Добірка наукової літератури з теми "Luminescent property"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Luminescent property".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Luminescent property"
Seymour, Linda M., Marco Nicola, Max I. Kessler, Claire L. Yost, Alessandro Bazzacco, Alessandro Marello, Enrico Ferraris, Roberto Gobetto, and Admir Masic. "On the production of ancient Egyptian blue: Multi-modal characterization and micron-scale luminescence mapping." PLOS ONE 15, no. 11 (November 24, 2020): e0242549. http://dx.doi.org/10.1371/journal.pone.0242549.
Повний текст джерелаTao, Lei, Kai Lan, Cheng-Long Zhong, Ying-Jie Zhou, Ping Wang, Fan Fan, Zhihao Shen, and He-Lou Xie. "Wavelength-tunable linearly polarized luminescence film constructed using a highly efficient luminescent liquid crystal with stimuli-responsive property." Journal of Materials Chemistry C 8, no. 46 (2020): 16561–68. http://dx.doi.org/10.1039/d0tc04406g.
Повний текст джерелаFan, Jung Chuan, Huang Huei Sung, and Chun Rong Lin. "The Anomalous Photoluminescence and Thermally Stimulated Luminescence from Carbon Nanotubes." Materials Science Forum 700 (September 2011): 116–19. http://dx.doi.org/10.4028/www.scientific.net/msf.700.116.
Повний текст джерелаShi, Weiwei, Lei Liang, Jinping Zhang, Haihan Ye, Xincheng Hu, Jianwei Zhang, and Wei Wei. "A Versatile Luminescent Ga-Organic Framework with Multi-Emission Centers as a Blue LED and Fluorescent Probe for Low-Temperature Detection and Selective Fe3+ Sensing." Nanomaterials 12, no. 22 (November 15, 2022): 4009. http://dx.doi.org/10.3390/nano12224009.
Повний текст джерелаSong, Ya, Guo Gong, Jingjing Du, Shaowen Xie, Min Ouyang, Yahui Feng, Jianxiong Xu, and Lijian Xu. "Synthesis and Inkjet Printing of NaYF4:Ln3+@NaYF4 Core–Shell Nanoparticles with Enhanced Upconversion Fluorescence for Anti-Counterfeiting Applications." Journal of Nanoscience and Nanotechnology 20, no. 3 (March 1, 2020): 1511–19. http://dx.doi.org/10.1166/jnn.2020.17353.
Повний текст джерелаSaotome, Satoru, Kazumasa Suenaga, Kazuo Tanaka, and Yoshiki Chujo. "Design for multi-step mechanochromic luminescence property by enhancement of environmental sensitivity in a solid-state emissive boron complex." Materials Chemistry Frontiers 4, no. 6 (2020): 1781–88. http://dx.doi.org/10.1039/c9qm00719a.
Повний текст джерелаHAO, WEICHANG, HAIBIN FEN, JUNYING ZHANG, and TIANMIN WANG. "LUMINESCENT PROPERTY OF ZNO GRANULAR FILMS WITH DIFFERENT PARTICLE SIZE." International Journal of Modern Physics B 24, no. 15n16 (June 30, 2010): 2827–32. http://dx.doi.org/10.1142/s0217979210065702.
Повний текст джерелаHasegawa, Takuya, Kenji Toda, Tadashi Ishigaki, Shinnosuke Kamei, Sun Woog Kim, Kazuyoshi Uematsu, Mineo Sato, and Msahiro Yoshimura. "Luminescence of Phosphor Balls Prepared Using Melt Quenching Synthesis Method." Materials Science Forum 883 (January 2017): 17–21. http://dx.doi.org/10.4028/www.scientific.net/msf.883.17.
Повний текст джерелаLi, Zeren. "The Luminescent Property of Magnetic Polymers and Its Influencing Factors." E3S Web of Conferences 213 (2020): 02011. http://dx.doi.org/10.1051/e3sconf/202021302011.
Повний текст джерелаXu, Chao Nan, C. Li, Y. Imai, H. Yamada, Y. Adachi, and K. Nishikubo. "Development of Elastico-Luminescent Nanoparticles and their Applications." Advances in Science and Technology 45 (October 2006): 939–44. http://dx.doi.org/10.4028/www.scientific.net/ast.45.939.
Повний текст джерелаДисертації з теми "Luminescent property"
Pitz, Demian [Verfasser], Radim [Akademischer Betreuer] Berànek, and Ralf [Akademischer Betreuer] Giernoth. "Structure-property relationship of luminescent ionic polymers / Demian Pitz. Gutachter: Radim Berànek ; Ralf Giernoth." Bochum : Ruhr-Universität Bochum, 2016. http://d-nb.info/1095884565/34.
Повний текст джерелаNarikiyo, Hayato. "Development of Functional Materials Based on Polyhedral Oligomeric Silsesquioxane with Flexible Side-Chains." Doctoral thesis, Kyoto University, 2021. http://hdl.handle.net/2433/263688.
Повний текст джерела京都大学
新制・課程博士
博士(工学)
甲第23227号
工博第4871号
京都大学大学院工学研究科高分子化学専攻
(主査)教授 田中 一生, 教授 秋吉 一成, 教授 古賀 毅
学位規則第4条第1項該当
Doctor of Philosophy (Engineering)
Kyoto University
DGAM
Wang, Zheng. "Synthesis, properties and applications of glasses containing chalcogenide quantum dots." Electronic Thesis or Diss., Université de Rennes (2023-....), 2023. http://www.theses.fr/2023URENS093.
Повний текст джерелаIn this dissertation, the synthesis, properties and applications of glasses containing chalcogenide quantum dots (QDs) have been studied. Multicomponent lead chalcogenide QDs glasses (containing PbSe or PbS QDs) were successfully prepared, and their optical properties and potential applications were explored in combination with rare earth Tm3+ ion doping. In addition, based on the results, lead-free and environmentally friendly chalcogenide QDs glasses (containing ZnS or ZnSe QDs) were successfully prepared, and its luminescent performance was further improved by doping with transition metal nickel ions. These results lay the foundation for the improvement of optical properties of lead-based chalcogenide QDs and for the development of environmentally friendly heavy metal-free chalcogenide QDs glasses. Although future improvements are possible and necessary for practical applications, these chalcogenide QDs glasses developed in this work have application potential in the fields of luminescent solar concentrators, optical anti-counterfeiting, solid-state lighting, and optical temperature sensing
De, Silva Mawanana H. Channa R. "Lanthanide-containing Functional Materials: Exploratory Synthesis and Property Investigation." Diss., The University of Arizona, 2007. http://hdl.handle.net/10150/195622.
Повний текст джерелаBovo, Laura. "Nanostructured Materials Based on ZnO for Cataltytic, Optical and Magnetic Applications." Doctoral thesis, Università degli studi di Padova, 2011. http://hdl.handle.net/11577/3423214.
Повний текст джерелаMateriali a base di ZnO, in particolare nano-polveri di Zn1-xTMxO (TM = Mn, Co, Cu), sono stati sintetizzati via Sol gel per studiarne le proprietà in tre diversi campi applicativi quali la catalisi, l’ottica ed il magnetismo. Tali materiali sono stati caratterizzati utilizzando diverse tecniche, complementari tra loro, quali X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), X-ray Photoelectron Spectroscopy (XPS) e UV-Vis Spectroscopy. X-ray Absorption Spectroscopy (XAS) ed Electron Paramagnetic Resonance (EPR) vengono invece impiegate per studiare le proprietà elettroniche e di struttura fine delle nano-polveri. Tali caratterizzazioni si sono dimostrate fondamentali per la comprensione delle proprietà del sistema ed, in particolare, per cercare di identificare le interazioni sussistenti tra struttura, composizione, morfologia dei materiali e la loro capacità di espletare una determinata funzionalità. Nano-polveri di ZnO tal quali e drogate con ioni rame vengono testate come catalizzatori nella reazione di Steam Reforming del metanolo. I risultati ottenuti in questo studio dimostrano il ruolo attivo dell’ossido di zinco nel processo catalitico, contrariamente a quanto solitamente accettato in letteratura. La relazione sussistente tra struttura-attività nei catalizzatori a base di ZnO permette di ottenere informazioni circa l’effettiva funzione di ogni componente, aspetto di estrema importanza per la progettazione razionale di catalizzatori con elevate performance. Le proprietà di luminescenza dei sistemi drogati Zn1-xTMxO vengono studiate mediante spettroscopia X-ray Excited Optical Luminescence (XEOL); tali esperimenti forniscono una migliore comprensione del rapporto che sussiste tra la struttura elettronica dei sistemi in esame e le loro proprietà di emissione. I risultati mostrano come sia possibile modulare la luminescenza di ZnO prodotto via Sol gel modificando le condizioni di sintesi – i.e. temperatura di trattamento, natura e concentrazione del metallo di transizione utilizzato come drogante. Infine, risultati preliminari sulle proprietà magnetiche dei materiali ottenuti mediante SQUID magnetometer (Superconducting Quantum Interference Devices) hanno rivelato la coesistenza di diversi contributi magnetici. Nonostante ulteriori caratterizzazioni siano sicuramente necessarie, questo studio si è rivelato un passo avanti verso una comprensione della natura delle interazioni magnetiche in tali sistemi, da tempo causa di vivace dibattito nella comunità scientifica.
Diaz, Anthony L. "Fundamental structure-property relationships in luminescent materials." Thesis, 1996. http://hdl.handle.net/1957/34211.
Повний текст джерелаLin, Li-yang, and 林利陽. "Polypeptides containing luminescent units with aggregation-induced emission property." Thesis, 2015. http://ndltd.ncl.edu.tw/handle/j25965.
Повний текст джерела國立中山大學
材料與光電科學學系研究所
103
First chapter: Tetraphenylthiophene (TP) with aggregation-enhanced emission (AEE) property was used as terminal fluorophore of the water-soluble poly(γ-propargyl-L-glutamate) (PPLG)-based polymers of TP-PPLG-g-MEO2. In this study, we research various TP-PPLG-g-MEO2 affect aggregation of luminescence. In water, when concentration of TP-PPLG-g-MEO2 achieve CMC, TP-PPLG-g-MEO2 will aggregation to nanoparticle and suddenly increasing emission, and when heating over LCST, TP-PPLG-g-MEO2 will contract and also enhance emission. We use TP-PPLG-g-MEO2 “salt out effect” property to probe salt in water, salt have interaction with side chain MEO2 and peptide main chain to make TP-PPLG-g-MEO2 contract together and change secondary structure to b-sheet conformation to enhance emission. In the strong alkaline media, TP-PPLG-g-MEO2 backbone change to random coil conformation that break intramolecular hydrogen bonding and loss LCST property, TP-PPLG-g-MEO2 become is a micelle like structure, core was hydrophobic TP and shell was hydrophilic polypeptide and particle size about 500nm measure by DLS. In random coil conformation, chain end hydrophobic TP have strong aggregation than in the a-helical and have strong aggregation emission peak. At last, we use TP-PPLG-g-MEO2 to detect BSA. When TP-PPLG-g-MEO2 mixture with BSA, TP-PPLG-g-MEO2 will fall in to BSA and separate to decrease TP-PPLG-g-MEO2 aggregation and emission. Second chapter: We synthesis polypeptide contain TPA pendent by click reaction. The resulting PPLG-g-TPA contains the crystalline TPA side groups, Tm about 145 oC and is therefore high Tg materials with the desired AIE activity. Due to side chain TPA, PPLG-g-TPA have piezofluorochromic property that have two color between crystal and amorphous state. The lone pair electrons of nitrogen atom in TPA side groups inherit PPLG-g-TPA the sensitivity toward acid HCl and metal ions. Emission of PPLG-g-TPA was progressively decreased upon increasing the amounts of HCl and metal ions in the solutions that can be acid or metal ions sensor.
Mukherjee, Sanjoy. "Investigations of Structure-Property Relationships in NPI and BODIPY Based Luminescent Material." Thesis, 2015. http://etd.iisc.ac.in/handle/2005/3933.
Повний текст джерелаMukherjee, Sanjoy. "Investigations of Structure-Property Relationships in NPI and BODIPY Based Luminescent Material." Thesis, 2015. http://etd.iisc.ernet.in/2005/3933.
Повний текст джерелаHung, Chih-Chien, and 洪誌鍵. "The Novel pH-responsive Luminescent Electrospun Fibers Prepared From Random Copolymers: Synthesis, Morphology and Reversible Sensing Property." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/97q2w6.
Повний текст джерела國立臺北科技大學
有機高分子研究所
101
In this study, we prepared electrospun (ES) fiber from mulifunctional random copolymers of poly(HEMA-co-NMA-co-RhBAM). The moieties of HEMA, NMA and RhBAM were designed to the hydrophilic, chemical cross-linking (to ensure insolubility in aquesous), pH-responsive, respectively. The random copolymers were synthesized by free radical copolymerization of the above three kinds of moieties with the different mole ratio, and then prepared to form ES nanofibers using the different electronspinning parameters. It was observed that the variation of morphologies on different operated conditions from SEM. We explored the pH-responsive and photophysical properties of the ES fibers immersed in aqueous solvent with different pH value. The fluorescent emission of 580 nm was gradually increased with increasing concentration of pH from pH value of 7 to 2 for ES fibers due to the pH-responsive RhBAM moiety. In our study, we discovered the difference of efficiency for sensing on dissimilar ratio of the random copolymers. Due to the enhanced degree of cross-linking with increasing the NMA content, the cross-linked ES fibers of P2 have the unobvious swelling morphology. It resulted in the pH-sensing efficiency of P1 ES fibers are better than that of P2. The fluorescent intensity of P1 ES fiber exhibits around 90-fold enhancement at pH value of 2 while only 46-fold enhancement on P2 ES fiber. In addition, the ES fibers had a significant reversibility for pH-dependence and could be repeated for several times. Moreover, the ES fibers led a much better pH-response on the fiber morphology compared with the corresponding spin-coated film because of their high surface/volume. Above all results show that the multi-functional ES fiber have a potential in relative applications, such as filters, bio-sensor and sensory devices.
Частини книг з теми "Luminescent property"
Fujishiro, Fumito, Takuya Hashimoto, and Masashi Takahashi. "151Eu Mössbauer measurements of CuLa1 − x Eu x O2 with luminescent property." In ICAME 2011, 605–8. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-4762-3_103.
Повний текст джерелаHe, Hong, Ren Li Fu, Xiu Feng Song, and De Liu Wang. "Luminescence Property of Eu2+ Doped Strontium Silicate Yellow Phosphor for White Light Emitting Diode." In High-Performance Ceramics V, 363–65. Stafa: Trans Tech Publications Ltd., 2008. http://dx.doi.org/10.4028/0-87849-473-1.363.
Повний текст джерелаLeto, Andrea, and Giuseppe Pezzotti. "Nano-Scale Stress Measurement and Property Characterization of Silica-Based Electro Optical Devices Using their Native Defects Luminescence." In Advances in Glass and Optical Materials II, 209–17. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118144138.ch20.
Повний текст джерелаWu, Wen-Chia, Chung-Sung Yang, and Yan Xu. "Twist Tetrahedral-Tilting Structure Built from Photoluminescent Cadmium Chalcogenide Clusters." In Advanced Functional Materials. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.92066.
Повний текст джерелаChávez-García, Dalia, and Karla Juarez-Moreno. "Nanotoxicological Assessments of Upconversion Nanoparticles." In Toxicity of Nanoparticles - Recent Advances and New Perspectives. IntechOpen, 2024. http://dx.doi.org/10.5772/intechopen.111883.
Повний текст джерелаAitken, M. J. "Basic notions: radioactivity and irradiation." In An Introduction to Optical Dating, 37–59. Oxford University PressOxford, 1998. http://dx.doi.org/10.1093/oso/9780198540922.003.0003.
Повний текст джерела"Solvothermal method preparation of nano Y2O2S:Eu3+ and research of luminescence property and cytotoxicity." In Bioinformatics and Biomedical Engineering: New Advances, 231–36. CRC Press, 2015. http://dx.doi.org/10.1201/b19238-39.
Повний текст джерела"The luminescence property of Rhodamine B grafted in different structured channels of mesoporous silicate." In Advances in Future Manufacturing Engineering, 163–68. CRC Press, 2015. http://dx.doi.org/10.1201/b18474-32.
Повний текст джерелаNayak, Debashish, and Ram Bilash Choudhary. "Conducting Polymer-Based Emissive Layer on Efficiency of OLEDs." In Light-Emitting Diodes and Photodetectors - Advances and Future Directions [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.98652.
Повний текст джерелаТези доповідей конференцій з теми "Luminescent property"
Gonzales, Joseph, Tatsunori Hayashi, and Hirotaka Sakaue. "Luminescent Ice Sensor for Internal Property Measurement During Impact." In AIAA Scitech 2021 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2021. http://dx.doi.org/10.2514/6.2021-1511.
Повний текст джерелаAkiyama da Silva, Júlia, Leonardo De Boni, and Jones Limberger. "Unveiling Two-photon Absorption Property and Relationship with Brightness and Aggregation in Benzothiadiazoles." In Latin America Optics and Photonics Conference. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/laop.2022.w4a.6.
Повний текст джерелаChen, C. Y., C. A. Lin, M. J. Chen, G. R. Lin, and J. H. He. "ZnO/Al2O3 core-shell nanorod arrays: Growth, structural characterization, and luminescent property." In 2010 IEEE 3rd International Nanoelectronics Conference (INEC). IEEE, 2010. http://dx.doi.org/10.1109/inec.2010.5424798.
Повний текст джерелаSharma, Ankit, Mansi Pathak, C. S. Rout, and K. V. Adarsh. "Temperature-Dependent Light-Matter Interaction with Highly Luminescent High-Spin State in MnCo2O4." In Frontiers in Optics. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/fio.2023.jm7a.10.
Повний текст джерелаCase, G. G., and R. L. Zelmer. "Comparative Experiences in Environmental Remediation of LLR Waste Sites in Diverse Canadian Environments." In ASME 2003 9th International Conference on Radioactive Waste Management and Environmental Remediation. ASMEDC, 2003. http://dx.doi.org/10.1115/icem2003-4846.
Повний текст джерелаGadkari, S. C., Seema Shinde, G. D. Patra, S. G. Singh, and Shashwati Sen. "Effect of film thickness on luminescence property of CsI: Tl." In INDIAN VACUUM SOCIETY SYMPOSIUM ON THIN FILMS: SCIENCE AND TECHNOLOGY. AIP, 2012. http://dx.doi.org/10.1063/1.4732381.
Повний текст джерелаChen, Z., G. D. Xu, X. L. He, M. M. Wang, C. Q. He, J. Zou, and S. W. Xin. "Luminescence Property of Eu3+-doped CaZrSi2O7 Phosphors for White LEDs." In Proceedings of the 2019 International Conference on Modeling, Analysis, Simulation Technologies and Applications (MASTA 2019). Paris, France: Atlantis Press, 2019. http://dx.doi.org/10.2991/masta-19.2019.73.
Повний текст джерелаWang, Lili, Shanshan Huang, Mingchun Li, Lianli Liu, and Xibao Yang. "Hydrothermal synthesis and luminescence property of tetragonal LaVO4:Eu3+ sheaves." In 2018 33rd Youth Academic Annual Conference of Chinese Association of Automation (YAC). IEEE, 2018. http://dx.doi.org/10.1109/yac.2018.8406539.
Повний текст джерелаChen, Lei, Gang Jing, Yan Liu, and Jintian Lin. "Study on preparation mechanism and luminescence property of CaAlSiN3: Eu phosphor." In 2021 International Conference on Laser, Optics and Optoelectronic Technology, edited by Changsi Peng and Fengjie Cen. SPIE, 2021. http://dx.doi.org/10.1117/12.2602405.
Повний текст джерелаQue, R., L. Houel-Renault, M. Temagoult, M. Lancry, K. Kalli, and B. Poumellec. "Photoluminescence Creation in CYTOP Optical Fiber by Femtosecond Laser Direct Writing." In Bragg Gratings, Photosensitivity and Poling in Glass Waveguides and Materials. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/bgppm.2022.bm3a.3.
Повний текст джерела