Статті в журналах з теми "Low temperature processing"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Low temperature processing.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Low temperature processing".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Admane, Darshana C., and Sneha V. Karadbhajne. "Advances in Low Temperature Processing." International Journal of Engineering Trends and Technology 67, no. 10 (October 25, 2019): 100–112. http://dx.doi.org/10.14445/22315381/ijett-v67i10p219.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

TAKAI, Rikuo. "Foods Processing in Low Temperature." Journal of the Society of Mechanical Engineers 99, no. 927 (1996): 103–6. http://dx.doi.org/10.1299/jsmemag.99.927_103.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Lill, Thorsten, Andreas Fischer, Ivan Berry, and Meihua Shen. "Low Temperature Semiconductor Device Processing." ECS Meeting Abstracts MA2022-02, no. 18 (October 9, 2022): 866. http://dx.doi.org/10.1149/ma2022-0218866mtgabs.

Повний текст джерела
Анотація:
In the manufacturing of integrated circuits, etching and deposition processes with and without plasma are widely used. Except for physical processes such as Physical Vapor Deposition and Ion Beam Etching, these processes leverage the adsorption of reactive neutrals to enable chemical reactions at the wafer surface. In this paper, we will investigate the fundamentals and applicability of low temperatures to stimulate physisorption of neutrals. Among the points of interest for this approach are the use of less reactive gases, higher fluxes to the surface, new transport mechanisms into high aspect ratio features, and 3D effects thanks to condensation in small features. We will discuss temperature and pressure ranges for relevant material and pre-cursor gas combinations and means to initiate the deposition and etching reactions. An overview of experimental results from our research and the literature will be presented.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Mandrov, G. A., V. I. Klishin, and V. A. Fedorin. "Low-temperature processing of Volga fuel shale." Coke and Chemistry 57, no. 1 (January 2014): 30–32. http://dx.doi.org/10.3103/s1068364x14010062.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Xiao, S. Q., S. Xu, and K. Ostrikov. "Low-temperature plasma processing for Si photovoltaics." Materials Science and Engineering: R: Reports 78 (April 2014): 1–29. http://dx.doi.org/10.1016/j.mser.2014.01.002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Lim, Kwang-Young, Young-Wook Kim, and In-Hyuck Song. "Low-temperature processing of porous SiC ceramics." Journal of Materials Science 48, no. 5 (October 26, 2012): 1973–79. http://dx.doi.org/10.1007/s10853-012-6963-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Nayak, Yougojoti, Raghunath Rana, Swadesh Pratihar, and Santanu Bhattacharyya. "Low-Temperature Processing of Dense HydroxyapatiteZirconia Composites." International Journal of Applied Ceramic Technology 5, no. 1 (January 2008): 29–36. http://dx.doi.org/10.1111/j.1744-7402.2008.02180.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Alzanki, T., R. Gwilliam, N. G. Emerson, and B. J. Sealy. "Low-temperature processing of antimony-implanted silicon." Journal of Electronic Materials 33, no. 7 (July 2004): 767–69. http://dx.doi.org/10.1007/s11664-004-0238-z.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Mathur, P., A. Thakur, and M. Singh. "Low temperature processing of Mn–Zn nanoferrites." Journal of Materials Science 42, no. 19 (October 2007): 8189–92. http://dx.doi.org/10.1007/s10853-007-1690-y.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ewais, Emad M. M., Yasser M. Z. Ahmed, Ahmed A. M. El-Amir, and Hamdy El-Didamony. "Cement kiln dust/rice husk ash as a low temperature route for wollastonite processing." Epitoanyag - Journal of Silicate Based and Composite Materials 66, no. 3 (2014): 69–80. http://dx.doi.org/10.14382/epitoanyag-jsbcm.2014.14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Ostrikov, K., I. Levchenko, S. Xu, S. Y. Huang, Q. J. Cheng, J. D. Long, and M. Xu. "Self-assembled low-dimensional nanomaterials via low-temperature plasma processing." Thin Solid Films 516, no. 19 (August 2008): 6609–15. http://dx.doi.org/10.1016/j.tsf.2007.11.045.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Menot-Vionnet, Sonia, Thomas Maeder, Claudio Grimaldi, Caroline Jacq, and Peter Ryser. "Properties and Stability of Thick-Film Resistors with Low Processing Temperatures - Effect of Composition and Processing Parameters." Journal of Microelectronics and Electronic Packaging 3, no. 1 (January 1, 2006): 37–43. http://dx.doi.org/10.4071/1551-4897-3.1.37.

Повний текст джерела
Анотація:
In this work, the properties (sheet-resistance, temperature coefficient and piezoresistance / gauge factor) and stability of thick-film resistors with low firing temperatures (525…650°C) are studied. To this end, two low-melting lead borosilicate glass compositions have been chosen, together with RuO2 as conductive filler. The effect on the properties and stability of composition and firing temperature is studied. The stability of the materials is quantified during high-temperature storage (annealing) at 250°C. These results show that reasonable resistive and piezoresistive properties, as well as stability, can be obtained even using lower processing temperatures compatible with deposition onto steel, titanium, aluminum and glass substrates.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Misra, V., S. Hattangady, X.-L. Xu, M. J. Watkins, B. Hornung, G. Lucovsky, J. J. Wortman, et al. "Integrated processing of stacked-gate heterostructures: plasma-assisted low temperature processing combined with rapid thermal high-temperature processing." Microelectronic Engineering 25, no. 2-4 (August 1994): 209–14. http://dx.doi.org/10.1016/0167-9317(94)90017-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Buyanova, I. V., S. M. Lupinskaya, L. A. Ostroumov, and I. A. Mazeeva. "Innovative low temperature methods of milk whey processing." IOP Conference Series: Earth and Environmental Science 640, no. 3 (February 1, 2021): 032007. http://dx.doi.org/10.1088/1755-1315/640/3/032007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

TAKAI, Rikuo. "Energy Consumption in Food Processing at Low Temperature." journal of the japanese society for cold preservation of food 20, no. 4 (1994): 201–6. http://dx.doi.org/10.5891/jafps1987.20.4_201.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Chiang, C. K., L. P. Cook, S. S. Chang, J. E. Blendell, and R. S. Roth. "LOW TEMPERATURE THERMAL PROCESSING OF Ba2YCu3O7-xSUPERCONDUCTING CERAMICS." Advanced Ceramic Materials 2, no. 3B (July 1987): 530–38. http://dx.doi.org/10.1111/j.1551-2916.1987.tb00117.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Ito, Yasuyuki, Maho Ushikubo, Seiichi Yokoyama, Hironori Matsunaga, Tsutomu Atsuki, Tadashi Yonezawa, and Katsumi Ogi. "New Low Temperature Processing of Sol-GelSrBi2Ta2O9Thin Films." Japanese Journal of Applied Physics 35, Part 1, No. 9B (September 30, 1996): 4925–29. http://dx.doi.org/10.1143/jjap.35.4925.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Dumay, Eliane, Laetitia Picart, Stéphanie Regnault, and Maryse Thiebaud. "High pressure–low temperature processing of food proteins." Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 1764, no. 3 (March 2006): 599–618. http://dx.doi.org/10.1016/j.bbapap.2005.12.009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Hsu, Wei-Hsiang, Hsing-I. Hsiang, Fan-Chun Yen, Shih-Chang Shei, and Fu-Su Yen. "Low-temperature sintered CuIn0.7Ga0.3Se2 prepared by colloidal processing." Journal of the European Ceramic Society 32, no. 14 (November 2012): 3753–57. http://dx.doi.org/10.1016/j.jeurceramsoc.2012.05.031.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Diaz, Alfredo J., David Ma, Alfred Zinn, and Pedro O. Quintero. "Tin Nanoparticle-Based Solder Paste for Low Temperature Processing." Journal of Microelectronics and Electronic Packaging 10, no. 4 (October 1, 2013): 129–37. http://dx.doi.org/10.4071/imaps.386.

Повний текст джерела
Анотація:
Materials have shown a tendency to modify their bulk properties depending on powder particle size. Nanoparticles' coalescence temperature tends to decrease as particle size decreases. Taking advantage of this behavior, a nanoparticle-based solder paste has been developed as a proof-of-concept and is described in this paper for attaching electronic components at a lower processing temperature to avoid thermally induced damage and reduce energy consumption. Tin nanoparticles were successfully synthesized via a wet chemistry route. The synthesis consists on the use tin (II) chloride dehydrated as the Sn precursor, 1,10-phenanthroline as the surfactant, and sodium borohydride as the reducing agent. A flux system was developed based on ethylene glycol. The solder paste based on the synthesized Sn nanoparticles showed good surface wetting, but not a sufficient metal volume to produce an attachment because the paste required high flux content, thus resulting in a poor metallic load paste. By using commercially procured Sn nanoparticles the results showed acceptable coalescence of the noncapped nanoparticles at temperatures as low as 200°C with a processing time of 20 min. A reduction in processing temperature of approximately 40°C has been found when comparing the developed solder paste with typical SAC lead-free solders. The mechanical and electrical properties of the resulting structure were characterized by means of lap-shear testing and a four-wire Kelvin test showing acceptable shear strength and electrical conductivity.
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Ware, Tim, David Hanlon, Tara Hanlon, Richard Hiles, Malcolm Lingard, Ray Perry, and Simon Richards. "Processing and application of nuclear data for low temperature criticality assessment." EPJ Web of Conferences 239 (2020): 14006. http://dx.doi.org/10.1051/epjconf/202023914006.

Повний текст джерела
Анотація:
Until recently, criticality safety assessment codes had a minimum temperature at which calculations can be performed. Where criticality assessment has been required for lower temperatures, indirect methods, including reasoned argument or extrapolation, have been required to assess reactivity changes associated with these temperatures. The ANSWERS Software Service MONK® version 10B Monte Carlo criticality code, is capable of performing criticality calculations at any temperature, within the temperature limits of the underlying nuclear data in the BINGO continuous energy library. The temperature range of the nuclear data has been extended below the traditional lower limit of 293.6 K to 193 K in a prototype BINGO library, primarily based on JEFF-3.1.2 data. The temperature range of the thermal bound scattering data of the key moderator materials was extended by reprocessing the NJOY LEAPR inputs used to produce bound data for JEFF-3.1.2 and ENDF/B-VIII.0. To give confidence in the low temperature nuclear data, a series of MONK and MCBEND calculations have been performed and results compared against external data sources. MCBEND is a Monte Carlo code for shielding and dosimetry and shares commonalities to its sister code MONK including the BINGO nuclear data library. Good agreement has been achieved between calculated and experimental cross sections for ice, k-effective results for low temperature criticality benchmarks and calculated and experimentally determined eigenvalues for thermal neutron diffusion in ice. To quantify the differences between ice and water bound scattering data a number of MONK criticality calculations were performed for nuclear fuel transport flask configurations. The results obtained demonstrate good agreement with extrapolation methods. There is a discernible difference in the use of ice and water data.
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Henderson, Clifford, Michael Romeo, Kazuhiro Yamanaka, and Kazuhiko Maeda. "Novel Low-Dielectric Constant Photodefinable Polyimides for Low-Temperature Polymer Processing." ECS Transactions 3, no. 11 (December 21, 2019): 107–15. http://dx.doi.org/10.1149/1.2392924.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Shamlaye, Karl F., Kevin J. Laws, and Michael Ferry. "Fabrication of Bulk Metallic Glass Composites at Low Processing Temperatures." Materials Science Forum 773-774 (November 2013): 461–65. http://dx.doi.org/10.4028/www.scientific.net/msf.773-774.461.

Повний текст джерела
Анотація:
Bulk metallic glasses (BMGs) are amorphous alloys that exhibit unique mechanical properties such as high strength due to their liquid-like structure in the vitreous solid state. While they usually exhibit low ductility, they can be toughened by incorporating secondary phase particles within the amorphous matrix via composite fabrication to generate amorphous metal matrix composites (MMCs). Traditional MMCs are fabricated at high temperature in the liquid state with tedious blending processes. This high temperature processing route often leads to unwanted reactions at the reinforcement/matrix interface, creating brittle intermetallic by-products and damaging the reinforcement. In the present work, novel bulk metallic glass composites (BMGCs) were fabricated at low processing temperatures via thermoplastic forming (TPF) above the glass transition temperature of the amorphous matrix. Here, the unique thermophysical features of the matrix material allow for TPF of composites in non-sacrificial moulds incorporating various types of reinforcement, via processing in the solid state at low temperatures (less than 200 °C), within a short timeframe (less than 10 minutes); this avoids the formation of brittle phases at the reinforcement/matrix interface leading to efficient bonding between particles and matrix, thereby creating a tough, low density composite material.
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Waller, Matthew D., Charles E. Bakis, Kevin L. Koudela, and Sean M. McIntyre. "Processing and properties of low-temperature cure carbon fiber-reinforced bismaleimide composite." Journal of Composite Materials 56, no. 8 (February 17, 2022): 1191–209. http://dx.doi.org/10.1177/00219983211070348.

Повний текст джерела
Анотація:
Bismaleimide (BMI) resins are used in carbon fiber reinforced composites for high-temperature applications. Conventional BMI resins require high cure and post-cure processing temperatures, which limit fabrication methods and contribute to residual stress and microcracking. Recently, BMIs with lower cure temperatures have been developed; however, little data on the properties of low-temperature cure carbon/BMI composites are available in the open literature. In this study, processing and properties of a low-temperature cure BMI resin system, referred to here as BMI-2, were evaluated. Along with evaluation of neat resin properties, multi-directional woven carbon fiber reinforced BMI-2 composite laminates were fabricated by an out-of-autoclave, vacuum-bag-only resin infusion method. New data on the mechanical, thermal, and moisture absorption properties are presented. It was found that the resin infusion method produced laminates with fiber volume fraction of approximately 55% and immeasurably low void content. BMI-2 was found to attain a degree of cure of 96% and glass transition temperature of 366°C following a 163°C cure cycle. Cured laminates did not suffer from process-induced cracking at the inter- or intra-laminar levels. Tensile strength and modulus of quasi-isotropic specimens with woven AS4 carbon fiber were 443 MPa and 47.6 GPa, respectively, and failure under quasi-static tension occurred by delamination. Compression strength was stable across a wide temperature range, with quasi-isotropic specimens retaining 60% of their room temperature compression strength at 260°C. Equilibrium moisture content of composite specimens was 1.2% by weight.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Yefimov, V., I. Pulemetov, and S. Doilov. "LOW-TEMPERATURE PROCESSING OF COLOMBIAN COAL IN EXPERIMENTAL RETORT." Oil Shale 16, no. 2 (1999): 149. http://dx.doi.org/10.3176/oil.1999.2.06.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Joonas, R., V. Yefimov, S. Doilov, and G. Serkovskaya. "LOW-TEMPERATURE PROCESSING OF WASTE TYRES IN EXPERIMENTAL RETORT." Oil Shale 17, no. 4 (2000): 351. http://dx.doi.org/10.3176/oil.2000.4.06.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Peterson, Ken A., Daniel S. Krueger, and Charles E. Sandoval. "Selected Applications and Processing for Low Temperature Cofired Ceramic." International Symposium on Microelectronics 2010, no. 1 (January 1, 2010): 000248–53. http://dx.doi.org/10.4071/isom-2010-tp3-paper2.

Повний текст джерела
Анотація:
Low Temperature Cofired Ceramic technology has proven itself in microelectronics, microsystems (including microfluidic systems), sensors, radio frequency (RF) features, and various other non-electronic applications. We will discuss selected applications and the processing associated with those applications. We will then focus on our recent work in the area of electromagnetic isolation (EMI) shielding using full tape thickness features (FTTF) and sidewall metallization. The FTTF is very effective in applications with −150 dB isolation requirements, but presents obvious processing difficulties in full-scale fabrication. The FTTF forms a single continuous solid wall around the volume to be shielded by using sequential punching and feature-filling. Sidewall metallization provides another method for shielding. We discuss the material incompatibilities and manufacturing considerations that need to be addressed for such structures and show preliminary implementations.
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Hirotsu, T., and Y. Suda. "Latest Situation and Future of Low-Temperature Plasma Processing." Sen'i Kikai Gakkaishi (Journal of the Textile Machinery Society of Japan) 38, no. 3 (1985): P135—P143. http://dx.doi.org/10.4188/transjtmsj.38.3_p135.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Reed, Michael L., and James D. Plummer. "Si‐SiO2interface trap production by low‐temperature thermal processing." Applied Physics Letters 51, no. 7 (August 17, 1987): 514–16. http://dx.doi.org/10.1063/1.98383.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Aleksandrov, P. V., A. S. Medvedev, A. A. Kadirov, and V. A. Imideev. "Processing molybdenum concentrates using low-temperature oxidizing-chlorinating roasting." Russian Journal of Non-Ferrous Metals 55, no. 2 (March 2014): 114–19. http://dx.doi.org/10.3103/s1067821214020011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Shavaleev, M. R., N. M. Barbin, D. I. Terentyev, M. P. Dal’kov, and S. G. Alexeev. "Reactor graphite processing in low-temperature gas-discharge plasma." Journal of Physics: Conference Series 1370 (November 2019): 012028. http://dx.doi.org/10.1088/1742-6596/1370/1/012028.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Jiang, Hongjin, and C. P. Wong. "Low Processing Temperature of Lead-Free Solder Interconnects [Nanopackaging." IEEE Nanotechnology Magazine 4, no. 2 (June 2010): 20–23. http://dx.doi.org/10.1109/mnano.2010.936604.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Gonzalez-Leon, Juan A., Metin H. Acar, Sang-Woog Ryu, Anne-Valérie G. Ruzette, and Anne M. Mayes. "Low-temperature processing of ‘baroplastics’ by pressure-induced flow." Nature 426, no. 6965 (November 2003): 424–28. http://dx.doi.org/10.1038/nature02140.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Mandeljc, Mira, Marija Kosec, Barbara Malič, and Zoran Samardzija. "Low temperature processing of lanthanum doped PZT thin films." Integrated Ferroelectrics 30, no. 1-4 (October 2000): 149–56. http://dx.doi.org/10.1080/10584580008222263.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Joshi, Pooran, A. Tolis Voutsas, and John Hartzell. "Low Temperature Processing of Si-Based Dielectric Thin Films." ECS Transactions 35, no. 4 (December 16, 2019): 241–57. http://dx.doi.org/10.1149/1.3572287.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Li, Hong, Gaoling Zhao, Zhijun Chen, Bin Song, and Gaorong Han. "TiO2-Ag Nanocomposites by Low-Temperature Sol-Gel Processing." Journal of the American Ceramic Society 93, no. 2 (February 2010): 445–49. http://dx.doi.org/10.1111/j.1551-2916.2009.03441.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Eom, Jung-Hye, and Young-Wook Kim. "Low-Temperature Processing of Silicon Oxycarbide-Bonded Silicon Carbide." Journal of the American Ceramic Society 93, no. 9 (March 24, 2010): 2463–66. http://dx.doi.org/10.1111/j.1551-2916.2010.03812.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Carlbaum, N., and P. Engdahl. "Wear Resistant PM Steel by Low Temperature Processing Route." Powder Metallurgy 35, no. 2 (January 1992): 137–40. http://dx.doi.org/10.1179/pom.1992.35.2.137.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Bulat, E. S., M. Tabasky, B. Tweed, C. Herrick, S. Hankin, N. J. Lewis, D. Oblas, and T. Fitzgerald. "Fabrication of waveguides using low‐temperature plasma processing techniques." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 11, no. 4 (July 1993): 1268–74. http://dx.doi.org/10.1116/1.578538.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Ee, L. S., J. Wang, S. C. Ng, and L. M. Gan. "Low temperature synthesis of PZT powders via microemulsion processing." Materials Research Bulletin 33, no. 7 (July 1998): 1045–55. http://dx.doi.org/10.1016/s0025-5408(98)00069-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Mitzi, David B., David R. Medeiros, and Patrick W. DeHaven. "Low-Temperature Melt Processing of Organic−Inorganic Hybrid Films." Chemistry of Materials 14, no. 7 (July 2002): 2839–41. http://dx.doi.org/10.1021/cm020264f.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Chinn, Richard E., Michael J. Haun, Chan Young Kim, and David B. Price. "Low-Temperature Transient Glass-Phase Processing of Monoclinic SrAl2Si2O8." Journal of the American Ceramic Society 81, no. 9 (January 20, 2005): 2285–93. http://dx.doi.org/10.1111/j.1151-2916.1998.tb02623.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Pongsuttiyakorn, Thadchapong, Pachareeporn trusphimai, Pitikhate Sooraksa, and Pimpen Pornchaloempong. "Effects of low temperature drying processing on longan fruit." MATEC Web of Conferences 192 (2018): 03024. http://dx.doi.org/10.1051/matecconf/201819203024.

Повний текст джерела
Анотація:
In this study, the single-stage drying in tray dryer at air temperatures of 40, 50, 60, 70 and 80°C is modelled and investigated. The longan fruits, E-dor variety, are peeled and seeded before testing. The drying rate is significantly influenced by the drying techniques and temperatures. Drying rats are initialized adjustment constant rate periods at 60 70 and 80°C. The rate of moisture removal is rapidly changed drastically during the falling rate period. The Midilli model with high R2 and low χ2 and RMSE is the most suitable model for predictability of longan drying. Variation rates of quality of the water activity, the shrinkage, and the browning index are also reported.
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Urrutia Benet, G., O. Schlüter, and D. Knorr. "High pressure–low temperature processing. Suggested definitions and terminology." Innovative Food Science & Emerging Technologies 5, no. 4 (December 2004): 413–27. http://dx.doi.org/10.1016/j.ifset.2004.06.001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Ohno, Tomoya, Yasunori Gotoh, Naonori Sakamoto, Naoki Wakiya, Takanori Kiguchi, Takeshi Matsuda, and Hisao Suzuki. "Low temperature processing of alkoxide-derived PMN thin films." IOP Conference Series: Materials Science and Engineering 30 (February 15, 2012): 012002. http://dx.doi.org/10.1088/1757-899x/30/1/012002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

MALIČ, Barbara, and Hisao SUZUKI. "Low-temperature processing of solution-derived ferroelectric thin films." Journal of the Ceramic Society of Japan 122, no. 1421 (2014): 1–8. http://dx.doi.org/10.2109/jcersj2.122.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Jiang, C. Y., W. L. Koh, M. Y. Leung, S. Y. Chiam, J. S. Wu, and J. Zhang. "Low temperature processing solid-state dye sensitized solar cells." Applied Physics Letters 100, no. 11 (March 12, 2012): 113901. http://dx.doi.org/10.1063/1.3693399.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Borglum, Brian P., John M. Bukowski, J. Francis Young, and Relva C. Buchanan. "Low-Temperature Synthesis of Hexagonal Anorthite via Hydrothermal Processing." Journal of the American Ceramic Society 76, no. 5 (May 1993): 1354–56. http://dx.doi.org/10.1111/j.1151-2916.1993.tb03765.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Rodrigues, Alexandre, Deb Nabankur, Loic Hilliou, Julio Viana, David G. Bucknall, and Gabriel Bernardo. "Low temperature solid state processing of pure P3HT fibers." AIP Advances 3, no. 5 (May 2013): 052116. http://dx.doi.org/10.1063/1.4806764.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

DENG, S. S., J. WEI, C. M. TAN, M. L. NAI, W. B. YU, and H. XIE. "LOW TEMPERATURE SILICON WAFER BONDING BY SOL-GEL PROCESSING." International Journal of Computational Engineering Science 04, no. 03 (September 2003): 655–58. http://dx.doi.org/10.1142/s1465876303001976.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії