Optimal Orbit Design of Lunar Modules Soft Landing." In 2006 Chinese Control Conference. IEEE, 2006. http://dx.doi.org/10.1109/chicc.2006.280951.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Songtao Chang, Yongji Wang, and Xing Wei. "Optimal soft lunar landing based on differential evolution." In 2013 IEEE International Conference on Industrial Technology (ICIT 2013). IEEE, 2013. http://dx.doi.org/10.1109/icit.2013.6505664.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Zhou, Jingyang, Di Zhou, Kok Lay Teo, and Guohui Zhao. "Nonlinear optimal feedback control for lunar module soft landing." In 2009 IEEE International Conference on Automation and Logistics (ICAL). IEEE, 2009. http://dx.doi.org/10.1109/ical.2009.5262838.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Huang, Xiangyu, and Dayi Wang. "Autonomous navigation and guidance for pinpoint lunar soft landing." In 2007 IEEE International Conference on Robotics and biomimetics (ROBIO). IEEE, 2007. http://dx.doi.org/10.1109/robio.2007.4522326.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

P, Amrutha V., Sreeja S, and Sabarinath A. "Trajectory Optimization of Lunar Soft Landing Using Differential Evolution." In 2021 IEEE Aerospace Conference. IEEE, 2021. http://dx.doi.org/10.1109/aero50100.2021.9438312.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Banerjee, Avijit, and Radhakant Padhi. "Nonlinear Guidance and Autopilot Design for Lunar Soft Landing." In 2018 AIAA Guidance, Navigation, and Control Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2018. http://dx.doi.org/10.2514/6.2018-1872.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Xu Xibao, Guo Jifeng, Bai Chengchao, and Zhang Luwen. "TV guidance technical schemes for manned lunar soft landing." In 2016 IEEE Chinese Guidance, Navigation and Control Conference (CGNCC). IEEE, 2016. http://dx.doi.org/10.1109/cgncc.2016.7829158.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Lin, Zhiyong. "The Control Strategy of Soft Landing Trajectory of Lunar Craft." In 2015 International conference on Applied Science and Engineering Innovation. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/asei-15.2015.261.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії