Книги з теми "Low pressure gas carburizing"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Low pressure gas carburizing.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-40 книг для дослідження на тему "Low pressure gas carburizing".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте книги для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Board, United States National Transportation Safety. Over-pressure of Peoples Gas Light and Coke Company low-pressure distribution system, Chicago, Illinois, January 17, 1992. Washington, D.C: National Transportation Safety Board, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

United States. National Transportation Safety Board. Over-pressure of Peoples Gas Light and Coke Company low-pressure distribution system, Chicago, Illinois, January 17, 1992. Washington, D.C: National Transportation Safety Board, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

United States. National Transportation Safety Board. Over-pressure of Peoples Gas Light and Coke Company low-pressure distribution system, Chicago, Illinois, January 17, 1992. Washington, D.C: National Transportation Safety Board, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Center, Lewis Research, ed. Measurement of xenon viscosity as a function of low temperature and pressure. [Cleveland, Ohio]: National Aeronautics and Space Administration, Lewis Research Center, 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Center, Lewis Research, ed. Measurement of xenon viscosity as a function of low temperature and pressure. [Cleveland, Ohio]: National Aeronautics and Space Administration, Lewis Research Center, 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Pavese, Franco. Modern Gas-Based Temperature and Pressure Measurements. 2nd ed. Boston, MA: Springer US, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

C, Nunes A., and George C. Marshall Space Flight Center., eds. Low-pressure gas effects on the potency of an electron beam against ceramic cloth. [Marshall Space Flight Center], Ala: National Aeronautics and Space Administration, Marshall Space Flight Center, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

C, Nunes A., and George C. Marshall Space Flight Center., eds. Low-pressure gas effects on the potency of an electron beam against ceramic cloth. [Marshall Space Flight Center], Ala: National Aeronautics and Space Administration, Marshall Space Flight Center, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

C, Nunes A., and George C. Marshall Space Flight Center., eds. Low-pressure gas effects on the potency of an electron beam against ceramic cloth. [Marshall Space Flight Center], Ala: National Aeronautics and Space Administration, Marshall Space Flight Center, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Engineers, Institution of Gas. Safety recommendations. IGE/SR/4(1986): Low-pressure gas holders storing lighter-than-air gases. London: Institution of Gas Engineers, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

G, Brown Kenneth, and United States. National Aeronautics and Space Administration, eds. Low pressure gas flow analysis through an effusive inlet using mass spectrometry: Final report, period ending 31 Dec, 1987. Norfolk, Va: Dept. of Chemical Sciences, College of Sciences, Old Dominion University, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

California Energy Commission. Public Interest Energy Research. Offgases project oil-field flare gas electricity systems: PIER final project report. Sacramento, Calif.]: California Energy Commission, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

O, Frazier Donald, and United States. National Aeronautics and Space Administration., eds. Buoyancy-driven heat transfer during application of a thermal gradient for the study of vapor deposition at low pressure using an ideal gas. [Washington, D.C: National Aeronautics and Space Administration, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

O, Frazier Donald, and United States. National Aeronautics and Space Administration., eds. Buoyancy-driven heat transfer during application of a thermal gradient for the study of vapor deposition at low pressure using an ideal gas. [Washington, D.C: National Aeronautics and Space Administration, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

O, Frazier Donald, and United States. National Aeronautics and Space Administration., eds. Buoyancy-driven heat transfer during application of a thermal gradient for the study of vapor deposition at low pressure using an ideal gas. [Washington, D.C: National Aeronautics and Space Administration, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Hart, Thomas. 22FTM09, a New Low Pressure Carburizing Solution in a Pit vs. Traditional Pit Carburizing Methods. American Gear Manufacturers Association, 2022.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Maev, Roman Gr, and Volf Leshchynsky. Introduction to Low Pressure Gas Dynamic Spray: Physics & Technology. Wiley-VCH, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Leshchynsky, Volf, and Roman Gr Maev. Introduction to Low Pressure Gas Dynamic Spray: Physics and Technology. Wiley & Sons, Limited, John, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Leshchynsky, Volf, and Roman Gr Maev. Introduction to Low Pressure Gas Dynamic Spray: Physics and Technology. Wiley & Sons, Incorporated, John, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Low-pressure Gas Holders Storing Lighter-than-air Gasses (Safety Recommendations S.). 2nd ed. Institution of Gas Engineers and Managers, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

National Aeronautics and Space Administration (NASA) Staff. Low Pressure Gas Flow Analysis Through an Effusive Inlet Using Mass Spectrometry. Independently Published, 2018.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Beciet, Gianfranco Molinar Min, and Franco Pavese. Modern Gas-Based Temperature and Pressure Measurements. Springer, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Beciet, Gianfranco Molinar Min, and Franco Pavese. Modern Gas-Based Temperature and Pressure Measurements. Springer, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Beciet, Gianfranco Molinar Min, and Franco Pavese. Modern Gas-Based Temperature and Pressure Measurements. Springer, 2014.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Beciet, Gianfranco Molinar Min, and Franco Pavese. Modern Gas-Based Temperature and Pressure Measurements. Springer, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Over-pressure of Peoples Gas Light and Coke Company low-pressure distribution system, Chicago, Illinois, January 17, 1992. Washington,D.C: National Transportation Safety Board, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Low-pressure gas effects on the potency of an electron beam against ceramic cloth. [Marshall Space Flight Center], Ala: National Aeronautics and Space Administration, Marshall Space Flight Center, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

National Aeronautics and Space Administration (NASA) Staff. Low-Pressure Gas Effects on the Potency of an Electron Beam Against Ceramic Cloth. Independently Published, 2018.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Soundness Testing and Direct Purging of Small Low Pressure Industrial and Commercial Gas Installations (Utilization Procedures S.). Institution of Gas Engineers and Managers, 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Chaudhuri, Srimoyee Ray. Heterogeneous uptake of atmospheric organic gas phase species by condensed organic film substrates: A low-pressure effusive cell study. 2006.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Strength Testing, Tightness Testing and Direct Purging of Small, Low Pressure, Industrial and Commercial Natural Gas Installations (Utilization Procedures S.). Institution of Gas Engineers and Managers, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Buoyancy-driven heat transfer during application of a thermal gradient for the study of vapor deposition at low pressure using an ideal gas. [Washington, D.C: National Aeronautics and Space Administration, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Specification for Low Pressure Diaphragm and Rotary Displacement Meter Installations with Badged Meter Capacities Exceeding 6 M3/h (212 Ft3/h) But Not ... Ft3/h) (Gas Measurement Procedures S.). Institution of Gas Engineers and Managers, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Selim, Bernardo, and Kannan Ramar. Beyond positive airway pressure therapy: experimental and non-conventional treatments in sleep apnoea. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780198784906.003.0259.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
With decreased adherence to positive airway pressure therapy to treat sleep apnoeas, non-conventional treatments based on new therapeutic targets are emerging. In central sleep apnoea syndrome associated with heart failure, phrenic nerve stimulation and non-conventional pharmacological treatments such as carbonic anhydrase inhibitors, gas therapies, and cardiac devices are novel alternative therapies. In obstructive sleep apnoea, a better understanding of predominant pathophysiological pathways is characterizing diverse clinical phenotypes. For patients with low arousal threshold, sedatives or hypnotics might be effective, whereas for those with unstable ventilatory control, carbonic anhydrase inhibitors or oxygen might improve obstructive sleep apnoea. For patients with upper airway muscle dysfunction, an increase in pharyngeal tone might be beneficial. This chapter describes ‘experimental’ therapies and novel technologies to treat these disorders.
35

Ye, Liu, Jose Porro, and Ingmar Nopens, eds. Quantification and Modelling of Fugitive Greenhouse Gas Emissions from Urban Water Systems. IWA Publishing, 2022. http://dx.doi.org/10.2166/9781789060461.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract With increased commitment from the international community to reduce greenhouse gas (GHG) emissions from all sectors in accordance with the Paris Agreement, the water sector has never felt the pressure it is now under to transition to a low-carbon water management model. This requires reducing GHG emissions from grid-energy consumption (Scope 2 emissions), which is straightforward; however, it also requires reducing Scope 1 emissions, which include nitrous oxide and methane emissions, predominantly from wastewater handling and treatment. The pathways and factors leading to biological nitrous oxide and methane formation and emissions from wastewater are highly complex and site-specific. Good emission factors for estimating the Scope 1 emissions are lacking, water utilities have little experience in directly measuring these emissions, and the mathematical modelling of these emissions is challenging. Therefore, this book aims to help the water sector address the Scope 1 emissions by breaking down their pathways and influencing factors, and providing guidance on both the use of emission factors, and performing direct measurements of nitrous oxide and methane emissions from sewers and wastewater treatment plants. The book also dives into the mathematical modelling for predicting these emissions and provides guidance on the use of different mathematical models based upon your conditions, as well as an introduction to alternative modelling methods, including metabolic, data-driven, and AI methods. Finally, the book includes guidance on using the modelling tools for assessing different operating strategies and identifying promising mitigation actions. A must-have book for anyone needing to understand, account for, and reduce water utility Scope 1 emissions. ISBN: 9781789060454 (Paperback) ISBN: 9781789060461 (eBook) ISBN: 9781789060478 (ePub)
36

Zamor, Natacha. Hypoxia During Anesthesia. Edited by Matthew D. McEvoy and Cory M. Furse. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190226459.003.0022.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In the modern anesthesia machine, there are various safety checks in place to help prevent the delivery of a hypoxic gas mixture to the patient. They include the pin index safety system (PISS), diameter index safety system (DISS), failsafe valve, oxygen-nitrous oxide proportioning system, oxygen supply failure alarm, flowmeter sequence, and, most distally, the oxygen analyzer. The PISS is a feature in the high-pressure system. The DISS, failsafe valve, and oxygen failure alarm are in the intermediate-pressure system. The flowmeters, proportioning system, and oxygen analyzer are in the low-pressure system. This chapter undertakes a discussion of the distinct role of each feature and their limitations.
37

Reade, Michael C., and Peter D. Thomas. Pathophysiology of ballistic trauma. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199600830.003.0339.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Bullets and other projectiles cause ballistic trauma. Explosions wound by the effect of a blast pressure wave, penetrating fragments propelled by the explosion, the mass movement of gas interacting with the casualty or the environment, and miscellaneous effects. Most blast casualties surviving to hospital care will not have significant pressure wave injury, but some will. Blast fragmentation most commonly resembles other types of low energy transfer ballistic trauma.. The effect of bullets depends on the kinetic energy transferred and the nature of the tissues struck, with energy transfer partly determined by bullet design. Low energy transfer bullets wound by crushing and laceration, limited to the tissues struck. High energy bullets may impart kinetic energy to surrounding tissues, causing a temporary cavity which sucks in debris and damages tissues sometimes well beyond the bullet track. Predicting the extent of devitalization can be difficult at the time of initial inspection. Wound contamination, particularly with soil, may modify the usual conservative approach to initial debridement.
38

Bauman, Kristy A., and Robert C. Hyzy. Volume-controlled mechanical ventilation. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199600830.003.0095.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The goal of mechanical ventilation is to achieve adequate gas exchange while minimizing haemodynamic compromise and ventilator-associated lung injury. Volume-controlled ventilation can be delivered via several modes, including controlled mechanical ventilation, assist control (AC) and synchronized intermittent mandatory ventilation (SIMV). .In volume-controlled modes, the clinician sets the flow pattern, flow rate, trigger sensitivity, tidal volume, respiratory rate, positive end-expiratory pressure, and fraction of inspired oxygen. Patient ventilator synchrony can be enhanced by setting appropriate trigger sensitivity and inspiratory flow rate. I:E ratio can be adjusted to improve oxygenation, avoid air trapping and enhance patient comfort. There is little data regarding the benefits of one volume-controlled mode over another. In acute respiratory distress syndrome, low tidal volume ventilation in conjunction with plateau pressure limitation should be employed as there is a reduction in mortality with this strategy. This chapter addresses respiratory mechanics, modes and settings, clinical applications, and limitations of volume-controlled ventilation.
39

Gattinon, Luciano, and Eleonora Carlesso. Acute respiratory failure and acute respiratory distress syndrome. Oxford University Press, 2015. http://dx.doi.org/10.1093/med/9780199687039.003.0064.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Respiratory failure (RF) is defined as the acute or chronic impairment of respiratory system function to maintain normal oxygen and CO2 values when breathing room air. ‘Oxygenation failure’ occurs when O2 partial pressure (PaO2) value is lower than the normal predicted values for age and altitude and may be due to ventilation/perfusion mismatch or low oxygen concentration in the inspired air. In contrast, ‘ventilatory failure’ primarily involves CO2 elimination, with arterial CO2 partial pressure (PaCO2) higher than 45 mmHg. The most common causes are exacerbation of chronic obstructive pulmonary disease (COPD), asthma, and neuromuscular fatigue, leading to dyspnoea, tachypnoea, tachycardia, use of accessory muscles of respiration, and altered consciousness. History and arterial blood gas analysis is the easiest way to assess the nature of acute RF and treatment should solve the baseline pathology. In severe cases mechanical ventilation is necessary as a ‘buying time’ therapy. The acute hypoxemic RF arising from widespread diffuse injury to the alveolar-capillary membrane is termed Acute Respiratory Distress Syndrome (ARDS), which is the clinical and radiographic manifestation of acute pulmonary inflammatory states.
40

Gattinon, Luciano, and Eleonora Carlesso. Acute respiratory failure and acute respiratory distress syndrome. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780199687039.003.0064_update_001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Respiratory failure (RF) is defined as the acute or chronic impairment of respiratory system function to maintain normal oxygen and CO2 values when breathing room air. ‘Oxygenation failure’ occurs when O2 partial pressure (PaO2) value is lower than the normal predicted values for age and altitude and may be due to ventilation/perfusion mismatch or low oxygen concentration in the inspired air. In contrast, ‘ventilatory failure’ primarily involves CO2 elimination, with arterial CO2 partial pressure (PaCO2) higher than 45 mmHg. The most common causes are exacerbation of chronic obstructive pulmonary disease (COPD), asthma, and neuromuscular fatigue, leading to dyspnoea, tachypnoea, tachycardia, use of accessory muscles of respiration, and altered consciousness. History and arterial blood gas analysis is the easiest way to assess the nature of acute RF and treatment should solve the baseline pathology. In severe cases mechanical ventilation is necessary as a ‘buying time’ therapy. The acute hypoxemic RF arising from widespread diffuse injury to the alveolar-capillary membrane is termed Acute Respiratory Distress Syndrome (ARDS), which is the clinical and radiographic manifestation of acute pulmonary inflammatory states.

До бібліографії