Дисертації з теми "Low-Rank Tensor"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-27 дисертацій для дослідження на тему "Low-Rank Tensor".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Stojanac, Željka [Verfasser]. "Low-rank Tensor Recovery / Željka Stojanac." Bonn : Universitäts- und Landesbibliothek Bonn, 2016. http://d-nb.info/1119888565/34.
Повний текст джерелаShi, Qiquan. "Low rank tensor decomposition for feature extraction and tensor recovery." HKBU Institutional Repository, 2018. https://repository.hkbu.edu.hk/etd_oa/549.
Повний текст джерелаHan, Xu. "Robust low-rank tensor approximations using group sparsity." Thesis, Rennes 1, 2019. http://www.theses.fr/2019REN1S001/document.
Повний текст джерелаLast decades, tensor decompositions have gained in popularity in several application domains. Most of the existing tensor decomposition methods require an estimating of the tensor rank in a preprocessing step to guarantee an outstanding decomposition results. Unfortunately, learning the exact rank of the tensor can be difficult in some particular cases, such as for low signal to noise ratio values. The objective of this thesis is to compute the best low-rank tensor approximation by a joint estimation of the rank and the loading matrices from the noisy tensor. Based on the low-rank property and an over estimation of the loading matrices or the core tensor, this joint estimation problem is solved by promoting group sparsity of over-estimated loading matrices and/or the core tensor. More particularly, three new methods are proposed to achieve efficient low rank estimation for three different tensors decomposition models, namely Canonical Polyadic Decomposition (CPD), Block Term Decomposition (BTD) and Multilinear Tensor Decomposition (MTD). All the proposed methods consist of two steps: the first step is designed to estimate the rank, and the second step uses the estimated rank to compute accurately the loading matrices. Numerical simulations with noisy tensor and results on real data the show effectiveness of the proposed methods compared to the state-of-the-art methods
Benedikt, Udo. "Low-Rank Tensor Approximation in post Hartree-Fock Methods." Doctoral thesis, Universitätsbibliothek Chemnitz, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-133194.
Повний текст джерелаDie vorliegende Arbeit beschäftigt sich mit der Anwendung neuartiger Tensorzerlegungs- und Tensorrepesentationstechniken in hochgenauen post Hartree-Fock Methoden um das hohe Skalierungsverhalten dieser Verfahren mit steigender Systemgröße zu verringern und somit den "Fluch der Dimensionen" zu brechen. Nach einer vergleichenden Betrachtung verschiedener Representationsformate wird auf die Anwendung des "canonical polyadic" Formates (CP) detailliert eingegangen. Dabei stehen zunächst die Umwandlung eines normalen, indexbasierten Tensors in das CP Format (Tensorzerlegung) und eine Methode der Niedrigrang Approximation (Rangreduktion) für Zweielektronenintegrale in der AO Basis im Vordergrund. Die entscheidende Größe für die Anwendbarkeit ist dabei das Skalierungsverhalten das Ranges mit steigender System- und Basissatzgröße, da der Speicheraufwand und die Berechnungskosten für Tensormanipulationen im CP Format zwar nur noch linear von der Anzahl der Dimensionen des Tensors abhängen, allerdings auch mit der Expansionslänge (Rang) skalieren. Im Anschluss wird die AO-MO Transformation und der MP2 Algorithmus mit zerlegten Tensoren im CP Format diskutiert und erneut das Skalierungsverhalten mit steigender System- und Basissatzgröße untersucht. Abschließend wird ein Coupled-Cluster Algorithmus vorgestellt, welcher ausschließlich mit Tensoren in einer Niedrigrang CP Darstellung arbeitet. Dabei wird vor allem auf die sukzessive Tensorkontraktion während der iterativen Bestimmung der Amplituden eingegangen und die Fehlerfortpanzung durch Anwendung des Rangreduktions-Algorithmus analysiert. Abschließend wird die Komplexität des gesamten Verfahrens bewertet und Verbesserungsmöglichkeiten der Reduktionsprozedur aufgezeigt
Rabusseau, Guillaume. "A tensor perspective on weighted automata, low-rank regression and algebraic mixtures." Thesis, Aix-Marseille, 2016. http://www.theses.fr/2016AIXM4062.
Повний текст джерелаThis thesis tackles several problems exploring connections between tensors and machine learning. In the first chapter, we propose an extension of the classical notion of recognizable function on strings and trees to graphs. We first show that the computations of weighted automata on strings and trees can be interpreted in a natural and unifying way using tensor networks, which naturally leads us to define a computational model on graphs: graph weighted models; we then study fundamental properties of this model and present preliminary learning results. The second chapter tackles a model reduction problem for weighted tree automata. We propose a principled approach to the following problem: given a weighted tree automaton with n states, how can we find an automaton with m
Alora, John Irvin P. "Automated synthesis of low-rank stochastic dynamical systems using the tensor-train decomposition." Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/105006.
Повний текст джерелаThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 79-83).
Cyber-physical systems are increasingly becoming integrated in various fields such as medicine, finance, robotics, and energy. In these systems and their applications, safety and correctness of operation is of primary concern, sparking a large amount of interest in the development of ways to verify system behavior. The tight coupling of physical constraints and computation that typically characterize cyber-physical systems make them extremely complex, resulting in unexpected failure modes. Furthermore, disturbances in the environment and uncertainties in the physical model require these systems to be robust. These are difficult constraints, requiring cyberphysical systems to be able to reason about their behavior and respond to events in real-time. Thus, the goal of automated synthesis is to construct a controller that provably implements a range of behaviors given by a specification of how the system should operate. Unfortunately, many approaches to automated synthesis are ad hoc and are limited to simple systems that admit specific structure (e.g. linear, affine systems). Not only that, but they are also designed without taking into account uncertainty. In order to tackle more general problems, several computational frameworks that allow for more general dynamics and uncertainty to be investigated. Furthermore, all of the existing computational algorithms suffer from the curse of dimensionality, the run time scales exponentially with increasing dimensionality of the state space. As a result, existing algorithms apply to systems with only a few degrees of freedom. In this thesis, we consider a stochastic optimal control problem with a special class of linear temporal logic specifications and propose a novel algorithm based on the tensor-train decomposition. We prove that the run time of the proposed algorithm scales linearly with the dimensionality of the state space and polynomially with the rank of the optimal cost-to-go function.
by John Irvin P. Alora.
S.M.
Ceruti, Gianluca [Verfasser]. "Unconventional contributions to dynamical low-rank approximation of tree tensor networks / Gianluca Ceruti." Tübingen : Universitätsbibliothek Tübingen, 2021. http://nbn-resolving.de/urn:nbn:de:bsz:21-dspace-1186805.
Повний текст джерелаGorodetsky, Alex Arkady. "Continuous low-rank tensor decompositions, with applications to stochastic optimal control and data assimilation." Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/108918.
Повний текст джерелаCataloged from PDF version of thesis.
Includes bibliographical references (pages 205-214).
Optimal decision making under uncertainty is critical for control and optimization of complex systems. However, many techniques for solving problems such as stochastic optimal control and data assimilation encounter the curse of dimensionality when too many state variables are involved. In this thesis, we propose a framework for computing with high-dimensional functions that mitigates this exponential growth in complexity for problems with separable structure. Our framework tightly integrates two emerging areas: tensor decompositions and continuous computation. Tensor decompositions are able to effectively compress and operate with low-rank multidimensional arrays. Continuous computation is a paradigm for computing with functions instead of arrays, and it is best realized by Chebfun, a MATLAB package for computing with functions of up to three dimensions. Continuous computation provides a natural framework for building numerical algorithms that effectively, naturally, and automatically adapt to problem structure. The first part of this thesis describes a compressed continuous computation framework centered around a continuous analogue to the (discrete) tensor-train decomposition called the function-train decomposition. Computation with the function-train requires continuous matrix factorizations and continuous numerical linear algebra. Continuous analogues are presented for performing cross approximation; rounding; multilinear algebra operations such as addition, multiplication, integration, and differentiation; and continuous, rank-revealing, alternating least squares. Advantages of the function-train over the tensor-train include the ability to adaptively approximate functions and the ability to compute with functions that are parameterized differently. For example, while elementwise multiplication between tensors of different sizes is undefined, functions in FT format can be readily multiplied together. Next, we develop compressed versions of value iteration, policy iteration, and multilevel algorithms for solving dynamic programming problems arising in stochastic optimal control. These techniques enable computing global solutions to a broader set of problems, for example those with non-affine control inputs, than previously possible. Examples are presented for motion planning with robotic systems that have up to seven states. Finally, we use the FT to extend integration-based Gaussian filtering to larger state spaces than previously considered. Examples are presented for dynamical systems with up to twenty states.
by Alex Arkady Gorodetsky.
Ph. D.
Benedikt, Udo [Verfasser], Alexander A. [Akademischer Betreuer] Auer, and Sibylle [Gutachter] Gemming. "Low-Rank Tensor Approximation in post Hartree-Fock Methods / Udo Benedikt ; Gutachter: Sibylle Gemming ; Betreuer: Alexander A. Auer." Chemnitz : Universitätsbibliothek Chemnitz, 2014. http://d-nb.info/1230577440/34.
Повний текст джерелаCordolino, Sobral Andrews. "Robust low-rank and sparse decomposition for moving object detection : from matrices to tensors." Thesis, La Rochelle, 2017. http://www.theses.fr/2017LAROS007/document.
Повний текст джерелаThis thesis introduces the recent advances on decomposition into low-rank plus sparse matrices and tensors, as well as the main contributions to face the principal issues in moving object detection. First, we present an overview of the state-of-the-art methods for low-rank and sparse decomposition, as well as their application to background modeling and foreground segmentation tasks. Next, we address the problem of background model initialization as a reconstruction process from missing/corrupted data. A novel methodology is presented showing an attractive potential for background modeling initialization in video surveillance. Subsequently, we propose a double-constrained version of robust principal component analysis to improve the foreground detection in maritime environments for automated video-surveillance applications. The algorithm makes use of double constraints extracted from spatial saliency maps to enhance object foreground detection in dynamic scenes. We also developed two incremental tensor-based algorithms in order to perform background/foreground separation from multidimensional streaming data. These works address the problem of low-rank and sparse decomposition on tensors. Finally, we present a particular work realized in conjunction with the Computer Vision Center (CVC) at Autonomous University of Barcelona (UAB)
Kim, Jingu. "Nonnegative matrix and tensor factorizations, least squares problems, and applications." Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/42909.
Повний текст джерелаKang, Kingston. "ESTIMATING THE RESPIRATORY LUNG MOTION MODEL USING TENSOR DECOMPOSITION ON DISPLACEMENT VECTOR FIELD." VCU Scholars Compass, 2018. https://scholarscompass.vcu.edu/etd/5254.
Повний текст джерелаWolf, Alexander Sebastian Johannes Wolf [Verfasser], Reinhold [Akademischer Betreuer] Schneider, Reinhold [Gutachter] Schneider, Gitta [Gutachter] Kutyniok, and Lars [Gutachter] Grasedyck. "Low rank tensor decompositions for high dimensional data approximation, recovery and prediction / Alexander Sebastian Johannes Wolf Wolf ; Gutachter: Reinhold Schneider, Gitta Kutyniok, Lars Grasedyck ; Betreuer: Reinhold Schneider." Berlin : Technische Universität Berlin, 2019. http://d-nb.info/118242399X/34.
Повний текст джерелаHarmouch, Jouhayna. "Décomposition de petit rang, problèmes de complétion et applications : décomposition de matrices de Hankel et des tenseurs de rang faible." Thesis, Université Côte d'Azur (ComUE), 2018. http://www.theses.fr/2018AZUR4236/document.
Повний текст джерелаWe study the decomposition of a multivariate Hankel matrix as a sum of Hankel matrices of small rank in correlation with the decomposition of its symbol σ as a sum of polynomialexponential series. We present a new algorithm to compute the low rank decomposition of the Hankel operator and the decomposition of its symbol exploiting the properties of the associated Artinian Gorenstein quotient algebra . A basis of is computed from the Singular Value Decomposition of a sub-matrix of the Hankel matrix . The frequencies and the weights are deduced from the generalized eigenvectors of pencils of shifted sub-matrices of Explicit formula for the weights in terms of the eigenvectors avoid us to solve a Vandermonde system. This new method is a multivariate generalization of the so-called Pencil method for solving Pronytype decomposition problems. We analyse its numerical behaviour in the presence of noisy input moments, and describe a rescaling technique which improves the numerical quality of the reconstruction for frequencies of high amplitudes. We also present a new Newton iteration, which converges locally to the closest multivariate Hankel matrix of low rank and show its impact for correcting errors on input moments. We study the decomposition of a multi-symmetric tensor T as a sum of powers of product of linear forms in correlation with the decomposition of its dual as a weighted sum of evaluations. We use the properties of the associated Artinian Gorenstein Algebra to compute the decomposition of its dual which is defined via a formal power series τ. We use the low rank decomposition of the Hankel operator associated to the symbol τ into a sum of indecomposable operators of low rank. A basis of is chosen such that the multiplication by some variables is possible. We compute the sub-coordinates of the evaluation points and their weights using the eigen-structure of multiplication matrices. The new algorithm that we propose works for small rank. We give a theoretical generalized approach of the method in n dimensional space. We show a numerical example of the decomposition of a multi-linear tensor of rank 3 in 3 dimensional space. We show a numerical example of the decomposition of a multi-symmetric tensor of rank 3 in 3 dimensional space. We study the completion problem of the low rank Hankel matrix as a minimization problem. We use the relaxation of it as a minimization problem of the nuclear norm of Hankel matrix. We adapt the SVT algorithm to the case of Hankel matrix and we compute the linear operator which describes the constraints of the problem and its adjoint. We try to show the utility of the decomposition algorithm in some applications such that the LDA model and the ODF model
Lestandi, Lucas. "Approximations de rang faible et modèles d'ordre réduit appliqués à quelques problèmes de la mécanique des fluides." Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0186/document.
Повний текст джерелаNumerical simulation has experienced tremendous improvements in the last decadesdriven by massive growth of computing power. Exascale computing has beenachieved this year and will allow solving ever more complex problems. But suchlarge systems produce colossal amounts of data which leads to its own difficulties.Moreover, many engineering problems such as multiphysics or optimisation andcontrol, require far more power that any computer architecture could achievewithin the current scientific computing paradigm. In this thesis, we proposeto shift the paradigm in order to break the curse of dimensionality byintroducing decomposition and building reduced order models (ROM) for complexfluid flows.This manuscript is organized into two parts. The first one proposes an extendedreview of data reduction techniques and intends to bridge between appliedmathematics community and the computational mechanics one. Thus, foundingbivariate separation is studied, including discussions on the equivalence ofproper orthogonal decomposition (POD, continuous framework) and singular valuedecomposition (SVD, discrete matrices). Then a wide review of tensor formats andtheir approximation is proposed. Such work has already been provided in theliterature but either on separate papers or into a purely applied mathematicsframework. Here, we offer to the data enthusiast scientist a comparison ofCanonical, Tucker, Hierarchical and Tensor train formats including theirapproximation algorithms. Their relative benefits are studied both theoreticallyand numerically thanks to the python library texttt{pydecomp} that wasdeveloped during this thesis. A careful analysis of the link between continuousand discrete methods is performed. Finally, we conclude that for mostapplications ST-HOSVD is best when the number of dimensions $d$ lower than fourand TT-SVD (or their POD equivalent) when $d$ grows larger.The second part is centered on a complex fluid dynamics flow, in particular thesingular lid driven cavity at high Reynolds number. This flow exhibits a seriesof Hopf bifurcation which are known to be hard to capture accurately which iswhy a detailed analysis was performed both with classical tools and POD. Oncethis flow has been characterized, emph{time-scaling}, a new ``physics based''interpolation ROM is presented on internal and external flows. This methodsgives encouraging results while excluding recent advanced developments in thearea such as EIM or Grassmann manifold interpolation
Liu, Zhenjiao. "Incomplete multi-view data clustering with hidden data mining and fusion techniques." Electronic Thesis or Diss., Institut polytechnique de Paris, 2023. http://www.theses.fr/2023IPPAS011.
Повний текст джерелаIncomplete multi-view data clustering is a research direction that attracts attention in the fields of data mining and machine learning. In practical applications, we often face situations where only part of the modal data can be obtained or there are missing values. Data fusion is an important method for incomplete multi-view information mining. Solving incomplete multi-view information mining in a targeted manner, achieving flexible collaboration between visible views and shared hidden views, and improving the robustness have become quite challenging. This thesis focuses on three aspects: hidden data mining, collaborative fusion, and enhancing the robustness of clustering. The main contributions are as follows:1. Hidden data mining for incomplete multi-view data: existing algorithms cannot make full use of the observation of information within and between views, resulting in the loss of a large amount of valuable information, and so we propose a new incomplete multi-view clustering model IMC-NLT (Incomplete Multi-view Clustering Based on NMF and Low-Rank Tensor Fusion) based on non-negative matrix factorization and low-rank tensor fusion. IMC-NLT first uses a low-rank tensor to retain view features with a unified dimension. Using a consistency measure, IMC-NLT captures a consistent representation across multiple views. Finally, IMC-NLT incorporates multiple learning into a unified model such that hidden information can be extracted effectively from incomplete views. We conducted comprehensive experiments on five real-world datasets to validate the performance of IMC-NLT. The overall experimental results demonstrate that the proposed IMC-NLT performs better than several baseline methods, yielding stable and promising results.2. Collaborative fusion for incomplete multi-view data: our approach to address this issue is Incomplete Multi-view Co-Clustering by Sparse Low-Rank Representation (CCIM-SLR). The algorithm is based on sparse low-rank representation and subspace representation, in which jointly missing data is filled using data within a modality and related data from other modalities. To improve the stability of clustering results for multi-view data with different missing degrees, CCIM-SLR uses the Γ-norm model, which is an adjustable low-rank representation method. CCIM-SLR can alternate between learning the shared hidden view, visible view, and cluster partitions within a co-learning framework. An iterative algorithm with guaranteed convergence is used to optimize the proposed objective function. Compared with other baseline models, CCIM-SLR achieved the best performance in the comprehensive experiments on the five benchmark datasets, particularly on those with varying degrees of incompleteness.3. Enhancing the clustering robustness for incomplete multi-view data: we offer a fusion of graph convolution and information bottlenecks (Incomplete Multi-view Representation Learning Through Anchor Graph-based GCN and Information Bottleneck - IMRL-AGI). First, we introduce the information bottleneck theory to filter out the noise data with irrelevant details and retain only the most relevant feature items. Next, we integrate the graph structure information based on anchor points into the local graph information of the state fused into the shared information representation and the information representation learning process of the local specific view, a process that can balance the robustness of the learned features and improve the robustness. Finally, the model integrates multiple representations with the help of information bottlenecks, reducing the impact of redundant information in the data. Extensive experiments are conducted on several real-world datasets, and the results demonstrate the superiority of IMRL-AGI. Specifically, IMRL-AGI shows significant improvements in clustering and classification accuracy, even in the presence of high view missing rates (e.g. 10.23% and 24.1% respectively on the ORL dataset)
Boizard, Mélanie. "Développement et études de performances de nouveaux détecteurs/filtres rang faible dans des configurations RADAR multidimensionnelles." Electronic Thesis or Diss., Cachan, Ecole normale supérieure, 2013. http://www.theses.fr/2013DENS0063.
Повний текст джерелаMost of statistical signal processing algorithms, are based on the use of signal covariance matrix. In practical cases this matrix is unknown and is estimated from samples. The adaptive versions of the algorithms can then be applied, replacing the actual covariance matrix by its estimate. These algorithms present a major drawback: they require a large number of samples in order to obtain good results. If the covariance matrix is low-rank structured, its eigenbasis may be separated in two orthogonal subspaces. Thanks to the LR approximation, orthogonal projectors onto theses subspaces may be used instead of the noise CM in processes, leading to low-rank algorithms. The adaptive versions of these algorithms achieve similar performance to classic classic ones with less samples. Furthermore, the current increase in the size of the data strengthens the relevance of this type of method. However, this increase may often be associated with an increase of the dimension of the system, leading to multidimensional samples. Such multidimensional data may be processed by two approaches: the vectorial one and the tensorial one. The vectorial approach consists in unfolding the data into vectors and applying the traditional algorithms. These operations are not lossless since they involve a loss of structure. Several issues may arise from this loss: decrease of performance and/or lack of robustness. The tensorial approach relies on multilinear algebra, which provides a good framework to exploit these data and preserve their structure information. In this context, data are represented as multidimensional arrays called tensor. Nevertheless, generalizing vectorial-based algorithms to the multilinear algebra framework is not a trivial task. In particular, the extension of low-rank algorithm to tensor context implies to choose a tensor decomposition in order to estimate the signal and noise subspaces. The purpose of this thesis is to derive and study tensor low-rank algorithms. This work is divided into three parts. The first part deals with the derivation of theoretical performance of a tensor MUSIC algorithm based on Higher Order Singular Value Decomposition (HOSVD) and its application to a polarized source model. The second part concerns the derivation of tensor low-rank filters and detectors in a general low-rank tensor context. This work is based on a new definition of tensor rank and a new orthogonal tensor decomposition : the Alternative Unfolding HOSVD (AU-HOSVD). In the last part, these algorithms are applied to a particular radar configuration : the Space-Time Adaptive Process (STAP). This application illustrates the interest of tensor approach and algorithms based on AU-HOSVD
Boizard, Maxime. "Développement et études de performances de nouveaux détecteurs/filtres rang faible dans des configurations RADAR multidimensionnelles." Phd thesis, École normale supérieure de Cachan - ENS Cachan, 2013. http://tel.archives-ouvertes.fr/tel-00996967.
Повний текст джерелаGoulart, José Henrique De Morais. "Estimation de modèles tensoriels structurés et récupération de tenseurs de rang faible." Thesis, Université Côte d'Azur (ComUE), 2016. http://www.theses.fr/2016AZUR4147/document.
Повний текст джерелаIn the first part of this thesis, we formulate two methods for computing a canonical polyadic decomposition having linearly structured matrix factors (such as, e.g., Toeplitz or banded factors): a general constrained alternating least squares (CALS) algorithm and an algebraic solution for the case where all factors are circulant. Exact and approximate versions of the former method are studied. The latter method relies on a multidimensional discrete-time Fourier transform of the target tensor, which leads to a system of homogeneous monomial equations whose resolution provides the desired circulant factors. Our simulations show that combining these approaches yields a statistically efficient estimator, which is also true for other combinations of CALS in scenarios involving non-circulant factors. The second part of the thesis concerns low-rank tensor recovery (LRTR) and, in particular, the tensor completion (TC) problem. We propose an efficient algorithm, called SeMPIHT, employing sequentially optimal modal projections as its hard thresholding operator. Then, a performance bound is derived under usual restricted isometry conditions, which however yield suboptimal sampling bounds. Yet, our simulations suggest SeMPIHT obeys optimal sampling bounds for Gaussian measurements. Step size selection and gradual rank increase heuristics are also elaborated in order to improve performance. We also devise an imputation scheme for TC based on soft thresholding of a Tucker model core and illustrate its utility in completing real-world road traffic data acquired by an intelligent transportation
Walach, Hanna Maria [Verfasser], and Christian [Akademischer Betreuer] Lubich. "Time integration for the dynamical low-rank approximation of matrices and tensors / Hanna Maria Walach ; Betreuer: Christian Lubich." Tübingen : Universitätsbibliothek Tübingen, 2019. http://d-nb.info/1190639831/34.
Повний текст джерелаGarreis, Sebastian [Verfasser], Michael [Akademischer Betreuer] Ulbrich, Matthias [Gutachter] Heinkenschloss, Christian [Gutachter] Clason, and Michael [Gutachter] Ulbrich. "Optimal Control under Uncertainty: Theory and Numerical Solution with Low-Rank Tensors / Sebastian Garreis ; Gutachter: Matthias Heinkenschloss, Christian Clason, Michael Ulbrich ; Betreuer: Michael Ulbrich." München : Universitätsbibliothek der TU München, 2019. http://d-nb.info/1179360737/34.
Повний текст джерелаAshraphijuo, Morteza. "Low-Rank Tensor Completion - Fundamental Limits and Efficient Algorithms." Thesis, 2020. https://doi.org/10.7916/d8-a3j9-zn71.
Повний текст джерелаChen, Yi-Lei, and 陳以雷. "Manifold Guided Tensor Completion under Low-rank Structure." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/08586749581330150625.
Повний текст джерела國立清華大學
資訊工程學系
102
In this dissertation, we focus on tensor completion, which is closely related to the ubiquitous missing data problem in real-world applications. Given a tensor with incomplete entries, existing methods assume the desired tensor exhibits low-rank structure. Predicting missing entries then boils down to recovering a low-rank tensor from given entries. Factorization schemes and completion schemes are two popular methodologies. As the number of missing entries increases, factorization schemes overfit the model structure due to their incorrectly predefined tensor’s rank, while completion schemes fail to interpret the model factors because they solely rely on rank minimization. Therefore, we introduce a novel concept to break the current limitations: complete the missing entries and simultaneously capture the underlying model structure. We propose a method called Simultaneous Tensor Decomposition and Completion (STDC). The major contributions are three-fold. First, we leverage rank minimization with Tucker model decomposition; i.e., we automate rank estimation while carefully maintain the latent tensor structure. Second, considering the informative semantics (named factor priors in our work) of real-world tensor objects, we discover the latent manifold with a new presented methodology, called Multilinear Graph Embedding (MGE), and study its significance in tensor completion. Finally, because factor priors are task-dependent and can be unavailable, we further propose a prior-free extension with a new presented methodology, called Permutation on Manifolds (PoM), to automate joint-manifold learning. We conducted experiments to empirically verify the convergence of our algorithm on synthetic data, and evaluate its effectiveness on various kinds of real-world data. The results demonstrate the superiority of our method and its potential usage in tensor-based applications.
Benedikt, Udo. "Low-Rank Tensor Approximation in post Hartree-Fock Methods." Doctoral thesis, 2013. https://monarch.qucosa.de/id/qucosa%3A19999.
Повний текст джерелаDie vorliegende Arbeit beschäftigt sich mit der Anwendung neuartiger Tensorzerlegungs- und Tensorrepesentationstechniken in hochgenauen post Hartree-Fock Methoden um das hohe Skalierungsverhalten dieser Verfahren mit steigender Systemgröße zu verringern und somit den "Fluch der Dimensionen" zu brechen. Nach einer vergleichenden Betrachtung verschiedener Representationsformate wird auf die Anwendung des "canonical polyadic" Formates (CP) detailliert eingegangen. Dabei stehen zunächst die Umwandlung eines normalen, indexbasierten Tensors in das CP Format (Tensorzerlegung) und eine Methode der Niedrigrang Approximation (Rangreduktion) für Zweielektronenintegrale in der AO Basis im Vordergrund. Die entscheidende Größe für die Anwendbarkeit ist dabei das Skalierungsverhalten das Ranges mit steigender System- und Basissatzgröße, da der Speicheraufwand und die Berechnungskosten für Tensormanipulationen im CP Format zwar nur noch linear von der Anzahl der Dimensionen des Tensors abhängen, allerdings auch mit der Expansionslänge (Rang) skalieren. Im Anschluss wird die AO-MO Transformation und der MP2 Algorithmus mit zerlegten Tensoren im CP Format diskutiert und erneut das Skalierungsverhalten mit steigender System- und Basissatzgröße untersucht. Abschließend wird ein Coupled-Cluster Algorithmus vorgestellt, welcher ausschließlich mit Tensoren in einer Niedrigrang CP Darstellung arbeitet. Dabei wird vor allem auf die sukzessive Tensorkontraktion während der iterativen Bestimmung der Amplituden eingegangen und die Fehlerfortpanzung durch Anwendung des Rangreduktions-Algorithmus analysiert. Abschließend wird die Komplexität des gesamten Verfahrens bewertet und Verbesserungsmöglichkeiten der Reduktionsprozedur aufgezeigt.
Wang, Yu-Sheng, and 王裕盛. "Moving Object Detection via Sparse and Low-Rank Tensor Modeling." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/14647869094424654385.
Повний текст джерела國立清華大學
資訊工程學系
101
Background subtraction is a common method utilized to detect moving objects. The main idea is estimate the background model according to the non-occluded background. However, when the foreground is comparatively large or the moving displacement of foreground is negligible, the estimated result will be inaccurate because the background is occluded by foreground most of the time. In order to overcome the occluded background problem, we consider the spatial low-rank property of background, and propose to combine the spatial low-rank property and the temporal low-rank property to better characterize the strong correlation existing in spatio-temporal dimension of the background. The proposed method extends the low-rank matrix modeling to low-rank tensor modeling for the background. Experimental results show that the low-rank tensor modeling improves the result under occluded background or highly structured background.
David, Li-Wei, and 郭立維. "Completely positive interpolations and preservers on tensor products of low rank matrices." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/14395807928517454426.
Повний текст джерела國立中山大學
應用數學系研究所
102
In this thesis, we will consider the following problems: (i). We study linear maps of matrix algebras, which preserve some spectral functions on a small subset of mn x mn matrices. (ii). We study completely positive interpolations between normal matrices (operators) using their spectrum and the Choi-Kraus form. We obtain a necessary and sufficient condition for the existence of a completely positive interpolation in terms of conditions about numerical ranges and dilations. Keywords:
Wikén, Victor. "An Investigation of Low-Rank Decomposition for Increasing Inference Speed in Deep Neural Networks With Limited Training Data." Thesis, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-235370.
Повний текст джерелаFör att öka inferenshastigheten hos faltningssnätverk, har i denna studie optimeringstekniken low-rank tensor decomposition implementerats och applicerats på AlexNet, som har tränats för att klassificera hundraser. På grund av en begränsad mängd träningsdata användes transfer learning för uppgiften. Syftet med studien är att undersöka hur effektiv low-rank tensor decomposition är när träningsdatan är begränsad. Jämfört med resultaten från en tidigare studie visar resultaten från denna studie att det finns ett starkt samband mellan effekterna av low-rank tensor decomposition och hur mycket tillgänglig träningsdata som finns. En signifikant hastighetsökning kan uppnås i de olika faltningslagren med hjälp av low-rank tensor decomposition. Eftersom det finns ett behov av att träna om nätverket efter dekompositionen och på grund av den begränsade mängden data så uppnås hastighetsökningen dock på bekostnad av en viss minskning i precisionen för modellen.