Статті в журналах з теми "Lower boundary of clouds"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Lower boundary of clouds.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Lower boundary of clouds".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Chen, G., H. Xue, G. Feingold, and X. Zhou. "Vertical transport of pollutants by shallow cumuli from large eddy simulations." Atmospheric Chemistry and Physics Discussions 12, no. 5 (May 3, 2012): 11391–413. http://dx.doi.org/10.5194/acpd-12-11391-2012.

Повний текст джерела
Анотація:
Abstract. This study investigates the vertical transport of a passive tracer in a shallow cumulus boundary layer using large eddy simulations. The tracer source is at the surface in one case, and in the inversion layer in the other case. Results show that shallow cumulus clouds can significantly enhance vertical transport of the tracer in both cases. In the case with surface-borne pollutants, cloudy regions are responsible for the upward transport, due to the intense updrafts in cumulus clouds. In the case where pollutants are aloft, cloud-free regions are responsible for the downward transport, but the downward transport mainly occurs in thin regions around cloud edges. This is consistent with previous aircraft measurements of downdrafts around cumulus clouds and indicates that the downward transport is also cloud-induced. We also preformed cloud-free sensitivity runs for the two cases. Results show that this dry convection can neither transport the surface-borne pollutants into the inversion layer, nor transport pollutants from the inversion layer downward to the lower boundary layer. Cumulus convection is therefore more effective than dry convection at venting pollutants upward from the surface, and fumigating pollutants in the inversion layer downward into the lower boundary layer.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Wang, Yuqing, Shang-Ping Xie, Bin Wang, and Haiming Xu. "Large-Scale Atmospheric Forcing by Southeast Pacific Boundary Layer Clouds: A Regional Model Study*." Journal of Climate 18, no. 7 (April 1, 2005): 934–51. http://dx.doi.org/10.1175/jcli3302.1.

Повний текст джерела
Анотація:
Abstract A regional model is used to study the radiative effect of boundary layer clouds over the southeast Pacific on large-scale atmosphere circulation during August–October 1999. With the standard settings, the model simulates reasonably well the large-scale circulation over the eastern Pacific, precipitation in the intertropical convergence zone (ITCZ) north of the equator, and marine boundary layer stratocumulus clouds to the south. In a sensitivity experiment with the radiative effect of liquid clouds south of the equator over the eastern Pacific artificially removed, boundary layer clouds south of the equator almost disappear and precipitation in the ITCZ is reduced by 15%–20%, indicating that the stratocumulus clouds over the southeast Pacific have both local and cross-equatorial effects. Examination of the differences between the control and sensitivity experiments indicates that clouds exert a net diabatic cooling in the inversion layer. In response to this cloud-induced cooling, an in situ anomalous high pressure system develops in the boundary layer and an anomalous shallow meridional circulation develops in the lower troposphere over the equatorial eastern Pacific. At the lower branch of this shallow circulation, anomalous boundary layer southerlies blow from the boundary layer high toward the northern ITCZ where the air ascends. An anomalous returning flow (northerly) just above the cloud layer closes the shallow circulation. This low-level anomalous shallow circulation enhances the subsidence over the southeast Pacific above the cloud layer, helping to maintain boundary layer clouds and temperature inversion there. Meanwhile, the strengthened cross-equatorial flow near the surface enhances moisture convergence and convection in the ITCZ north of the equator. This in turn strengthens the local, deep Hadley circulation and hence the large-scale subsidence and boundary layer clouds over the southeast Pacific. This positive feedback therefore enhances the interhemispheric climate asymmetry over the tropical eastern Pacific.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Chen, G., H. Xue, G. Feingold, and X. Zhou. "Vertical transport of pollutants by shallow cumuli from large eddy simulations." Atmospheric Chemistry and Physics 12, no. 23 (December 3, 2012): 11319–27. http://dx.doi.org/10.5194/acp-12-11319-2012.

Повний текст джерела
Анотація:
Abstract. This study investigates the vertical transport of a passive tracer in a shallow cumulus boundary layer using large eddy simulations. The tracer source is at the surface in one case, and in the inversion layer in the other case. Results show that shallow cumulus clouds can significantly enhance vertical transport of the tracer in both cases. In the case with surface-borne pollutants, cloudy regions are responsible for the upward transport, due to the intense updrafts in cumulus clouds. In the case where pollutants are aloft, cloud-free regions are responsible for the downward transport, but the downward transport mainly occurs in thin regions around cloud edges. This is consistent with previous aircraft measurements of downdrafts around cumulus clouds and indicates that the downward transport is also cloud-induced. Cumulus convection is therefore able to both vent pollutants upward from the surface and fumigate pollutants in the inversion layer downward into the lower boundary layer.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Lin, Wuyin, Minghua Zhang, and Norman G. Loeb. "Seasonal Variation of the Physical Properties of Marine Boundary Layer Clouds off the California Coast." Journal of Climate 22, no. 10 (May 15, 2009): 2624–38. http://dx.doi.org/10.1175/2008jcli2478.1.

Повний текст джерела
Анотація:
Abstract Marine boundary layer (MBL) clouds can significantly regulate the sensitivity of climate models, yet they are currently poorly simulated. This study aims to characterize the seasonal variations of physical properties of these clouds and their associated processes by using multisatellite data. Measurements from several independent satellite datasets [International Satellite Cloud Climatology Project (ISCCP), Clouds and the Earth’s Radiant Energy System–Moderate Resolution Imaging Spectroradiometer (CERES–MODIS), Geoscience Laser Altimeter System (GLAS), and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO)], in conjunction with balloon soundings from the mobile facility of the Atmospheric Radiation Measurement (ARM) program at Point Reyes and reanalysis products, are used to characterize the seasonal variations of MBL cloud-top and cloud-base heights, cloud thickness, the degree of decoupling between clouds and MBL, and inversion strength off the California coast. The main results from this study are as follows: (i) MBL clouds over the northeast subtropical Pacific in the summer are more prevalent and associated with a larger in-cloud water path than in winter. The cloud-top and cloud-base heights are lower in the summer than in the winter. (ii) Although the lower-tropospheric stability of the atmosphere is higher in the summer, the MBL inversion strength is only weakly stronger in the summer because of a negative feedback from the cloud-top altitude. Summertime MBL clouds are more homogeneous and are associated with lower surface latent heat flux than those in the winter. (iii) Seasonal variations of low-cloud properties from summer to winter resemble the downstream stratocumulus-to-cumulus transition of MBL clouds in terms of MBL depth, cloud-top and cloud-base heights, inversion strength, and spatial homogeneity. The “deepening–warming” mechanism of Bretherton and Wyant for the stratocumulus-to-trade-cumulus transition downstream of the cold eastern ocean can also explain the seasonal variation of low clouds from the summer to the winter, except that warming of the sea surface temperature needs to be taken as relative to the free-tropospheric air temperature, which occurs in the winter. The observed variation of low clouds from summer to winter is attributed to the much larger seasonal cooling of the free-tropospheric air temperature than that of the sea surface temperature.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Eirund, Gesa K., Anna Possner, and Ulrike Lohmann. "The Impact of Warm and Moist Airmass Perturbations on Arctic Mixed-Phase Stratocumulus." Journal of Climate 33, no. 22 (November 15, 2020): 9615–28. http://dx.doi.org/10.1175/jcli-d-20-0163.1.

Повний текст джерела
Анотація:
AbstractThe Arctic is known to be particularly sensitive to climate change. This Arctic amplification has partially been attributed to poleward atmospheric heat transport in the form of airmass intrusions. Locally, such airmass intrusions can introduce moisture and temperature perturbations. The effect of airmass perturbations on boundary layer and cloud changes and their impact on the surface radiative balance has received increased attention, especially over sea ice with regard to sea ice melt. Utilizing cloud-resolving model simulations, this study addresses the impact of airmass perturbations occurring at different altitudes on stratocumulus clouds for open-ocean conditions. It is shown that warm and moist airmass perturbations substantially affect the boundary layer and cloud properties, even for the relatively moist environmental conditions over the open ocean. The cloud response is driven by temperature inversion adjustments and strongly depends on the perturbation height. Boundary layer perturbations weaken and raise the inversion, which destabilizes the lower troposphere and involves a transition from stratocumulus to cumulus clouds. In contrast, perturbations occurring in the lower free troposphere lead to a lowering but strengthening of the temperature inversion, with no impact on cloud fraction. In simulations where free-tropospheric specific humidity is further increased, multilayer mixed-phase clouds form. Regarding energy balance changes, substantial surface longwave cooling arises out of the stratocumulus break-up simulated for boundary layer perturbations. Meanwhile, the net surface longwave warming increases resulting from thicker clouds for airmass perturbations occurring in the lower free troposphere.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ahlgrimm, Maike, David A. Randall, and Martin Köhler. "Evaluating Cloud Frequency of Occurrence and Cloud-Top Height Using Spaceborne Lidar Observations." Monthly Weather Review 137, no. 12 (December 1, 2009): 4225–37. http://dx.doi.org/10.1175/2009mwr2937.1.

Повний текст джерела
Анотація:
Abstract A strategy for model evaluation using spaceborne lidar observations is presented. Observations from the Geoscience Laser Altimeter System are recast onto the model grid to assess the ability of two versions of the Integrated Forecasting System to model marine stratocumulus clouds. The two model versions differ primarily in their treatment of clear and cloudy boundary layers. For each grid column, a representative cloud fraction and cloud-top height are derived from the observations, as well as from the model. By applying the same threshold criteria for cloud fraction and cloud-top height independently to model and observations, samples containing marine stratocumulus clouds can be identified. The frequency of occurrence, cloud fraction, and cloud-top height distributions for all samples thus identified are compared. The evaluation shows improvements in the frequency of occurrence and cloud-top height of marine stratocumulus, though modeled cloud tops remain lower than observed. Additional runs reveal a sensitivity to the strength of the environmental mixing that occurs during the test parcel ascent of the boundary layer parameterization. With a more aggressive parcel, the modeled clouds agree even better with observations.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Solomon, Amy, and Matthew D. Shupe. "A Case Study of Airmass Transformation and Cloud Formation at Summit, Greenland." Journal of the Atmospheric Sciences 76, no. 10 (September 19, 2019): 3095–113. http://dx.doi.org/10.1175/jas-d-19-0056.1.

Повний текст джерела
Анотація:
Abstract This study investigates cloud formation and transitions in cloud types at Summit, Greenland, during 16–22 September 2010, when a warm, moist air mass was advected to Greenland from lower latitudes. During this period there was a sharp transition between high ice clouds and the formation of a lower stratocumulus deck at Summit. A regional mesoscale model is used to investigate the air masses that form these cloud systems. It is found that the high ice clouds form in originally warm, moist air masses that radiatively cool while being transported to Summit. A sensitivity study removing high ice clouds demonstrates that the primary impact of these clouds at Summit is to reduce cloud liquid water embedded within the ice cloud and water vapor in the boundary layer due to vapor deposition on snow. The mixed-phase stratocumulus clouds form at the base of cold, dry air masses advected from the northwest above 4 km. The net surface radiative fluxes during the stratocumulus period are at least 20 W m−2 larger than during the ice cloud period, indicating that, in seasons other than summer, cold, dry air masses advected to Summit above the boundary layer may radiatively warm the top of the Greenland Ice Sheet more effectively than warm, moist air masses advected from lower latitudes.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Harrison, R. Giles, Keri A. Nicoll, Evgeny Mareev, Nikolay Slyunyaev, and Michael J. Rycroft. "Extensive layer clouds in the global electric circuit: their effects on vertical charge distribution and storage." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 476, no. 2238 (June 2020): 20190758. http://dx.doi.org/10.1098/rspa.2019.0758.

Повний текст джерела
Анотація:
A fair-weather electric field has been observed near the Earth's surface for over two centuries. The field is sustained by charge generation in distant disturbed weather regions, through current flow in the global electric circuit. Conventionally, the fair-weather part of the global circuit has disregarded clouds, but extensive layer clouds, important to climate, are widespread globally. Such clouds are not electrically inert, becoming charged at their upper and lower horizontal boundaries from vertical current flow, in a new electrical regime—neither fair nor disturbed weather; hence it is described here as semi-fair weather . Calculations and measurements show the upper cloud boundary charge is usually positive, the cloud interior positive and the lower cloud boundary negative, with the upper charge density larger, but of the same magnitude (∼nC m −2 ) as cloud base. Globally, the total positive charge stored by layer clouds is approximately 10 5 C, which, combined with the positive charge in the atmospheric column above the cloud up to the ionosphere, balances the total negative surface charge of the fair-weather regions. Extensive layer clouds are, therefore, an intrinsic aspect of the global circuit, and the resulting natural charging of their cloud droplets is a fundamental atmospheric feature.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Achtert, Peggy, Ewan J. O'Connor, Ian M. Brooks, Georgia Sotiropoulou, Matthew D. Shupe, Bernhard Pospichal, Barbara J. Brooks, and Michael Tjernström. "Properties of Arctic liquid and mixed-phase clouds from shipborne Cloudnet observations during ACSE 2014." Atmospheric Chemistry and Physics 20, no. 23 (December 4, 2020): 14983–5002. http://dx.doi.org/10.5194/acp-20-14983-2020.

Повний текст джерела
Анотація:
Abstract. This study presents Cloudnet retrievals of Arctic clouds from measurements conducted during a 3-month research expedition along the Siberian shelf during summer and autumn 2014. During autumn, we find a strong reduction in the occurrence of liquid clouds and an increase for both mixed-phase and ice clouds at low levels compared to summer. About 80 % of all liquid clouds observed during the research cruise show a liquid water path below the infrared black body limit of approximately 50 g m−2. The majority of mixed-phase and ice clouds had an ice water path below 20 g m−2. Cloud properties are analysed with respect to cloud-top temperature and boundary layer structure. Changes in these parameters have little effect on the geometric thickness of liquid clouds while mixed-phase clouds during warm-air advection events are generally thinner than when such events were absent. Cloud-top temperatures are very similar for all mixed-phase clouds. However, more cases of lower cloud-top temperature were observed in the absence of warm-air advection. Profiles of liquid and ice water content are normalized with respect to cloud base and height. For liquid water clouds, the liquid water content profile reveals a strong increase with height with a maximum within the upper quarter of the clouds followed by a sharp decrease towards cloud top. Liquid water content is lowest for clouds observed below an inversion during warm-air advection events. Most mixed-phase clouds show a liquid water content profile with a very similar shape to that of liquid clouds but with lower maximum values during events with warm air above the planetary boundary layer. The normalized ice water content profiles in mixed-phase clouds look different from those of liquid water content. They show a wider range in maximum values with the lowest ice water content for clouds below an inversion and the highest values for clouds above or extending through an inversion. The ice water content profile generally peaks at a height below the peak in the liquid water content profile – usually in the centre of the cloud, sometimes closer to cloud base, likely due to particle sublimation as the crystals fall through the cloud.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kravitz, Ben, Hailong Wang, Philip J. Rasch, Hugh Morrison, and Amy B. Solomon. "Process-model simulations of cloud albedo enhancement by aerosols in the Arctic." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 372, no. 2031 (December 28, 2014): 20140052. http://dx.doi.org/10.1098/rsta.2014.0052.

Повний текст джерела
Анотація:
A cloud-resolving model is used to simulate the effectiveness of Arctic marine cloud brightening via injection of cloud condensation nuclei (CCN), either through geoengineering or other increased sources of Arctic aerosols. An updated cloud microphysical scheme is employed, with prognostic CCN and cloud particle numbers in both liquid and mixed-phase marine low clouds. Injection of CCN into the marine boundary layer can delay the collapse of the boundary layer and increase low-cloud albedo. Albedo increases are stronger for pure liquid clouds than mixed-phase clouds. Liquid precipitation can be suppressed by CCN injection, whereas ice precipitation (snow) is affected less; thus, the effectiveness of brightening mixed-phase clouds is lower than for liquid-only clouds. CCN injection into a clean regime results in a greater albedo increase than injection into a polluted regime, consistent with current knowledge about aerosol–cloud interactions. Unlike previous studies investigating warm clouds, dynamical changes in circulation owing to precipitation changes are small. According to these results, which are dependent upon the representation of ice nucleation processes in the employed microphysical scheme, Arctic geoengineering is unlikely to be effective as the sole means of altering the global radiation budget but could have substantial local radiative effects.
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Wood, Robert, Matthew Wyant, Christopher S. Bretherton, Jasmine Rémillard, Pavlos Kollias, Jennifer Fletcher, Jayson Stemmler, et al. "Clouds, Aerosols, and Precipitation in the Marine Boundary Layer: An Arm Mobile Facility Deployment." Bulletin of the American Meteorological Society 96, no. 3 (March 1, 2015): 419–40. http://dx.doi.org/10.1175/bams-d-13-00180.1.

Повний текст джерела
Анотація:
Abstract The Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) deployment at Graciosa Island in the Azores generated a 21-month (April 2009–December 2010) comprehensive dataset documenting clouds, aerosols, and precipitation using the Atmospheric Radiation Measurement Program (ARM) Mobile Facility (AMF). The scientific aim of the deployment is to gain improved understanding of the interactions of clouds, aerosols, and precipitation in the marine boundary layer. Graciosa Island straddles the boundary between the subtropics and midlatitudes in the northeast Atlantic Ocean and consequently experiences a great diversity of meteorological and cloudiness conditions. Low clouds are the dominant cloud type, with stratocumulus and cumulus occurring regularly. Approximately half of all clouds contained precipitation detectable as radar echoes below the cloud base. Radar and satellite observations show that clouds with tops from 1 to 11 km contribute more or less equally to surface-measured precipitation at Graciosa. A wide range of aerosol conditions was sampled during the deployment consistent with the diversity of sources as indicated by back-trajectory analysis. Preliminary findings suggest important two-way interactions between aerosols and clouds at Graciosa, with aerosols affecting light precipitation and cloud radiative properties while being controlled in part by precipitation scavenging. The data from Graciosa are being compared with short-range forecasts made with a variety of models. A pilot analysis with two climate and two weather forecast models shows that they reproduce the observed time-varying vertical structure of lower-tropospheric cloud fairly well but the cloud-nucleating aerosol concentrations less well. The Graciosa site has been chosen to be a permanent fixed ARM site that became operational in October 2013.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Bourdages, L., T. J. Duck, G. Lesins, J. R. Drummond, and E. W. Eloranta. "Physical properties of High Arctic tropospheric particles during winter." Atmospheric Chemistry and Physics 9, no. 18 (September 21, 2009): 6881–97. http://dx.doi.org/10.5194/acp-9-6881-2009.

Повний текст джерела
Анотація:
Abstract. A climatology of particle scattering properties in the wintertime High Arctic troposphere, including vertical distributions and effective radii, is presented. The measurements were obtained using a lidar and cloud radar located at Eureka, Nunavut Territory (80° N, 86° W). Four different particle groupings are considered: boundary-layer ice crystals, ice clouds, mixed-phase clouds, and aerosols. Two-dimensional histograms of occurrence probabilities against depolarization, radar/lidar colour ratio and height are given. Colour ratios are related to particle minimum dimensions (i.e., widths rather than lengths) using a Mie scattering model. Ice cloud crystals have effective radii spanning 25–220 µm, with larger particles observed at lower altitudes. Topographic blowing snow residuals in the boundary layer have the smallest crystals at 15–70 µm. Mixed-phase clouds have water droplets and ice crystal precipitation in the 5–40 µm and 40–220 µm ranges, respectively. Ice cloud crystals have depolarization decreasing with height. The depolarization trend is associated with the large ice crystal sub-population. Small crystals depolarize more than large ones in ice clouds at a given altitude, and show constant modal depolarization with height. Ice clouds in the mid-troposphere are sometimes observed to precipitate to the ground. Water clouds are constrained to the lower troposphere (0.5–3.5 km altitude). Aerosols are most abundant near the ground and are frequently mixed with the other particle types. The data are used to construct a classification chart for particle scattering in wintertime Arctic conditions.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Raatikainen, Tomi, Marje Prank, Jaakko Ahola, Harri Kokkola, Juha Tonttila, and Sami Romakkaniemi. "The effect of marine ice-nucleating particles on mixed-phase clouds." Atmospheric Chemistry and Physics 22, no. 6 (March 21, 2022): 3763–78. http://dx.doi.org/10.5194/acp-22-3763-2022.

Повний текст джерела
Анотація:
Abstract. Shallow marine mixed-phase clouds are important for the Earth's radiative balance, but modelling their formation and dynamics is challenging. These clouds depend on boundary layer turbulence and cloud top radiative cooling, which is related to the cloud phase. The fraction of frozen droplets depends on the availability of suitable ice-nucleating particles (INPs), which initiate droplet freezing. While mineral dust is the dominating INP type in most regions, high-latitude boundary layer clouds can be dependent on local marine INP emissions, which are often related to biogenic sources including phytoplankton. Here we use high resolution large eddy simulations to examine the potential effects of marine emissions on boundary layer INP concentrations and their effects on clouds. Surface emissions have a direct effect on INP concentration in a typical well-mixed boundary layer whereas a steep inversion can block the import of background INPs from the free troposphere. The importance of the marine source depends on the background INP concentration, so that marine INP emissions become more important with lower background INP concentrations. For the INP budget it is also important to account for INP recycling. Finally, with the high-resolution model we show how ice nucleation hotspots and high INP concentrations are focused on updraught regions. Our results show that marine INP emissions contribute directly to the boundary layer INP budget and therefore have an influence on mixed-phase clouds.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Löhnert, U., J. H. Schween, C. Acquistapace, K. Ebell, M. Maahn, M. Barrera-Verdejo, A. Hirsikko, et al. "JOYCE: Jülich Observatory for Cloud Evolution." Bulletin of the American Meteorological Society 96, no. 7 (July 1, 2015): 1157–74. http://dx.doi.org/10.1175/bams-d-14-00105.1.

Повний текст джерела
Анотація:
Abstract The Jülich Observatory for Cloud Evolution (JOYCE), located at Forschungszentrum Jülich in the most western part of Germany, is a recently established platform for cloud research. The main objective of JOYCE is to provide observations, which improve our understanding of the cloudy boundary layer in a midlatitude environment. Continuous and temporally highly resolved measurements that are specifically suited to characterize the diurnal cycle of water vapor, stability, and turbulence in the lower troposphere are performed with a special focus on atmosphere–surface interaction. In addition, instruments are set up to measure the micro- and macrophysical properties of clouds in detail and how they interact with different boundary layer processes and the large-scale synoptic situation. For this, JOYCE is equipped with an array of state-of-the-art active and passive remote sensing and in situ instruments, which are briefly described in this scientific overview. As an example, a 24-h time series of the evolution of a typical cumulus cloud-topped boundary layer is analyzed with respect to stability, turbulence, and cloud properties. Additionally, we present longer-term statistics, which can be used to elucidate the diurnal cycle of water vapor, drizzle formation through autoconversion, and warm versus cold rain precipitation formation. Both case studies and long-term observations are important for improving the representation of clouds in climate and numerical weather prediction models.
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Jäkel, Evelyn, Manfred Wendisch, Trismono C. Krisna, Florian Ewald, Tobias Kölling, Tina Jurkat, Christiane Voigt, et al. "Vertical distribution of the particle phase in tropical deep convective clouds as derived from cloud-side reflected solar radiation measurements." Atmospheric Chemistry and Physics 17, no. 14 (July 27, 2017): 9049–66. http://dx.doi.org/10.5194/acp-17-9049-2017.

Повний текст джерела
Анотація:
Abstract. Vertical profiles of cloud particle phase in tropical deep convective clouds (DCCs) were investigated using airborne solar spectral radiation data collected by the German High Altitude and Long Range Research Aircraft (HALO) during the ACRIDICON-CHUVA campaign, which was conducted over the Brazilian rainforest in September 2014. A phase discrimination retrieval based on imaging spectroradiometer measurements of DCC side spectral reflectivity was applied to clouds formed in different aerosol conditions. From the retrieval results the height of the mixed-phase layer of the DCCs was determined. The retrieved profiles were compared with in situ measurements and satellite observations. It was found that the depth and vertical position of the mixed-phase layer can vary up to 900 m for one single cloud scene. This variability is attributed to the different stages of cloud development in a scene. Clouds of mature or decaying stage are affected by falling ice particles resulting in lower levels of fully glaciated cloud layers compared to growing clouds. Comparing polluted and moderate aerosol conditions revealed a shift of the lower boundary of the mixed-phase layer from 5.6 ± 0.2 km (269 K; moderate) to 6.2 ± 0.3 km (267 K; polluted), and of the upper boundary from 6.8 ± 0.2 km (263 K; moderate) to 7.4 ± 0.4 km (259 K; polluted), as would be expected from theory.
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Dagan, Guy, Ilan Koren, Orit Altaratz, and Reuven H. Heiblum. "Time-dependent, non-monotonic response of warm convective cloud fields to changes in aerosol loading." Atmospheric Chemistry and Physics 17, no. 12 (June 20, 2017): 7435–44. http://dx.doi.org/10.5194/acp-17-7435-2017.

Повний текст джерела
Анотація:
Abstract. Large eddy simulations (LESs) with bin microphysics are used here to study cloud fields' sensitivity to changes in aerosol loading and the time evolution of this response. Similarly to the known response of a single cloud, we show that the mean field properties change in a non-monotonic trend, with an optimum aerosol concentration for which the field reaches its maximal water mass or rain yield. This trend is a result of competition between processes that encourage cloud development versus those that suppress it. However, another layer of complexity is added when considering clouds' impact on the field's thermodynamic properties and how this is dependent on aerosol loading. Under polluted conditions, rain is suppressed and the non-precipitating clouds act to increase atmospheric instability. This results in warming of the lower part of the cloudy layer (in which there is net condensation) and cooling of the upper part (net evaporation). Evaporation at the upper part of the cloudy layer in the polluted simulations raises humidity at these levels and thus amplifies the development of the next generation of clouds (preconditioning effect). On the other hand, under clean conditions, the precipitating clouds drive net warming of the cloudy layer and net cooling of the sub-cloud layer due to rain evaporation. These two effects act to stabilize the atmospheric boundary layer with time (consumption of the instability). The evolution of the field's thermodynamic properties affects the cloud properties in return, as shown by the migration of the optimal aerosol concentration toward higher values.
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Bourdages, L., T. J. Duck, G. Lesins, J. R. Drummond, and E. W. Eloranta. "Physical properties of High Arctic tropospheric particles during winter." Atmospheric Chemistry and Physics Discussions 9, no. 2 (March 24, 2009): 7781–823. http://dx.doi.org/10.5194/acpd-9-7781-2009.

Повний текст джерела
Анотація:
Abstract. A climatology of particle properties in the wintertime High Arctic troposphere is constructed using measurements from a lidar and cloud radar located at Eureka, Nunavut Territory (80° N, 86° W). Four different particle groupings are considered: aerosols, mixed-phase clouds, ice clouds and boundary-layer ice crystals. Two-dimensional histograms of occurrence probabilities against depolarization and radar/lidar colour ratio, as well as their vertical distributions, are presented. The largest ice crystals originate from mixed-phase clouds, whereas the smallest are topographic blowing snow residuals in the boundary layer. Ice cloud crystals have depolarization and size decreasing with height. The depolarization trend is associated with the large ice crystal sub-population. Small crystals depolarize more than large ones in ice clouds at a given altitude, and show constant modal depolarization with height. Ice clouds in the mid-troposphere are sometimes observed to precipitate to the ground. Water clouds are constrained to the lower troposphere and are associated with the surface inversion layer depth. Aerosols are most abundant near the ground and are frequently mixed with the other particle types. The data are used to construct a classification chart for particle scattering in wintertime Arctic conditions.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Hirsch, E., I. Koren, O. Altaratz, Z. Levin, and E. Agassi. "Perturbations in relative humidity in the boundary layer represent a possible mechanism for the formation of small convective clouds." Atmospheric Chemistry and Physics Discussions 13, no. 11 (November 4, 2013): 28729–49. http://dx.doi.org/10.5194/acpd-13-28729-2013.

Повний текст джерела
Анотація:
Abstract. An air parcel model was developed to study the formation of small convective clouds that appear under conditions of weak updraft and a strong thermal inversion layer above the clouds. Observations suggest that these clouds are characterized by a cloud base height far lower than the lifting condensation level. Considering such atmospheric conditions, the air parcel model shows that these clouds cannot be the result of classical thermals or plumes that are caused by perturbations in the temperature near the surface. We suggest that such clouds are the result of perturbations in the relative humidity of elevated air pockets. These results explain the existence of small clouds that standard methods fail to predict and shed light on processes related to the formation of convective clouds from the lowest end of the size distribution.
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Jarecka, D., H. Pawlowska, W. W. Grabowski, and A. A. Wyszogrodzki. "Modeling microphysical effects of entrainment in clouds observed during EUCAARI-IMPACT field campaign." Atmospheric Chemistry and Physics Discussions 13, no. 1 (January 15, 2013): 1489–526. http://dx.doi.org/10.5194/acpd-13-1489-2013.

Повний текст джерела
Анотація:
Abstract. This paper discusses aircraft observations and large-eddy simulation (LES) of the 15 May 2008, North Sea boundary-layer clouds from the EUCAARI-IMPACT field campaign. These clouds were advected from the north-east by the prevailing lower-tropspheric winds, and featured stratocumulus-over-cumulus cloud formations. Almost-solid stratocumulus deck in the upper part of the relatively deep weakly decoupled marine boundary layer overlaid a field of small cumuli with a cloud fraction of ~10%. The two cloud formations featured distinct microphysical characteristics that were in general agreement with numerous past observations of strongly-diluted shallow cumuli on the one hand and solid marine boundary-layer stratocumulus on the other. Macrophysical and microphysical cloud properties were reproduced well by the double-moment warm-rain microphysics large-eddy simulation. A novel feature of the model is its capability to locally predict homogeneity of the subgrid-scale mixing between the cloud and its cloud-free environment. In the double-moment warm-rain microphysics scheme, the homogeneity is controlled by a single parameter α, that ranges from 0 to 1 and limiting values representing the homogeneous and the extremely inhomogeneous mixing scenarios, respectively. Parameter α depends on the characteristic time scales of the droplet evaporation and of the turbulent homogenization. In the model, these scales are derived locally based on the subgrid-scale turbulent kinetic energy, spatial scale of cloudy filaments, the mean cloud droplet radius, and the humidity of the cloud-free air entrained into the cloud. Simulated mixing is on average quite inhomogeneous, with the mean parameter α around 0.7 across the entire depth of the cloud field, but with local variations across almost the entire range, especially near the base and the top of the cloud field.
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Bretherton, C. S., R. Wood, R. C. George, D. Leon, G. Allen, and X. Zheng. "Southeast Pacific stratocumulus clouds, precipitation and boundary layer structure sampled along 20 S during VOCALS-REx." Atmospheric Chemistry and Physics Discussions 10, no. 6 (June 29, 2010): 15921–62. http://dx.doi.org/10.5194/acpd-10-15921-2010.

Повний текст джерела
Анотація:
Abstract. Multiplatform airborne, ship-based, and land-based observations from 16 October–15 November 2008 during the VOCALS Regional Experiment (REx) are used to document the typical structure of the Southeast Pacific stratocumulus-topped boundary layer and lower free troposphere on a transect along 20° S between the coast of Northern Chile and a buoy 1500 km offshore. Strong systematic gradients in clouds, precipitation and vertical structure are modulated by synoptically and diurnally-driven variability. The boundary layer is generally capped by a strong (10–12 K), sharp inversion. In the coastal zone, the boundary layer is typically 1 km deep, fairly well mixed, and topped by thin, nondrizzling stratocumulus with haccumulation-mode aerosol and cloud droplet concentrations exceeding 200 cm−3. Far offshore, the boundary layer depth is typically deeper (1600 m) and more variable, and the vertical structure is usually decoupled. The offshore stratocumulus typically have strong mesoscale organization, much higher peak liquid water paths, extensive drizzle, and cloud droplet concentrations below 100 cm−3, sometimes with embedded pockets of open cells with lower droplet concentrations. The lack of drizzle near the coast is not just a microphysical response to high droplet concentrations; smaller cloud depth and liquid water path than further offshore appear comparably important. Moist boundary layer air is heated and mixed up along the Andean slopes, then advected out over the top of the boundary layer above adjacent coastal ocean regions. Well offshore, the lower free troposphere is typically much drier. This promotes strong cloud-top radiative cooling and stronger turbulence in the clouds offshore. In conjunction with a slightly cooler free troposphere, this may promote stronger entrainment that maintains the deeper boundary layer seen offshore. Winds from ECMWF and NCEP operational analyses have an rms difference of only 1 m s−1 from collocated airborne leg-mean observations in the boundary layer and 2 m s−1 above the boundary layer. This supports the use of trajectory analysis for interpreting REx observations. Two-day back-trajectories from the 20° S transect suggest that eastward of 75° W, boundary layer (and often free-tropospheric) air has usually been exposed to Chilean coastal aerosol sources, while at 85° W, neither boundary-layer or free-tropospheric air has typically had such contact.
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Wood, Robert, and Christopher S. Bretherton. "On the Relationship between Stratiform Low Cloud Cover and Lower-Tropospheric Stability." Journal of Climate 19, no. 24 (December 15, 2006): 6425–32. http://dx.doi.org/10.1175/jcli3988.1.

Повний текст джерела
Анотація:
Abstract Observations in subtropical regions show that stratiform low cloud cover is well correlated with the lower-troposphere stability (LTS), defined as the difference in potential temperature θ between the 700-hPa level and the surface. The LTS can be regarded as a measure of the strength of the inversion that caps the planetary boundary layer (PBL). A stronger inversion is more effective at trapping moisture within the marine boundary layer (MBL), permitting greater cloud cover. This paper presents a new formulation, called the estimated inversion strength (EIS), to estimate the strength of the PBL inversion given the temperatures at 700 hPa and at the surface. The EIS accounts for the general observation that the free-tropospheric temperature profile is often close to a moist adiabat and its lapse rate is strongly temperature dependent. Therefore, for a given LTS, the EIS is greater at colder temperatures. It is demonstrated that while the seasonal cycles of LTS and low cloud cover fraction (CF) are strongly correlated in many regions, no single relationship between LTS and CF can be found that encompasses the wide range of temperatures occurring in the Tropics, subtropics, and midlatitudes. However, a single linear relationship between CF and EIS explains 83% of the regional/seasonal variance in stratus cloud amount, suggesting that EIS is a more regime-independent predictor of stratus cloud amount than is LTS under a wide range of climatological conditions. The result has some potentially important implications for how low clouds might behave in a changed climate. In contrast to Miller’s thermostat hypothesis that a reduction in the lapse rate (Clausius–Clapeyron) will lead to increased LTS and increased tropical low cloud cover in a warmer climate, the results here suggest that low clouds may be much less sensitive to changes in the temperature profile if the vertical profile of tropospheric warming follows a moist adiabat.
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Sotiropoulou, G., J. Sedlar, M. Tjernström, M. D. Shupe, I. M. Brooks, and P. O. G. Persson. "The thermodynamic structure of summer Arctic stratocumulus and the dynamic coupling to the surface." Atmospheric Chemistry and Physics Discussions 14, no. 3 (February 11, 2014): 3815–74. http://dx.doi.org/10.5194/acpd-14-3815-2014.

Повний текст джерела
Анотація:
Abstract. The vertical structure of Arctic low-level clouds and Arctic boundary layer is studied, using observations from ASCOS (Arctic Summer Cloud Ocean Study), in the central Arctic, in late summer 2008. Two general types of cloud structures are examined: the "neutrally-stratified" and "stably-stratified" clouds. Neutrally-stratified are mixed-phase clouds where radiative-cooling near cloud top produces turbulence that creates a cloud-driven mixed layer. When this layer mixes with the surface-generated turbulence, the cloud layer is coupled to the surface, whereas when such an interaction does not occur, it remains decoupled; the latter state is most frequently observed. The decoupled clouds are usually higher compared to the coupled; differences in thickness or cloud water properties between the two cases are however not found. The surface fluxes are also very similar for both states. The decoupled clouds exhibit a bimodal thermodynamic structure, depending on the depth of the sub-cloud mixed layer (SML): clouds with shallower SMLs are disconnected from the surface by weak inversions, whereas those that lay over a deeper SML are associated with stronger inversions at the decoupling height. Neutrally-stratified clouds generally precipitate; the evaporation/sublimation of precipitation often enhances the decoupling state. Finally, stably-stratified clouds are usually lower, geometrically and optically thinner, non-precipitating liquid-water clouds, not containing enough liquid to drive efficient mixing through cloud-top cooling.
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Sotiropoulou, G., J. Sedlar, M. Tjernström, M. D. Shupe, I. M. Brooks, and P. O. G. Persson. "The thermodynamic structure of summer Arctic stratocumulus and the dynamic coupling to the surface." Atmospheric Chemistry and Physics 14, no. 22 (November 28, 2014): 12573–92. http://dx.doi.org/10.5194/acp-14-12573-2014.

Повний текст джерела
Анотація:
Abstract. The vertical structure of Arctic low-level clouds and Arctic boundary layer is studied, using observations from ASCOS (Arctic Summer Cloud Ocean Study), in the central Arctic, in late summer 2008. Two general types of cloud structures are examined: the "neutrally stratified" and "stably stratified" clouds. Neutrally stratified are mixed-phase clouds where radiative-cooling near cloud top produces turbulence that generates a cloud-driven mixed layer. When this layer mixes with the surface-generated turbulence, the cloud layer is coupled to the surface, whereas when such an interaction does not occur, it remains decoupled; the latter state is most frequently observed. The decoupled clouds are usually higher compared to the coupled; differences in thickness or cloud water properties between the two cases are however not found. The surface fluxes are also very similar for both states. The decoupled clouds exhibit a bimodal thermodynamic structure, depending on the depth of the sub-cloud mixed layer (SCML): clouds with shallower SCMLs are disconnected from the surface by weak inversions, whereas those that lay over a deeper SCML are associated with stronger inversions at the decoupling height. Neutrally stratified clouds generally precipitate; the evaporation/sublimation of precipitation often enhances the decoupling state. Finally, stably stratified clouds are usually lower, geometrically and optically thinner, non-precipitating liquid-water clouds, not containing enough liquid to drive efficient mixing through cloud-top cooling.
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Mace, Gerald G., and Sally Benson. "The Vertical Structure of Cloud Occurrence and Radiative Forcing at the SGP ARM Site as Revealed by 8 Years of Continuous Data." Journal of Climate 21, no. 11 (June 1, 2008): 2591–610. http://dx.doi.org/10.1175/2007jcli1987.1.

Повний текст джерела
Анотація:
Abstract Data collected at the Atmospheric Radiation Measurement (ARM) Program ground sites allow for the description of the atmospheric thermodynamic state, cloud occurrence, and cloud properties. This information allows for the derivation of estimates of the effects of clouds on the radiation budget of the surface and atmosphere. Herein 8 yr of continuous data collected at the ARM Southern Great Plains (SGP) Climate Research Facility (ACRF) are analyzed, and the influence of clouds on the radiative flux divergence of solar and infrared energy on annual, seasonal, and monthly time scales is documented. Given the uncertainties in derived cloud microphysical properties that result in calculated radiant flux errors, it is demonstrated that the ability to quantitatively resolve all but the largest heating and cooling influences by clouds is marginal for averaging periods less than 1 month. Concentrating on seasonal and monthly averages, it is found that the net column-integrated radiative effect of clouds on the atmosphere is nearly neutral at this middle-latitude location. However, a net heating of the upper troposphere by upper-tropospheric clouds and a cooling of the lower troposphere by boundary layer clouds is documented. The balance evolves over the course of an annual cycle as the troposphere deepens in summer and boundary layer clouds become less frequent relative to upper-tropospheric clouds. Although the top-of-atmosphere IR radiative effect is nearly invariant through the annual cycle, the seasonally varying heating profile is determined largely by the convergence of IR flux because solar heating is offset by IR cooling within the column.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Wood, R. "Drizzle in Stratiform Boundary Layer Clouds. Part I: Vertical and Horizontal Structure." Journal of the Atmospheric Sciences 62, no. 9 (September 1, 2005): 3011–33. http://dx.doi.org/10.1175/jas3529.1.

Повний текст джерела
Анотація:
Abstract Detailed observations of stratiform boundary layer clouds on 12 days are examined with specific reference to drizzle formation processes. The clouds differ considerably in mean thickness, liquid water path (LWP), and droplet concentration. Cloud-base precipitation rates differ by a factor of 20 between cases. The lowest precipitation rate is found in the case with the highest droplet concentration even though this case had by far the highest LWP, suggesting that drizzle can be severely suppressed in polluted clouds. The vertical and horizontal structure of cloud and drizzle liquid water and bulk microphysical parameters are examined in detail. In general, the highest concentration of r > 20 μm drizzle drops is found toward the top of the cloud, and the mean volume radius of the drizzle drops increases monotonically from cloud top to base. The resulting precipitation rates are largest at the cloud base but decrease markedly only in the upper third of the cloud. Below cloud, precipitation rates decrease markedly with distance below base due to evaporation, and are broadly consistent in most cases with the results from a simple sedimentation–evaporation model. Evidence is presented that suggests evaporating drizzle is cooling regions of the subcloud layer, which could result in dynamical feedbacks. A composite power spectrum of the horizontal spatial series of precipitation rate is found to exhibit a power-law scaling from the smallest observable scales to close to the maximum observable scale (∼30 km). The exponent is considerably lower (1.1–1.2) than corresponding exponents for LWP variability obtained in other studies (∼1.5–2), demonstrating that there is relatively more variability of drizzle on small scales. Singular measures analysis shows that drizzle fields are much more intermittent than the cloud liquid water content fields, consistent with a drizzle production process that depends strongly upon liquid water content. The adiabaticity of the clouds, which can be modeled as a simple balance between drizzle loss and turbulent replenishment, is found to decrease if the time scale for drizzle loss is shorter than roughly 5–10 eddy turnover time scales. Finally, the data are compared with three simple scalings derived from recent observations of drizzle in subtropical stratocumulus clouds.
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Wu, Peng, Xiquan Dong, and Baike Xi. "A Climatology of Marine Boundary Layer Cloud and Drizzle Properties Derived from Ground-Based Observations over the Azores." Journal of Climate 33, no. 23 (December 1, 2020): 10133–48. http://dx.doi.org/10.1175/jcli-d-20-0272.1.

Повний текст джерела
Анотація:
AbstractIn this study, more than 4 years of ground-based observations and retrievals were collected and analyzed to investigate the seasonal and diurnal variations of single-layered MBL (with three subsets: nondrizzling, virga, and rain) cloud and drizzle properties, as well as their vertical and horizontal variations. The annual mean drizzle frequency was ~55%, with ~70% in winter and ~45% in summer. The cloud-top (cloud-base) height for rain clouds was the highest (lowest), resulting in the deepest cloud layer, i.e., 0.8 km, which is 4 (2) times that of nondrizzling (virga) clouds. The retrieved cloud-droplet effective radii rc were the largest (smallest) for rain (nondrizzling) clouds, and the nighttime values were greater than the daytime values. Drizzle number concentration Nd and liquid water content LWCd were three orders and one order lower, respectively, than their cloud counterparts. The rc and LWCc increased from the cloud base to zi ≈ 0.75 by condensational growth, while drizzle median radii rd increased from the cloud top downward the cloud base by collision–coalescence. The adiabaticity values monotonically increased from the cloud top to the cloud base with maxima of ~0.7 (0.3) for nondrizzling (rain) clouds. The drizzling process decreases the adiabaticity by 0.25 to 0.4, and the cloud-top entrainment mixing impacts as deep as upper 40% of the cloud layers. Cloud and drizzle homogeneities decreased with increased horizontal sampling lengths. Cloud homogeneity increases with increasing cloud fraction. These results can serve as baselines for studying MBL cloud-to-rain conversion and growth processes over the Azores.
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Bretherton, C. S., R. Wood, R. C. George, D. Leon, G. Allen, and X. Zheng. "Southeast Pacific stratocumulus clouds, precipitation and boundary layer structure sampled along 20° S during VOCALS-REx." Atmospheric Chemistry and Physics 10, no. 21 (November 12, 2010): 10639–54. http://dx.doi.org/10.5194/acp-10-10639-2010.

Повний текст джерела
Анотація:
Abstract. Multiplatform airborne, ship-based, and land-based observations from 16 October–15 November 2008 during the VOCALS Regional Experiment (REx) are used to document the typical structure of the Southeast Pacific stratocumulus-topped boundary layer and lower free troposphere on a~transect along 20° S between the coast of Northern Chile and a buoy 1500 km offshore. Strong systematic gradients in clouds, precipitation and vertical structure are modulated by synoptically and diurnally-driven variability. The boundary layer is generally capped by a strong (10–12 K), sharp inversion. In the coastal zone, the boundary layer is typically 1 km deep, fairly well mixed, and topped by thin, nondrizzling stratocumulus with accumulation-mode aerosol and cloud droplet concentrations exceeding 200 cm−3. Far offshore, the boundary layer depth is typically deeper (1600 m) and more variable, and the vertical structure is usually decoupled. The offshore stratocumulus typically have strong mesoscale organization, much higher peak liquid water paths, extensive drizzle, and cloud droplet concentrations below 100 cm−3, sometimes with embedded pockets of open cells with lower droplet concentrations. The lack of drizzle near the coast is not just a microphysical response to high droplet concentrations; smaller cloud depth and liquid water path than further offshore appear comparably important. Moist boundary layer air is heated and mixed up along the Andean slopes, then advected out over the top of the boundary layer above adjacent coastal ocean regions. Well offshore, the lower free troposphere is typically much drier. This promotes strong cloud-top radiative cooling and stronger turbulence in the clouds offshore. In conjunction with a slightly cooler free troposphere, this may promote stronger entrainment that maintains the deeper boundary layer seen offshore. Winds from ECMWF and NCEP operational analyses have an rms difference of only 1 m s−1 from collocated airborne leg-mean observations in the boundary layer and 2 m s−1 above the boundary layer. This supports the use of trajectory analysis for interpreting REx observations. Two-day back-trajectories from the 20° S transect suggest that eastward of 75° W, boundary layer (and often free-tropospheric) air has usually been exposed to South American coastal aerosol sources, while at 85° W, neither boundary-layer or free-tropospheric air has typically had such contact.
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Duncan Jr., James B., Laura Bianco, Bianca Adler, Tyler Bell, Irina V. Djalalova, Laura Riihimaki, Joseph Sedlar, et al. "Evaluating convective planetary boundary layer height estimations resolved by both active and passive remote sensing instruments during the CHEESEHEAD19 field campaign." Atmospheric Measurement Techniques 15, no. 8 (April 25, 2022): 2479–502. http://dx.doi.org/10.5194/amt-15-2479-2022.

Повний текст джерела
Анотація:
Abstract. During the Chequamegon Heterogeneous Ecosystem Energy-balance Study Enabled by a High-density Extensive Array of Detectors 2019 (CHEESEHEAD19) field campaign, held in the summer of 2019 in northern Wisconsin, USA, active and passive ground-based remote sensing instruments were deployed to understand the response of the planetary boundary layer to heterogeneous land surface forcing. These instruments include radar wind profilers, microwave radiometers, atmospheric emitted radiance interferometers, ceilometers, high spectral resolution lidars, Doppler lidars, and collaborative lower-atmospheric mobile profiling systems that combine several of these instruments. In this study, these ground-based remote sensing instruments are used to estimate the height of the daytime planetary boundary layer, and their performance is compared against independent boundary layer depth estimates obtained from radiosondes launched as part of the field campaign. The impact of clouds (in particular boundary layer clouds) on boundary layer depth estimations is also investigated. We found that while all instruments are overall able to provide reasonable boundary layer depth estimates, each of them shows strengths and weaknesses under certain conditions. For example, radar wind profilers perform well during cloud-free conditions, and microwave radiometers and atmospheric emitted radiance interferometers have a very good agreement during all conditions but are limited by the smoothness of the retrieved thermodynamic profiles. The estimates from ceilometers and high spectral resolution lidars can be hindered by the presence of elevated aerosol layers or clouds, and the multi-instrument retrieval from the collaborative lower atmospheric mobile profiling systems can be constricted to a limited height range in low-aerosol conditions.
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Liu, Zheng, and Axel Schweiger. "Synoptic Conditions, Clouds, and Sea Ice Melt Onset in the Beaufort and Chukchi Seasonal Ice Zone." Journal of Climate 30, no. 17 (September 2017): 6999–7016. http://dx.doi.org/10.1175/jcli-d-16-0887.1.

Повний текст джерела
Анотація:
Cloud response to synoptic conditions over the Beaufort and Chukchi seasonal ice zone is examined. Four synoptic states with distinct thermodynamic and dynamic signatures are identified using ERA-Interim reanalysis data from 2000 to 2014. CloudSat and CALIPSO observations suggest control of clouds by synoptic states. Warm continental air advection is associated with the fewest low-level clouds, while cold air advection generates the most low-level clouds. Low-level clouds are related to lower-tropospheric stability and both are regulated by synoptic conditions. High-level clouds are associated with humidity and vertical motions in the upper atmosphere. Observed cloud vertical and spatial variability is reproduced well in ERA-Interim, but winter low-level cloud fraction is overestimated. This suggests that synoptic conditions constrain the spatial extent of clouds through the atmospheric structure, while the parameterizations for cloud microphysics and boundary layer physics are critical for the life cycle of clouds in numerical models. Sea ice melt onset is related to synoptic conditions. Melt onsets occur more frequently and earlier with warm air advection. Synoptic conditions with the highest temperatures and precipitable water are most favorable for melt onsets even though fewer low-level clouds are associated with these conditions.
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Wang, H., P. J. Rasch, and G. Feingold. "Manipulating marine stratocumulus cloud amount and albedo: a process-modelling study of aerosol-cloud-precipitation interactions in response to injection of cloud condensation nuclei." Atmospheric Chemistry and Physics Discussions 11, no. 1 (January 13, 2011): 885–916. http://dx.doi.org/10.5194/acpd-11-885-2011.

Повний текст джерела
Анотація:
Abstract. We use a cloud-system-resolving model to study marine-cloud brightening. We examine how injected aerosol particles that act as cloud condensation nuclei (CCN) are transported within the marine boundary layer and how the additional particles in clouds impact cloud microphysical processes, and feedback on dynamics. Results show that the effectiveness of cloud brightening depends strongly on meteorological and background aerosol conditions. Cloud albedo enhancement is very effective in a weakly precipitating boundary layer and in CCN-limited conditions preceded by heavy and/or persistent precipitation. The additional CCN help sustain cloud water by weakening the precipitation substantially in the former case and preventing the boundary layer from collapse in the latter. For a given amount of injected CCN, the injection method (i.e., number and distribution of sprayers) is critical to the spatial distribution of these CCN. Both the areal coverage and the number concentration of injected particles are key players but neither one always emerges as more important than the other. The same amount of injected material is much less effective in either strongly precipitating clouds or polluted clouds, and it is ineffective in a relatively dry boundary layer that supports clouds of low liquid water path. In the polluted case and "dry" case, the CCN injection increases drop number concentration but lowers supersaturation and liquid water path. As a result, the cloud experiences very weak albedo enhancement, regardless of the injection method.
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Wang, H., P. J. Rasch, and G. Feingold. "Manipulating marine stratocumulus cloud amount and albedo: a process-modelling study of aerosol-cloud-precipitation interactions in response to injection of cloud condensation nuclei." Atmospheric Chemistry and Physics 11, no. 9 (May 6, 2011): 4237–49. http://dx.doi.org/10.5194/acp-11-4237-2011.

Повний текст джерела
Анотація:
Abstract. We use a cloud-system-resolving model to study marine-cloud brightening. We examine how injected aerosol particles that act as cloud condensation nuclei (CCN) are transported within the marine boundary layer and how the additional particles in clouds impact cloud microphysical processes, and feedback on dynamics. Results show that the effectiveness of cloud brightening depends strongly on meteorological and background aerosol conditions. Cloud albedo enhancement is very effective in a weakly precipitating boundary layer and in CCN-limited conditions preceded by heavy and/or persistent precipitation. The additional CCN help sustain cloud water by weakening the precipitation substantially in the former case and preventing the boundary layer from collapse in the latter. For a given amount of injected CCN, the injection method (i.e., number and distribution of sprayers) is critical to the spatial distribution of these CCN. Both the areal coverage and the number concentration of injected particles are key players but neither one always emerges as more important than the other. The same amount of injected material is much less effective in either strongly precipitating clouds or polluted clouds, and it is ineffective in a relatively dry boundary layer that supports clouds of low liquid water path. In the polluted case and "dry" case, the CCN injection increases drop number concentration but lowers supersaturation and liquid water path. As a result, the cloud experiences very weak albedo enhancement, regardless of the injection method.
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Jarecka, D., H. Pawlowska, W. W. Grabowski, and A. A. Wyszogrodzki. "Modeling microphysical effects of entrainment in clouds observed during EUCAARI-IMPACT field campaign." Atmospheric Chemistry and Physics 13, no. 16 (August 27, 2013): 8489–503. http://dx.doi.org/10.5194/acp-13-8489-2013.

Повний текст джерела
Анотація:
Abstract. This paper discusses aircraft observations and large-eddy simulation (LES) modeling of 15 May 2008, North Sea boundary-layer clouds from the EUCAARI-IMPACT field campaign. These clouds are advected from the northeast by the prevailing lower-tropospheric winds and featured stratocumulus-over-cumulus cloud formations. An almost-solid stratocumulus deck in the upper part of the relatively deep, weakly decoupled marine boundary layer overlays a field of small cumuli. The two cloud formations have distinct microphysical characteristics that are in general agreement with numerous past observations of strongly diluted shallow cumuli on one hand and solid marine stratocumulus on the other. Based on the available observations, a LES model setup is developed and applied in simulations using a novel LES model. The model features a double-moment warm-rain bulk microphysics scheme combined with a sophisticated subgrid-scale scheme allowing local prediction of the homogeneity of the subgrid-scale turbulent mixing. The homogeneity depends on the characteristic time scales for the droplet evaporation and for the turbulent homogenization. In the model, these scales are derived locally based on the subgrid-scale turbulent kinetic energy, spatial scale of cloudy filaments, mean cloud droplet radius, and humidity of the cloud-free air entrained into a cloud, all predicted by the LES model. The model reproduces contrasting macrophysical and microphysical characteristics of the cumulus and stratocumulus cloud layers. Simulated subgrid-scale turbulent mixing within the cumulus layer and near the stratocumulus top is on average quite inhomogeneous, but varies significantly depending on the local conditions.
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Andersen, Hendrik, Jan Cermak, Julia Fuchs, Reto Knutti, and Ulrike Lohmann. "Understanding the drivers of marine liquid-water cloud occurrence and properties with global observations using neural networks." Atmospheric Chemistry and Physics 17, no. 15 (August 8, 2017): 9535–46. http://dx.doi.org/10.5194/acp-17-9535-2017.

Повний текст джерела
Анотація:
Abstract. The role of aerosols, clouds and their interactions with radiation remain among the largest unknowns in the climate system. Even though the processes involved are complex, aerosol–cloud interactions are often analyzed by means of bivariate relationships. In this study, 15 years (2001–2015) of monthly satellite-retrieved near-global aerosol products are combined with reanalysis data of various meteorological parameters to predict satellite-derived marine liquid-water cloud occurrence and properties by means of region-specific artificial neural networks. The statistical models used are shown to be capable of predicting clouds, especially in regions of high cloud variability. On this monthly scale, lower-tropospheric stability is shown to be the main determinant of cloud fraction and droplet size, especially in stratocumulus regions, while boundary layer height controls the liquid-water amount and thus the optical thickness of clouds. While aerosols show the expected impact on clouds, at this scale they are less relevant than some meteorological factors. Global patterns of the derived sensitivities point to regional characteristics of aerosol and cloud processes.
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Radenz, Martin, Johannes Bühl, Patric Seifert, Holger Baars, Ronny Engelmann, Boris Barja González, Rodanthi-Elisabeth Mamouri, Félix Zamorano, and Albert Ansmann. "Hemispheric contrasts in ice formation in stratiform mixed-phase clouds: disentangling the role of aerosol and dynamics with ground-based remote sensing." Atmospheric Chemistry and Physics 21, no. 23 (December 8, 2021): 17969–94. http://dx.doi.org/10.5194/acp-21-17969-2021.

Повний текст джерела
Анотація:
Abstract. Multi-year ground-based remote-sensing datasets were acquired with the Leipzig Aerosol and Cloud Remote Observations System (LACROS) at three sites. A highly polluted central European site (Leipzig, Germany), a polluted and strongly dust-influenced eastern Mediterranean site (Limassol, Cyprus), and a clean marine site in the southern midlatitudes (Punta Arenas, Chile) are used to contrast ice formation in shallow stratiform liquid clouds. These unique, long-term datasets in key regions of aerosol–cloud interaction provide a deeper insight into cloud microphysics. The influence of temperature, aerosol load, boundary layer coupling, and gravity wave motion on ice formation is investigated. With respect to previous studies of regional contrasts in the properties of mixed-phase clouds, our study contributes the following new aspects: (1) sampling aerosol optical parameters as a function of temperature, the average backscatter coefficient at supercooled conditions is within a factor of 3 at all three sites. (2) Ice formation was found to be more frequent for cloud layers with cloud top temperatures above -15∘C than indicated by prior lidar-only studies at all sites. A virtual lidar detection threshold of ice water content (IWC) needs to be considered in order to bring radar–lidar-based studies in agreement with lidar-only studies. (3) At similar temperatures, cloud layers which are coupled to the aerosol-laden boundary layer show more intense ice formation than decoupled clouds. (4) Liquid layers formed by gravity waves were found to bias the phase occurrence statistics below -15∘C. By applying a novel gravity wave detection approach using vertical velocity observations within the liquid-dominated cloud top, wave clouds can be classified and excluded from the statistics. After considering boundary layer and gravity wave influences, Punta Arenas shows lower fractions of ice-containing clouds by 0.1 to 0.4 absolute difference at temperatures between −24 and -8∘C. These differences are potentially caused by the contrast in the ice-nucleating particle (INP) reservoir between the different sites.
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Sporre, M. K., E. Swietlicki, P. Glantz, and M. Kulmala. "Aerosol indirect effects on continental low-level clouds over Sweden and Finland." Atmospheric Chemistry and Physics Discussions 14, no. 9 (May 21, 2014): 12931–66. http://dx.doi.org/10.5194/acpd-14-12931-2014.

Повний текст джерела
Анотація:
Abstract. Aerosol effects on low-level clouds over the nordic countries are investigated by combining in situ ground-based aerosol measurements with remote sensing data of clouds and precipitation. Ten years of number size distribution data from two aerosol measurement stations (Vavihill, Sweden and Hyytiälä, Finland) provide aerosol number concentrations in the atmospheric boundary layer. This is combined with cloud satellite data from the Moderate Resolution Imaging Spectroradiometer and weather radar data from the Baltic Sea Experiment. Also, how the meteorological conditions affect the clouds are investigated using reanalysis data from the European Centre for Medium-Range Forecasts. The cloud droplet effective radius is found to decrease when the aerosol number concentration increases, while the cloud optical thickness does not vary with boundary layer aerosol number concentrations. Furthermore, the aerosol cloud interaction parameter (ACI), a measure of how the effective radius is influenced by the number concentration of cloud active particles, is found to be somewhere between 0.10 and 0.18 and the magnitude of the ACI is greatest when the number concentration of particles with a diameter larger than 130 nm is used. Lower precipitation intensity in the weather radar images is associated with higher aerosol number concentrations. In addition, at Hyytiälä the particle number concentrations is generally higher for non-precipitating cases than for precipitating cases. The apparent absence of the first indirect effect of aerosols on low-level clouds over land raises questions regarding the magnitude of the indirect aerosol radiative forcing.
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Sporre, M. K., E. Swietlicki, P. Glantz, and M. Kulmala. "Aerosol indirect effects on continental low-level clouds over Sweden and Finland." Atmospheric Chemistry and Physics 14, no. 22 (November 19, 2014): 12167–79. http://dx.doi.org/10.5194/acp-14-12167-2014.

Повний текст джерела
Анотація:
Abstract. Aerosol effects on low-level clouds over the Nordic Countries are investigated by combining in situ ground-based aerosol measurements with remote sensing data of clouds and precipitation. Ten years of number size distribution data from two aerosol measurement stations (Vavihill, Sweden and Hyytiälä, Finland) provide aerosol number concentrations in the atmospheric boundary layer. This is combined with cloud satellite data from the Moderate Resolution Imaging Spectroradiometer and weather radar data from the Baltic Sea Experiment. Also, how the meteorological conditions affect the clouds is investigated using reanalysis data from the European Centre for Medium-Range Weather Forecasts. The cloud droplet effective radius is found to decrease when the aerosol number concentration increases, while the cloud optical thickness does not vary with boundary layer aerosol number concentrations. Furthermore, the aerosol–cloud interaction parameter (ACI), a measure of how the effective radius is influenced by the number concentration of cloud active particles, is found to be somewhere between 0.10 and 0.18 and the magnitude of the ACI is greatest when the number concentration of particles with a diameter larger than 130 nm is used. Lower precipitation intensity in the weather radar images is associated with higher aerosol number concentrations. In addition, at Hyytiälä the particle number concentrations is generally higher for non-precipitating cases than for precipitating cases. The apparent absence of the first indirect effect of aerosols on low-level clouds over land raises questions regarding the magnitude of the indirect aerosol radiative forcing.
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Huang, Yi, Alain Protat, Steven T. Siems, and Michael J. Manton. "A-Train Observations of Maritime Midlatitude Storm-Track Cloud Systems: Comparing the Southern Ocean against the North Atlantic." Journal of Climate 28, no. 5 (February 26, 2015): 1920–39. http://dx.doi.org/10.1175/jcli-d-14-00169.1.

Повний текст джерела
Анотація:
Abstract Cloud and precipitation properties of the midlatitude storm-track regions over the Southern Ocean (SO) and North Atlantic (NA) are explored using reanalysis datasets and A-Train observations from 2007 to 2011. In addition to the high-level retrieval products, lower-level observed variables—CloudSat radar reflectivity and Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) lidar attenuated backscatter—are directly examined using both contoured frequency by altitude diagrams (CFADs) and contoured frequency by temperature diagrams (CFTDs) to provide direct insight into thermodynamic phase properties. While the wintertime temperature profiles are similar over the two regions, the summertime environment is warmer over the NA. The NA atmosphere is generally moister than the SO, while the SO boundary layer is moister during winter. The results herein suggest that although the two regions exhibit many similarities in the prevalence of boundary layer clouds (BLCs) and frontal systems, notable differences exist. The NA environment exhibits stronger seasonality in thermodynamic structure, cloud, and precipitation properties than the SO. The regional differences of cloud properties are dominated by microphysics in winter and thermodynamics in summer. Glaciated clouds with higher reflectivities are found at warmer temperatures over the NA. BLCs (primarily below 1.5 km) are a predominant component over the SO. The wintertime boundary layer is shallower over the SO. Midlevel clouds consisting of smaller hydrometeors in higher concentration (potentially supercooled liquid water) are more frequently observed over the SO. Cirrus clouds are more prevalent over the NA. Notable differences exist in both the frequencies of thermodynamic phases of precipitation and intensity of warm rain over the two regions.
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Ghate, Virendra P., Mark A. Miller, and Ping Zhu. "Differences between Nonprecipitating Tropical and Trade Wind Marine Shallow Cumuli." Monthly Weather Review 144, no. 2 (February 1, 2016): 681–701. http://dx.doi.org/10.1175/mwr-d-15-0110.1.

Повний текст джерела
Анотація:
Abstract Marine nonprecipitating cumulus topped boundary layers (CTBLs) observed in a tropical and in a trade wind region are contrasted based on their cloud macrophysical, dynamical, and radiative structures. Data from the Atmospheric Radiation Measurement (ARM) observational site previously operating at Manus Island, Papua New Guinea, and data collected during the deployment of ARM Mobile Facility at the island of Graciosa, in the Azores, were used in this study. The tropical marine CTBLs were deeper, had higher surface fluxes and boundary layer radiative cooling, but lower wind speeds compared to their trade wind counterparts. The radiative velocity scale was 50%–70% of the surface convective velocity scale at both locations, highlighting the prominent role played by radiation in maintaining turbulence in marine CTBLs. Despite greater thicknesses, the chord lengths of tropical cumuli were on average lower than those of trade wind cumuli, and as a result of lower cloud cover, the hourly averaged (cloudy and clear) liquid water paths of tropical cumuli were lower than the trade wind cumuli. At both locations ~70% of the cloudy profiles were updrafts, while the average amount of updrafts near cloud base stronger than 1 m s−1 was ~22% in tropical cumuli and ~12% in the trade wind cumuli. The mean in-cloud radar reflectivity within updrafts and mean updraft velocity was higher in tropical cumuli than the trade wind cumuli. Despite stronger vertical velocities and a higher number of strong updrafts, due to lower cloud fraction, the updraft mass flux was lower in the tropical cumuli compared to the trade wind cumuli. The observations suggest that the tropical and trade wind marine cumulus clouds differ significantly in their macrophysical and dynamical structures.
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Huang, Yi, Steven T. Siems, Michael J. Manton, Luke B. Hande, and John M. Haynes. "The Structure of Low-Altitude Clouds over the Southern Ocean as Seen by CloudSat." Journal of Climate 25, no. 7 (March 28, 2012): 2535–46. http://dx.doi.org/10.1175/jcli-d-11-00131.1.

Повний текст джерела
Анотація:
Abstract A climatology of the structure of the low-altitude cloud field (tops below 4 km) over the Southern Ocean (40°–65°S) in the vicinity of Australia (100°–160°E) has been constructed with CloudSat products for liquid water and ice water clouds. Averaging over longitude and time, CloudSat produces a roughly uniform cloud field between heights of approximately 750 and 2250 m across the extent of the domain for both winter and summer. This cloud field makes a transition from consisting primarily of liquid water at the lower latitudes to ice water at the higher latitudes. This transition is primarily driven by the gradient in the temperature, which is commonly between 0° and −20°C, rather than by direct physical observation. The uniform lower boundary is a consequence of the CloudSat cloud detection algorithm being unable to reliably separate radar returns because of the bright surface versus returns due to clouds, in the lowest four range bins above the surface. This is potentially very problematic over the Southern Ocean where the depth of the boundary layer has been observed to be as shallow as 500 m. Cloud fields inferred from upper-air soundings at Macquarie Island (54.62°S, 158.85°E) similarly suggest that the peak frequency lies between 260 and 500 m for both summer and winter. No immediate explanation is available for the uniformity of the cloud-top boundary. This lack of a strong seasonal cycle is, perhaps, remarkable given the large seasonal cycles in both the shortwave (SW) radiative forcing experienced and the cloud condensation nuclei (CCN) concentration over the Southern Ocean.
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Zhuge, Xiaoyong, Xiaolei Zou, Xin Li, Fei Tang, Bin Yao, and Lu Yu. "Seasonal and Diurnal Variations in Cloud-Top Phase over the Western North Pacific during 2017–2019." Remote Sensing 13, no. 9 (April 27, 2021): 1687. http://dx.doi.org/10.3390/rs13091687.

Повний текст джерела
Анотація:
The cloud-top-phase climatology over the western North Pacific (WNP) has received little attention. Using 3 years (2017–2019) of cloud-top-phase products from the Advanced Himawari Imager onboard the Japanese Himawari-8 satellite, this study examines the seasonal and diurnal variations in the cloud-top phase over the WNP. Results show that over the low- and mid-latitude maritime regions, ice (water) clouds occur more (less) frequently during boreal winter than summer. Water clouds are more likely to be related to moisture conditions in the lower troposphere than to the underlying sea surface temperature. Owing to the combined effects of moist air mass transport and ocean currents (topography), the WNP region east of Hokkaido (the Sichuan Basin) has a high frequency of water clouds in summer (winter). Furthermore, supercooled water cloud populations have a clear seasonal cycle. The fraction of water clouds that are supercooled appears to be modulated by the near-surface air temperature. A diurnal cycle is seen in ice-cloud populations, which are highest in the late afternoon over both ocean and land except for the Sichuan Basin where summer nocturnal precipitation is typical. The occurrences of continental water clouds peak at noon in summer but early morning (around sunrise) in winter. An increase in the frequency of continental summer water clouds around noon is found to be associated with variations in both the cloud-top elevation of already-existing water clouds and new formations of boundary-layer clouds.
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Ceppi, Paulo, and Dennis L. Hartmann. "Clouds and the Atmospheric Circulation Response to Warming." Journal of Climate 29, no. 2 (January 12, 2016): 783–99. http://dx.doi.org/10.1175/jcli-d-15-0394.1.

Повний текст джерела
Анотація:
Abstract The authors study the effect of clouds on the atmospheric circulation response to CO2 quadrupling in an aquaplanet model with a slab ocean lower boundary. The cloud effect is isolated by locking the clouds to either the control or 4xCO2 state in the shortwave (SW) or longwave (LW) radiation schemes. In the model, cloud radiative changes explain more than half of the total poleward expansion of the Hadley cells, midlatitude jets, and storm tracks under CO2 quadrupling, even though they cause only one-fourth of the total global-mean surface warming. The effect of clouds on circulation results mainly from the SW cloud radiative changes, which strongly enhance the equator-to-pole temperature gradient at all levels in the troposphere, favoring stronger and poleward-shifted midlatitude eddies. By contrast, quadrupling CO2 while holding the clouds fixed causes strong polar amplification and weakened midlatitude baroclinicity at lower levels, yielding only a small poleward expansion of the circulation. The results show that 1) the atmospheric circulation responds sensitively to cloud-driven changes in meridional and vertical temperature distribution and 2) the spatial structure of cloud feedbacks likely plays a dominant role in the circulation response to greenhouse gas forcing. While the magnitude and spatial structure of the cloud feedback are expected to be highly model dependent, an analysis of 4xCO2 simulations of CMIP5 models shows that the SW cloud feedback likely forces a poleward expansion of the tropospheric circulation in most climate models.
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Wood, Robert. "Stratocumulus Clouds." Monthly Weather Review 140, no. 8 (August 1, 2012): 2373–423. http://dx.doi.org/10.1175/mwr-d-11-00121.1.

Повний текст джерела
Анотація:
Abstract This paper reviews the current knowledge of the climatological, structural, and organizational aspects of stratocumulus clouds and the physical processes controlling them. More of Earth’s surface is covered by stratocumulus clouds than by any other cloud type making them extremely important for Earth’s energy balance, primarily through their reflection of solar radiation. They are generally thin clouds, typically occupying the upper few hundred meters of the planetary boundary layer (PBL), and they preferably occur in shallow PBLs that are readily coupled by turbulent mixing to the surface moisture supply. Thus, stratocumuli favor conditions of strong lower-tropospheric stability, large-scale subsidence, and a ready supply of surface moisture; therefore, they are common over the cooler regions of subtropical and midlatitude oceans where their coverage can exceed 50% in the annual mean. Convective instability in stratocumulus clouds is driven primarily by the emission of thermal infrared radiation from near the cloud tops and the resulting turbulence circulations are enhanced by latent heating in updrafts and cooling in downdrafts. Turbulent eddies and evaporative cooling drives entrainment at the top of the stratocumulus-topped boundary layer (STBL), which is stronger than it would be in the absence of cloud, and this tends to result in a deepening of the STBL over time. Many stratocumulus clouds produce some drizzle through the collision–coalescence process, but thicker clouds drizzle more readily, which can lead to changes in the dynamics of the STBL that favor increased mesoscale variability, stratification of the STBL, and in some cases cloud breakup. Feedbacks between radiative cooling, precipitation formation, turbulence, and entrainment help to regulate stratocumulus. Although stratocumulus is arguably the most well-understood cloud type, it continues to challenge understanding. Indeed, recent field studies demonstrate that marine stratocumulus precipitate more strongly, and entrain less, than was previously thought, and display an organizational complexity much larger than previously imagined. Stratocumulus clouds break up as the STBL deepens and it becomes more difficult to maintain buoyant production of turbulence through the entire depth of the STBL. Stratocumulus cloud properties are sensitive to the concentration of aerosol particles and therefore anthropogenic pollution. For a given cloud thickness, polluted clouds tend to produce more numerous and smaller cloud droplets, greater cloud albedo, and drizzle suppression. In addition, cloud droplet size also affects the time scale for evaporation–entrainment interactions and sedimentation rate, which together with precipitation changes can affect turbulence and entrainment. Aerosols are themselves strongly modified by physical processes in stratocumuli, and these two-way interactions may be a key driver of aerosol concentrations over the remote oceans. Aerosol–stratocumulus interactions are therefore one of the most challenging frontiers in cloud–climate research. Low-cloud feedbacks are also a leading cause of uncertainty in future climate prediction because even small changes in cloud coverage and thickness have a major impact on the radiation budget. Stratocumuli remain challenging to represent in climate models since their controlling processes occur on such small scales. A better understanding of stratocumulus dynamics, particularly entrainment processes and mesoscale variability, will be required to constrain these feedbacks. CONTENTS Introduction...2 Climatology of stratocumulus...4 Annual mean...4 Temporal variability...6 Spatial scales of organization1...0 The stratocumulus-topped boundary layer...11 Vertical structure of the STBL...11 Liquid water...14 Entrainment interfacial layer...15 Physical processes controlling stratocumulus...16 Radiative driving of stratocumulus...16 Turbulence...21 Surface fluxes...24 Entrainment...25 Precipitation...26 Microphysics...27 Cloud droplet concentration and controlling factors...27 Microphysics of precipitation formation...29 Interactions between physical processes...32 Maintenance and regulating feedbacks...32 Microphysical–macrophysical interactions...34 Interactions between the STBL and large-scale meteorology...35 Formation...36 Dissipation and transition to other cloud types...36 Summary...40
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Ziemke, J. R., J. Joiner, S. Chandra, P. K. Bhartia, A. Vasilkov, D. P. Haffner, K. Yang, M. R. Schoeberl, L. Froidevaux, and P. F. Levelt. "Ozone mixing ratios inside tropical deep convective clouds from OMI satellite measurements." Atmospheric Chemistry and Physics 9, no. 2 (January 27, 2009): 573–83. http://dx.doi.org/10.5194/acp-9-573-2009.

Повний текст джерела
Анотація:
Abstract. We have developed a new technique for estimating ozone mixing ratio inside deep convective clouds. The technique uses the concept of an optical centroid cloud pressure that is indicative of the photon path inside clouds. Radiative transfer calculations based on realistic cloud vertical structure as provided by CloudSat radar data show that because deep convective clouds are optically thin near the top, photons can penetrate significantly inside the cloud. This photon penetration coupled with in-cloud scattering produces optical centroid pressures that are hundreds of hPa inside the cloud. We combine measured column ozone and the optical centroid cloud pressure derived using the effects of rotational-Raman scattering to estimate O3 mixing ratio in the upper regions of deep convective clouds. The data are obtained from the Ozone Monitoring Instrument (OMI) onboard NASA's Aura satellite. Our results show that low O3 concentrations in these clouds are a common occurrence throughout much of the tropical Pacific. Ozonesonde measurements in the tropics following convective activity also show very low concentrations of O3 in the upper troposphere. These low amounts are attributed to vertical injection of ozone poor oceanic boundary layer air during convection into the upper troposphere followed by convective outflow. Over South America and Africa, O3 mixing ratios inside deep convective clouds often exceed 50 ppbv which are comparable to mean background (cloud-free) amounts and are consistent with higher concentrations of injected boundary layer/lower tropospheric O3 relative to the remote Pacific. The Atlantic region in general also consists of higher amounts of O3 precursors due to both biomass burning and lightning. Assuming that O3 is well mixed (i.e., constant mixing ratio with height) up to the tropopause, we can estimate the stratospheric column O3 over clouds. Stratospheric column ozone derived in this manner agrees well with that retrieved independently with the Aura Microwave Limb Sounder (MLS) instrument and thus provides a consistency check of our method.
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Eastman, Ryan, and Robert Wood. "Factors Controlling Low-Cloud Evolution over the Eastern Subtropical Oceans: A Lagrangian Perspective Using the A-Train Satellites." Journal of the Atmospheric Sciences 73, no. 1 (December 30, 2015): 331–51. http://dx.doi.org/10.1175/jas-d-15-0193.1.

Повний текст джерела
Анотація:
Abstract A Lagrangian technique is developed to sample satellite data to quantify and understand factors controlling temporal changes in low-cloud properties (cloud cover, areal-mean liquid water path, and droplet concentration). Over 62 000 low-cloud scenes over the eastern subtropical/tropical oceans are sampled using the A-Train satellites. Horizontal wind fields at 925 hPa from the ERA-Interim are used to compute 24-h, two-dimensional, forward, boundary layer trajectories with trajectory locations starting on the CloudSat/CALIPSO track. Cloud properties from MODIS and AMSR-E are sampled at the trajectory start and end points, allowing for direct measurement of the temporal cloud evolution. The importance of various controls (here, boundary layer depth, lower-tropospheric stability, and precipitation) on cloud evolution is evaluated by comparing cloud evolution for different initial values of these controls. Viewing angle biases are removed and cloud anomalies (diurnal and seasonal cycles removed) are used throughout to quantify cloud evolution relative to the climatological-mean evolution. Cloud property anomalies show temporal changes similar to those expected for a stochastic red noise process, with linear relationships between initial anomalies and their mean 24-h changes. This creates a potential bias when comparing the evolutions of sets of trajectories with different initial anomalies; three methods are introduced and evaluated to account for this. Results provide statistically robust observational support for theoretical/modeling studies by showing that low clouds in deep boundary layers and under weak inversions are prone to break up. Precipitation shows a more complex and less statistically significant relationship with cloud breakup. Cloud cover in shallow precipitating boundary layers is more persistent than in deep precipitating boundary layers. Liquid water path and cloud droplet concentration decrease more rapidly for precipitating clouds and in deep boundary layers.
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Wang, Lei, Yuqing Wang, Axel Lauer, and Shang-Ping Xie. "Simulation of Seasonal Variation of Marine Boundary Layer Clouds over the Eastern Pacific with a Regional Climate Model*." Journal of Climate 24, no. 13 (July 1, 2011): 3190–210. http://dx.doi.org/10.1175/2010jcli3935.1.

Повний текст джерела
Анотація:
Abstract The seasonal cycle of marine boundary layer (MBL) clouds over the eastern Pacific Ocean is studied with the International Pacific Research Center (IPRC) Regional Atmospheric Model (iRAM). The results show that the model is capable of simulating not only the overall seasonal cycle but also the spatial distribution, cloud regime transition, and vertical structure of MBL clouds over the eastern Pacific. Although the modeled MBL cloud layer is generally too high in altitude over the open ocean when compared with available satellite observations, the model simulated well the westward deepening and decoupling of the MBL, the rise in cloud base and cloud top of the low cloud decks off the Peru and California coasts, and the cloud regime transition from stratocumulus near the coast to trade cumulus farther to the west in both the southeast and northeast Pacific. In particular, the model reproduced major features of the seasonal variations in stratocumulus decks off the Peru and California coasts, including cloud amount, surface latent heat flux, subcloud-layer mixing, and the degree of MBL decoupling. In both observations and the model simulation, in the season with small low-level cloudiness, surface latent heat flux is large and the cloud base is high. This coincides with weak subcloud-layer mixing and strong entrainment at cloud top, characterized by a high degree of MBL decoupling, while the opposite is true for the season with large low-level cloudiness. This seasonal cycle in low-cloud properties resembles the downstream stratocumulus-to-cumulus transition of marine low clouds and can be explained by the “deepening–decoupling” mechanism proposed in previous studies. It is found that the seasonal variations of low-level clouds off the Peru coast are mainly caused by a large seasonal variability in sea surface temperature, whereas those off the California coast are largely attributed to the seasonal cycle in lower-tropospheric temperature.
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Strong, C., J. D. Fuentes, M. Garstang, and A. K. Betts. "Daytime Cycle of Low-Level Clouds and the Tropical Convective Boundary Layer in Southwestern Amazonia." Journal of Applied Meteorology 44, no. 10 (October 1, 2005): 1607–19. http://dx.doi.org/10.1175/jam2266.1.

Повний текст джерела
Анотація:
Abstract During the wet season in the southwestern Amazon region, daytime water transport out of the atmospheric mixed layer into the deeper atmosphere is shown to depend upon cloud amounts and types and synoptic-scale velocity fields. Interactions among clouds, convective conditions, and subcloud-layer properties were estimated for two dominant flow regimes observed during the 1999 Tropical Rainfall Measuring Mission component of the Brazilian Large-Scale Biosphere–Atmosphere (TRMM-LBA) field campaign. During daytime the cloud and subcloud layers were coupled by radiative, convective, and precipitation processes. The properties of cloud and subcloud layers varied according to the different convective influences of easterly versus westerly lower-tropospheric flows. The most pronounced flow-regime effects on composite cloud cycles occurred under persistent lower-tropospheric flows, which produced strong convective cloud growth with a near absence of low-level stratiform clouds, minimal cumulative attenuation of incoming solar irradiance (∼25%), rapid daytime mixed-layer growth (>100 m h−1), and boundary layer drying (0.22 g kg−1 h−1), high convective velocities (>1.5 m s−1), high surface buoyancy flux (>200 W m−2), and high latent heat flux (600 W m−2) into cloud layer. In contrast, persistent westerly flows were less convective, showing a strong morning presence of low-level stratiform genera (>0.9 cloud amount), greater cumulative attenuation of incoming solar irradiance (∼47%), slower mixed-layer growth (<50 m h−1) with a slight tendency for mixed-layer moistening, and a delayed peak in the low-level cumuliform cloud cycle (2000 versus 1700 UTC). The results reported in this article indicate that numerical models need to account for cloud amounts and types when estimating water vapor transport to the cloud layer.
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Painemal, D., and P. Zuidema. "Microphysical variability in southeast Pacific Stratocumulus clouds: synoptic conditions and radiative response." Atmospheric Chemistry and Physics 10, no. 13 (July 9, 2010): 6255–69. http://dx.doi.org/10.5194/acp-10-6255-2010.

Повний текст джерела
Анотація:
Abstract. Synoptic and satellite-derived cloud property variations for the southeast Pacific stratocumulus region associated with changes in coastal satellite-derived cloud droplet number concentrations (Nd) are explored. MAX and MIN Nd composites are defined by the top and bottom terciles of daily area-mean Nd values over the Arica Bight, the region with the largest mean oceanic Nd, for the five October months of 2001, 2005, 2006, 2007 and 2008. The ability of the satellite retrievals to capture composite differences is assessed with ship-based data. Nd and ship-based accumulation mode aerosol concentrations (Na) correlate well (r = 0.65), with a best-fit aerosol activation value dln Nddln Na of 0.56 for pixels with Nd>50 cm−3. The adiabatically-derived MODIS cloud depths also correlate well with the ship-based cloud depths (r=0.7), though are consistently higher (mean bias of almost 60 m). The MAX-Nd composite is characterized by a weaker subtropical anticyclone and weaker winds both at the surface and the lower free troposphere than the MIN-Nd composite. The MAX-Nd composite clouds over the Arica Bight are thinner than the MIN-Nd composite clouds, have lower cloud tops, lower near-coastal cloud albedos, and occur below warmer and drier free tropospheres (as deduced from radiosondes and NCEP Reanalysis). CloudSat radar reflectivities indicate little near-coastal precipitation. The co-occurrence of more boundary-layer aerosol/higher Nd within a more stable atmosphere suggests a boundary layer source for the aerosol, rather than the free troposphere. The MAX-Nd composite cloud thinning extends offshore to 80° W, with lower cloud top heights out to 95° W. At 85° W, the top-of-atmosphere shortwave fluxes are significantly higher (~50%) for the MAX-Nd composite, with thicker, lower clouds and higher cloud fractions than for the MIN-Nd composite. The change in Nd at this location is small (though positive), suggesting that the MAX-MIN Nd composite differences in radiative properties primarily reflects synoptic changes. Circulation anomalies and a one-point spatial correlation map reveal a weakening of the 850 hPa southerly winds decreases the free tropospheric cold temperature advection. The resulting increase in the static stability along 85° W is highly correlated to the increased cloud fraction, despite accompanying weaker free tropospheric subsidence.
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Battaglia, A., C. D. Westbrook, S. Kneifel, P. Kollias, N. Humpage, U. Löhnert, J. Tyynelä, and G. W. Petty. "G band atmospheric radars: new frontiers in cloud physics." Atmospheric Measurement Techniques 7, no. 6 (June 2, 2014): 1527–46. http://dx.doi.org/10.5194/amt-7-1527-2014.

Повний текст джерела
Анотація:
Abstract. Clouds and associated precipitation are the largest source of uncertainty in current weather and future climate simulations. Observations of the microphysical, dynamical and radiative processes that act at cloud scales are needed to improve our understanding of clouds. The rapid expansion of ground-based super-sites and the availability of continuous profiling and scanning multi-frequency radar observations at 35 and 94 GHz have significantly improved our ability to probe the internal structure of clouds in high temporal-spatial resolution, and to retrieve quantitative cloud and precipitation properties. However, there are still gaps in our ability to probe clouds due to large uncertainties in the retrievals. The present work discusses the potential of G band (frequency between 110 and 300 GHz) Doppler radars in combination with lower frequencies to further improve the retrievals of microphysical properties. Our results show that, thanks to a larger dynamic range in dual-wavelength reflectivity, dual-wavelength attenuation and dual-wavelength Doppler velocity (with respect to a Rayleigh reference), the inclusion of frequencies in the G band can significantly improve current profiling capabilities in three key areas: boundary layer clouds, cirrus and mid-level ice clouds, and precipitating snow.
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Battaglia, A., C. D. Westbrook, S. Kneifel, P. Kollias, N. Humpage, U. Löhnert, J. Tyynelä, and G. W. Petty. "G-band atmospheric radars: new frontiers in cloud physics." Atmospheric Measurement Techniques Discussions 7, no. 1 (January 17, 2014): 321–75. http://dx.doi.org/10.5194/amtd-7-321-2014.

Повний текст джерела
Анотація:
Abstract. Clouds and associated precipitation are the largest source of uncertainty in current weather and future climate simulations. Observations of the microphysical, dynamical and radiative processes that act at cloud-scales are needed to improve our understanding of clouds. The rapid expansion of ground-based super-sites and the availability of continuous profiling and scanning multi-frequency radar observations at 35 and 94 GHz have significantly improved our ability to probe the internal structure of clouds in high temporal-spatial resolution, and to retrieve quantitative cloud and precipitation properties. However, there are still gaps in our ability to probe clouds due to large uncertainties in the retrievals. The present work discusses the potential of G-band (frequency between 110 and 300 GHz) Doppler radars in combination with lower frequencies to further improve the retrievals of microphysical properties. Our results show that, thanks to a larger dynamic range in dual-wavelength reflectivity, dual-wavelength attenuation and dual-wavelength Doppler velocity (with respect to a Rayleigh reference), the inclusion of frequencies in the G-band can significantly improve current profiling capabilities in three key areas: boundary layer clouds, cirrus and mid-level ice clouds, and precipitating snow.
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Wood, R., C. S. Bretherton, D. Leon, A. D. Clarke, P. Zuidema, G. Allen, and H. Coe. "An aircraft case study of the spatial transition from closed to open mesoscale cellular convection over the Southeast Pacific." Atmospheric Chemistry and Physics 11, no. 5 (March 15, 2011): 2341–70. http://dx.doi.org/10.5194/acp-11-2341-2011.

Повний текст джерела
Анотація:
Abstract. Aircraft measurements are presented from the 27/28 October 2008 case study of the VOCALS Regional Experiment (REx) over the remote subtropical southeast Pacific (18° S, 80° W). Data from two aircraft that took measurements approximately twelve hours apart but in the same advected airmass are used to document a remarkably sharp spatial transition in marine boundary layer (MBL), cloud, and aerosol structure across the boundary between a well-mixed MBL containing overcast closed mesoscale cellular stratocumulus, and a pocket of open cells (POC) with significantly lower cloud cover. Long (~190–250 km) straight and level flight legs at three levels in the marine boundary layer and one level in the lower free troposphere permit sampling of the closed cells, the POC, and a 20–30 km wide transition zone with distinctly different structure from the two airmasses on either side. The POC region consists of intermittent active and strongly precipitating cumulus clouds rising and detraining into patches of drizzling but quiescent stratiform cloud which is optically thin especially toward its edges. Mean cloud-base precipitation rates inside the POC are several mm d−1, but rates in the closed cell region are not greatly lower than this. This latter finding suggests that precipitation is not a sufficient condition for POC formation from overcast stratocumulus. Despite similar cloud-base precipitation rates in the POC and overcast region, much of the precipitation (>90%) evaporates below cloud in the overcast region, while there is significant surface precipitation inside the POC. In the POC and transition region, although the majority of the condensate is in the form of drizzle, the integrated liquid water path is remarkably close to that expected for a moist adiabatic parcel rising from cloud base to top. The transition zone between the POC and the closed cells often consists of thick "boundary cell" clouds producing mean surface precipitation rates of 10–20 mm d−1, a divergent quasi-permanent cold/moist pool below cloud, a convergent inflow region at mid-levels in the MBL, and a divergent outflow near the top of the MBL. The stratiform clouds in the POC exist within an ultra-clean layer that is some 200–300 m thick. Aerosol concentrations (Na) measured by a PCASP in the diameter range 0.12–3.12 μm in the center of the ultra-clean layer are as low as 0.1–1 cm−3. This suggests that coalescence scavenging and sedimentation is extremely efficient, since Na in the subcloud layer, and droplet concentration Nd in the active cumuli are typically 20–60 cm−3. The droplet concentrations in the quiescent stratiform clouds are extremely low (typically 1–10 cm−3), and most of their liquid water is in the form of drizzle, which mainly evaporates before reaching the surface. The cloud droplet concentration in the overcast region decreases strongly as the transition region is approached, as do subcloud accumulation mode aerosol concentrations, suggesting that coalescence scavenging is impacting regions in the overcast region as well as inside the POC. Both flights show lower accumulation mode aerosol concentration in the subcloud layer of the POC (Na ∼ 30 cm−3) compared with the overcast region (Na ∼ 100 cm−3), but elevated (and mostly volatile) total aerosol concentrations are observed in the POC at all levels around 20–50 km from the transition zone, perhaps associated with some prior nucleation event. Despite the large differences in cloud and MBL structure across the POC-overcast boundary, the MBL depth is almost the same in the two regions, and increases in concert over the 12 h period between the flights.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії