Добірка наукової літератури з теми "LSTM bidirectionnel"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "LSTM bidirectionnel".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "LSTM bidirectionnel"
Bae, Jangseong, and Changki Lee. "Korean Semantic Role Labeling using Stacked Bidirectional LSTM-CRFs." Journal of KIISE 44, no. 1 (January 15, 2017): 36–43. http://dx.doi.org/10.5626/jok.2017.44.1.36.
Повний текст джерелаAshebir, Desalegn, and Prabhakar Gantela. "Named Entity Recognition for Sheko Language Using Bidirectional LSTM." Indian Journal of Science and Technology 15, no. 23 (June 21, 2022): 1124–32. http://dx.doi.org/10.17485/ijst/v15i23.642.
Повний текст джерелаYu, Hongyeon, and Youngjoong Ko. "Expansion of Word Representation for Named Entity Recognition Based on Bidirectional LSTM CRFs." Journal of KIISE 44, no. 3 (March 15, 2017): 306–13. http://dx.doi.org/10.5626/jok.2017.44.3.306.
Повний текст джерелаOh, Yeongtaek, Mintae Kim, and Wooju Kim. "Korean Movie-review Sentiment Analysis Using Parallel Stacked Bidirectional LSTM Model." Journal of KIISE 46, no. 1 (January 31, 2019): 45–49. http://dx.doi.org/10.5626/jok.2019.46.1.45.
Повний текст джерелаKaryadi, Yadi. "Prediksi Kualitas Udara Dengan Metoda LSTM, Bidirectional LSTM, dan GRU." JATISI (Jurnal Teknik Informatika dan Sistem Informasi) 9, no. 1 (March 17, 2022): 671–84. http://dx.doi.org/10.35957/jatisi.v9i1.1588.
Повний текст джерелаIsmail, Mohammad Hafiz, and Tajul Rosli Razak. "Predicting the Kijang Emas Bullion Price using LSTM Networks." Journal of Entrepreneurship and Business 8, no. 2 (December 31, 2020): 11–18. http://dx.doi.org/10.17687/jeb.0802.02.
Повний текст джерелаIsmail, Mohammad Hafiz, and Tajul Rosli Razak. "Predicting the Kijang Emas Bullion Price using LSTM Networks." Journal of Entrepreneurship and Business 8, no. 2 (June 1, 2022): 11–18. http://dx.doi.org/10.17687/jeb.v8i2.849.
Повний текст джерелаAppati, Justice Kwame, Ismail Wafaa Denwar, Ebenezer Owusu, and Michael Agbo Tettey Soli. "Construction of an Ensemble Scheme for Stock Price Prediction Using Deep Learning Techniques." International Journal of Intelligent Information Technologies 17, no. 2 (April 2021): 72–95. http://dx.doi.org/10.4018/ijiit.2021040104.
Повний текст джерелаKim, Mintae, Yeongtaek Oh, and Wooju Kim. "Sentence Similarity Prediction based on Siamese CNN-Bidirectional LSTM with Self-attention." Journal of KIISE 46, no. 3 (March 31, 2019): 241–45. http://dx.doi.org/10.5626/jok.2019.46.3.241.
Повний текст джерелаJiang, Longquan, Xuan Sun, Francesco Mercaldo, and Antonella Santone. "DECAB-LSTM: Deep Contextualized Attentional Bidirectional LSTM for cancer hallmark classification." Knowledge-Based Systems 210 (December 2020): 106486. http://dx.doi.org/10.1016/j.knosys.2020.106486.
Повний текст джерелаДисертації з теми "LSTM bidirectionnel"
Tang, Hao. "Bidirectional LSTM-CNNs-CRF Models for POS Tagging." Thesis, Uppsala universitet, Institutionen för lingvistik och filologi, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-362823.
Повний текст джерелаJavid, Gelareh. "Contribution à l’estimation de charge et à la gestion optimisée d’une batterie Lithium-ion : application au véhicule électrique." Thesis, Mulhouse, 2021. https://www.learning-center.uha.fr/.
Повний текст джерелаThe State Of Charge (SOC) estimation is a significant issue for safe performance and the lifespan of Lithium-ion (Li-ion) batteries, which is used to power the Electric Vehicles (EVs). In this thesis, the accuracy of SOC estimation is investigated using Deep Recurrent Neural Network (DRNN) algorithms. To do this, for a one cell Li-ion battery, three new SOC estimator based on different DRNN algorithms are proposed: a Bidirectional LSTM (BiLSTM) method, Robust Long-Short Term Memory (RoLSTM) algorithm, and a Gated Recurrent Units (GRUs) technique. Using these, one is not dependent on precise battery models and can avoid complicated mathematical methods especially in a battery pack. In addition, these models are able to precisely estimate the SOC at varying temperature. Also, unlike the traditional recursive neural network where content is re-written at each time, these networks can decide on preserving the current memory through the proposed gateways. In such case, it can easily transfer the information over long paths to receive and maintain long-term dependencies. Comparing the results indicates the BiLSTM network has a better performance than the other two. Moreover, the BiLSTM model can work with longer sequences from two direction, the past and the future, without gradient vanishing problem. This feature helps to select a sequence length as much as a discharge period in one drive cycle, and to have more accuracy in the estimation. Also, this model well behaved against the incorrect initial value of SOC. Finally, a new BiLSTM method introduced to estimate the SOC of a pack of batteries in an Ev. IPG Carmaker software was used to collect data and test the model in the simulation. The results showed that the suggested algorithm can provide a good SOC estimation without using any filter in the Battery Management System (BMS)
Pavai, Arumugam Thendramil. "SENSOR-BASED HUMAN ACTIVITY RECOGNITION USING BIDIRECTIONAL LSTM FOR CLOSELY RELATED ACTIVITIES." CSUSB ScholarWorks, 2018. https://scholarworks.lib.csusb.edu/etd/776.
Повний текст джерелаCoelho, Jorge Andre de Carvalho, and 卡橋安. "Music Structural Segmentation from Audio Signals using CNN Bidirectional LSTM." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/m2j6q8.
Повний текст джерела國立清華大學
資訊系統與應用研究所
107
In this paper, we investigate the problems of segmenting a piece of music into its structural components from its audio signals. We devise a deep learning neural network architecture called CNN Bidirectional LSTM model which combines convolutional neural networks (CNN) and Bidirectional Long Short-Term Memory (BiLSTM) to perform music boundary detection. The music audio input to the model is first converted into one spectrogram and two SSMs that can be classified by the deep neural network. We also propose the use of Chroma Energy Normalized Statistics on this task. We show the resulting improvements over previous work with respect to precision and recall. We verified improvement of 11.2\% and 6.58\% F1-score at $ m0.5$ seconds and $ m3$ seconds tolerance, respectively.
Chen, Brian, and 陳柏穎. "AUC oriented Bidirectional LSTM-CRF Models to Identify Algorithms Described in an Abstract." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/p3grat.
Повний текст джерела國立臺灣大學
資訊工程學研究所
105
In this thesis, we attempt to identify algorithms mentioned in the paper abstract. We further want to discriminate the algorithm proposed in this paper from algorithms only mentioned or compared, since we are more interested in the former. We model this task as a sequential labeled task and propose to use a state-of-the-art deep learning model LSTM-CRF as our solution. However, the data or labels are generally imbalanced since not all the sentence in the abstract is describing its algorithm. That is, the ratio between different labels is skewed. As a result, it is not suitable to use traditional LSTM-CRF model since it only optimizes accuracy. Instead, it is more reasonable to optimize AUC in imbalanced data because it can deal with skewed labels and perform better in predicting rare labels. Our experiment shows that the proposed AUC-optimized LSTM-CRF outperforms the traditional LSTM-CRF. We also show the ranking of algorithms used currently, and find the trend of different algorithms used in recent years. Moreover, we are able to discover some new algorithms that do not exist in our training data.
Zhou, Quan. "Bidirectional long short-term memory network for proto-object representation." Thesis, 2018. https://hdl.handle.net/2144/31682.
Повний текст джерелаKao, Shiuan-Kai, and 高炫凱. "Improving Automatic Behavior Rating System of Couple Therapy using Multi-granular Word Fusion Approach with bidirectional LSTM Architecture." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/y6t94r.
Повний текст джерела國立清華大學
電機工程學系所
106
In psychology field research, experts generally design a standard experimental procedure, e.g., consultation, show or talk, to observe the mental state of human. They expect to trigger reactions of internal emotion by stimulating external behavior. However, when analyzing whole interaction process, different lengths of fragments of interaction including different strength of emotional information, and experts make more complete and suitable decision. Our work inspired by the conception and apply it on automatic behavior rating system of couple therapy database, to improve the accuracy of scoring interaction process of psychotherapy. This program recruit seriously and chronically distressed married couples, and let them make a problem-solving communication for specific topic, recording the audio, video and text of process, experts analyze the extent of behavior of couples interaction process to evaluate treatment effects by these information. This paper use Bidirectional Long Short Term Memory structure to extract multi- granular and high-level features for lexical modality, also combine Doc2Vec into document level with feature selection to integrate different temporal level of behavioral features, and finally join audio modality to train binary classifier with machine learning algorithm. For the performance of six behavioral codes, husband and wife's average accuracy of behavior achieve 79.3% and 82.4% separately, this enhance 5.3% and 7.4% average accuracy compared to 74% and 75% of previous paper[1]. Our experiments and results present the merit of use of Bidirectional Long Short Term Memory can learn time series information effectively, the computation of different level granularity of intensity of behavior improving the algorithm on couple therapy rating system.
Частини книг з теми "LSTM bidirectionnel"
Bakalos, Nikolaos, Athanasios Voulodimos, Nikolaos Doulamis, Anastasios Doulamis, Kassiani Papasotiriou, and Matthaios Bimpas. "Fusing RGB and Thermal Imagery with Channel State Information for Abnormal Activity Detection Using Multimodal Bidirectional LSTM." In Cyber-Physical Security for Critical Infrastructures Protection, 77–86. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-69781-5_6.
Повний текст джерелаAli, Hazrat, Feroz Karim, Junaid Javed Qureshi, Adnan Omer Abuassba, and Mohammad Farhad Bulbul. "Seizure Prediction Using Bidirectional LSTM." In Communications in Computer and Information Science, 349–56. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-1922-2_25.
Повний текст джерелаAljbali, Sarah, and Kaushik Roy. "Anomaly Detection Using Bidirectional LSTM." In Advances in Intelligent Systems and Computing, 612–19. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-55180-3_45.
Повний текст джерелаAttardi, Giuseppe, and Daniele Sartiano. "Bidirectional LSTM Models for DGA Classification." In Communications in Computer and Information Science, 687–94. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-5826-5_54.
Повний текст джерелаBsir, Bassem, and Mounir Zrigui. "Bidirectional LSTM for Author Gender Identification." In Computational Collective Intelligence, 393–402. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-98443-8_36.
Повний текст джерелаFu, Hailin, Jianguo Li, Jiemin Chen, Yong Tang, and Jia Zhu. "Sequence-Based Recommendation with Bidirectional LSTM Network." In Advances in Multimedia Information Processing – PCM 2018, 428–38. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00764-5_39.
Повний текст джерелаAhmed, Saad Bin, Saeeda Naz, Muhammad Imran Razzak, Rubiyah Yusof, and Thomas M. Breuel. "Balinese Character Recognition Using Bidirectional LSTM Classifier." In Lecture Notes in Electrical Engineering, 201–11. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32213-1_18.
Повний текст джерелаZhao, Xue, Chao Wang, Zhifan Yang, Ying Zhang, and Xiaojie Yuan. "Online News Emotion Prediction with Bidirectional LSTM." In Web-Age Information Management, 238–50. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-39958-4_19.
Повний текст джерелаChen, Wenwu, Su Yang, Xu An Wang, Wei Zhang, and Jindan Zhang. "Network Malicious Behavior Detection Using Bidirectional LSTM." In Advances in Intelligent Systems and Computing, 627–35. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-93659-8_57.
Повний текст джерелаPang, Ning, Weidong Xiao, and Xiang Zhao. "Chinese Text Classification via Bidirectional Lattice LSTM." In Knowledge Science, Engineering and Management, 250–62. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-55393-7_23.
Повний текст джерелаТези доповідей конференцій з теми "LSTM bidirectionnel"
Kumar, Sachin, Soumen Chakrabarti, and Shourya Roy. "Earth Mover's Distance Pooling over Siamese LSTMs for Automatic Short Answer Grading." In Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/284.
Повний текст джерелаMohapatra, Nilamadhaba, Namrata Sarraf, and Swapna sarit Sahu. "Ensemble Model for Chunking." In 2nd International Conference on Blockchain and Internet of Things (BIoT 2021). AIRCC Publishing Corporation, 2021. http://dx.doi.org/10.5121/csit.2021.110811.
Повний текст джерелаSibal, Ritika, Ding Zhang, Julie Rocho-Levine, K. Alex Shorter, and Kira Barton. "Bidirectional LSTM Recurrent Neural Network Plus Hidden Markov Model for Wearable Sensor Based Dynamic State Estimation." In ASME 2019 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/dscc2019-9198.
Повний текст джерелаTavakoli, Neda. "Modeling Genome Data Using Bidirectional LSTM." In 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC). IEEE, 2019. http://dx.doi.org/10.1109/compsac.2019.10204.
Повний текст джерелаZayats, Vicky, Mari Ostendorf, and Hannaneh Hajishirzi. "Disfluency Detection Using a Bidirectional LSTM." In Interspeech 2016. ISCA, 2016. http://dx.doi.org/10.21437/interspeech.2016-1247.
Повний текст джерелаRakshith, J., Sharath Savasere, Arvind Ramachandran, Akhila P, and Shashidhar G. Koolagudi. "Word Sense Disambiguation using Bidirectional LSTM." In 2019 IEEE International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER). IEEE, 2019. http://dx.doi.org/10.1109/discover47552.2019.9008031.
Повний текст джерелаCheng, Gaofeng, Lu Huang, Jiasong Sun, and Yonghong Yan. "Bidirectional LSTM with Extended Input Context." In 2018 11th International Symposium on Chinese Spoken Language Processing (ISCSLP). IEEE, 2018. http://dx.doi.org/10.1109/iscslp.2018.8706711.
Повний текст джерелаPang, Dong, and Xinyi Le. "Indoor Localization Using Bidirectional LSTM Networks." In 2021 13th International Conference on Advanced Computational Intelligence (ICACI). IEEE, 2021. http://dx.doi.org/10.1109/icaci52617.2021.9435876.
Повний текст джерелаPratiwi, Monica, Adhi Dharma Wibawa, and Mauridhi Hery Purnomo. "EEG-based Happy and Sad Emotions Classification using LSTM and Bidirectional LSTM." In 2021 3rd International Conference on Electronics Representation and Algorithm (ICERA). IEEE, 2021. http://dx.doi.org/10.1109/icera53111.2021.9538698.
Повний текст джерелаGraves, Alex, Navdeep Jaitly, and Abdel-rahman Mohamed. "Hybrid speech recognition with Deep Bidirectional LSTM." In 2013 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU). IEEE, 2013. http://dx.doi.org/10.1109/asru.2013.6707742.
Повний текст джерела