Добірка наукової літератури з теми "Low-Mach number flows"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Low-Mach number flows".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Low-Mach number flows"
Alazard, Thomas. "Low Mach Number Flows and Combustion." SIAM Journal on Mathematical Analysis 38, no. 4 (January 2006): 1186–213. http://dx.doi.org/10.1137/050644100.
Повний текст джерелаDwyer, Harry A. "Calculation of low Mach number reacting flows." AIAA Journal 28, no. 1 (January 1990): 98–105. http://dx.doi.org/10.2514/3.10358.
Повний текст джерелаPozorski, J., and A. Kajzer. "Density diffusion in low Mach number flows." Journal of Physics: Conference Series 2367, no. 1 (November 1, 2022): 012027. http://dx.doi.org/10.1088/1742-6596/2367/1/012027.
Повний текст джерелаPenel, Yohan, Stephane Dellacherie, and Bruno Després. "Coupling strategies for compressible-low Mach number flows." Mathematical Models and Methods in Applied Sciences 25, no. 06 (March 24, 2015): 1045–89. http://dx.doi.org/10.1142/s021820251550027x.
Повний текст джерелаFilippova, O., and D. Hänel. "Lattice-BGK Model for Low Mach Number Combustion." International Journal of Modern Physics C 09, no. 08 (December 1998): 1439–45. http://dx.doi.org/10.1142/s0129183198001308.
Повний текст джерелаDuarte, Max, Ann S. Almgren, and John B. Bell. "A Low Mach Number Model for Moist Atmospheric Flows." Journal of the Atmospheric Sciences 72, no. 4 (March 31, 2015): 1605–20. http://dx.doi.org/10.1175/jas-d-14-0248.1.
Повний текст джерелаWoosely, S. E., A. J. Aspden, J. B. Bell, A. R. Kerstein, and V. Sankaran. "Numerical simulation of low Mach number reacting flows." Journal of Physics: Conference Series 125 (July 1, 2008): 012012. http://dx.doi.org/10.1088/1742-6596/125/1/012012.
Повний текст джерелаShimomura, Yutaka. "Turbulent transport modeling in low Mach number flows." Physics of Fluids 11, no. 10 (October 1999): 3136–49. http://dx.doi.org/10.1063/1.870171.
Повний текст джерелаBell, J. B., A. J. Aspden, M. S. Day, and M. J. Lijewski. "Numerical simulation of low Mach number reacting flows." Journal of Physics: Conference Series 78 (July 1, 2007): 012004. http://dx.doi.org/10.1088/1742-6596/78/1/012004.
Повний текст джерелаSchochet, Steven. "The mathematical theory of low Mach number flows." ESAIM: Mathematical Modelling and Numerical Analysis 39, no. 3 (May 2005): 441–58. http://dx.doi.org/10.1051/m2an:2005017.
Повний текст джерелаДисертації з теми "Low-Mach number flows"
Alkishriwi, Nouri. "Large eddy simulation of low mach number flows /." Aachen : Shaker, 2007. http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=016487054&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA.
Повний текст джерелаDetandt, Yves. "Numerical simulation of aerodynamic noise in low Mach number flows." Doctoral thesis, Universite Libre de Bruxelles, 2007. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210675.
Повний текст джерелаThe numerical approach complements the experimental one in the sense that the flow characteristics are deeply analyzed where experiments suggest noise production. For the numerical approach, the turbulence modeling is quite important. In the past, some models were appreciated for their good prediction of some aerodynamic parameters as lift and drag for instance. The challenge is now to tune these models for a correct prediction of the noise sources. In the low subsonic range, the flow field is completely decoupled from acoustics, and noise sources can be computed from a purely hydrodynamic simulation before this information is transferred to an acoustical solver which will compute the acoustic field at the listener position. This post processing of the aerodynamic results is not obvious since it can introduce non-physical noise into the solution.
This project considers the aspect of noise generation in turbulent jets and especially the noise generated by vortex pairing, as it occurs for instance in jet flows. The axisymmetric version of the flow solver SFELES has been part of this PhD research, and numerical results obtained on the jet are similar to the experimental values. Analyses performed on the numerical results are interesting to go to complete turbulence modeling for aeroacoustics since vortex pairing is one of the basic acoustical processes in vortex dynamics.
Currently, a standard static Smagorinski model is used for turbulence modeling. However, this model has well known limitations, and its influence on the noise sources extracted from the flow field is not very clear. For this reason, it is planned to adopt a dynamic procedure in which the subgrid scale model automatically adapts to the flow. We planned also to perform simulations with the variational multiscale approach to better simulate the different interactions between large and unresolved scales. The commercial software ACTRAN distributed by Free Field Technologies is used for the computation of sound propagation inside the acoustic domain.
Doctorat en Sciences de l'ingénieur
info:eu-repo/semantics/nonPublished
Alkishriwi, Nouri [Verfasser]. "Large Eddy Simulation of Low Mach Number Flows / Nouri Alkishriwi." Aachen : Shaker, 2007. http://d-nb.info/1164341499/34.
Повний текст джерелаHolmberg, Andreas. "Experimental Determination of Aeracoustic Sources in Low Mach Number Internal Flows." Licentiate thesis, KTH, MWL Strömningsakustik, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-26133.
Повний текст джерелаQC 20101118
Experimental characterization of aero-acoustic sources
Weng, Chenyang. "Modeling of sound-turbulence interaction in low-Mach-number duct flows." Licentiate thesis, KTH, MWL Strömningsakustik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-129319.
Повний текст джерелаVid ljudutbredning i kanaler med turbulent flöde kan diusion som orsakas av turbulens ge extra dämpning av ljudvågor utöver den som orsakas av viskoter- miska eekter. Experiment visar att vid låga frekvenser ger denna absorption det dominerande bidraget till ljuddämpning. Mekanismen för denna absorption är tur- bulensens inverkan på koherenta störningar, bland annat ljudvågor, dvs ljud - tur- bulensinteraktion. Syftet med denna undersökning är att förstå mekanismen för ljud - turbulensin- teraktion i internströmning vid låga Machtal med hjälp av teoretisk modellering och numeriska simuleringar. Ljudabsorption pga turbulens kan modelleras via mod- ellering av störningar av de turbulenta Reynoldska spänningarna och störningar i den turbulenta värmetransporten i de linjäriserade störningsekvationerna. I denna avhandling går vi igenom de linjäriserade störningsekvationerna, och olika modeller för turbulent absorption av ljudvågor utreds. Dessutom presenteras en ny icke- jämviktsmodell för små störningar av de turbulenta Reynoldska spänningarna. Den föreslagna modellen utvärderas genom att de beräknade störningsfältet jämförs med experimentella data från mätningar i rör med turbulent strömning, samt med Large Eddy Simulations (LES) av turbulent strömning. God överensstämmelse kan visas. Förutom teoretisk modellering, kommer LES också att användas för att numeriskt undersöka ljud - turbulensinteraktion. Några preliminära resultat från LES presen- teras.
QC 20130927
Huval, Danny J. "Heat transfer in variable density, low mach number, stagnating turbulent flows." Diss., Georgia Institute of Technology, 1990. http://hdl.handle.net/1853/12394.
Повний текст джерелаZucchini, Marco. "Experimental and numerical aeroacoustic investigation of impinging flows at low Mach number." [S.l. : s.n.], 2007. http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-31104.
Повний текст джерелаWeng, Chenyang. "Theoretical and numerical studies of sound propagation in low-Mach-number duct flows." Doctoral thesis, KTH, MWL Marcus Wallenberg Laboratoriet, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-168031.
Повний текст джерелаQC 20150526
Avila, Matías. "Nonlinear subgrid finite element models for low Mach number flows coupled with radiative heat transfer." Doctoral thesis, Universitat Politècnica de Catalunya, 2012. http://hdl.handle.net/10803/285809.
Повний текст джерелаLa descripción general del movimiento de un flujo implica la solución de las ecuaciones de Navier-Stokes compresibles, un problema de muy compleja estructura matemática. Estas ecuaciones proporcinan una descripción detallada de cualquier problema en mecánica de fluidos, que puede presentar distintos mecanismos no lineales que interactúan entre si. En función de la física del problema que se esté considerando, pueden derivarse modelos simplificados de las ecuaciones de Navier-Stokes mediante analisis dimensional, que ignoran algunos fenómenos físicos. Por otro lado, la transferencia de calor por radiación puede interactuar con el movimiento de un fluido, e ignorar sus efectos puede tener consecuencias importantes en las predicciones del flujo. Problemas donde hay fuego implican la evaluacion del efecto del calor por radiación. El presente trabajo está dirigido a flujos a bajo número de Mach térmicamente acoplados, donde el calor por radiación afecta al flujo. Debido a la complejidad del problema matemático, la solución numérica es muy complicada. A pesar de las diferencia en el tratamiento de la incompresibilidad, las ecuaciones de flujo a bajo número de Mach poseen una estructura matemática similar a la de flujo incompresible, en el sentido que la presión mecánica se determina a partir de la ecuación de conservación de la masa. En consecuencia poseen el mismo tipo de inestabilidades numéricas, que son el problema de condiciones de compatibilidad entre los espacios de elementos finitos de velocidad y presión, y las inestabilidades debidas a flujos con convección dominante. Estas inestabilidades pueden evitarse mediante técnicas de estabilización numérica. Muchos métodos de estabilización utilizados hoy día se basan en el método de multiscalas variacionales, donde el espacio funcional de la solucion se divide en un espacio discreto y resolubre y un espacio infinito de subscalas. El modelado de las subescalas y su influencia modifican el problema discreto proporcionando estabilidad. La calidad de la aproximación numérica final (precisión, eficiencia) depende del modelo particular de subescalas. En este trabajo se extienden estas técnicas de estabilización a problemas no lineales y acoplados. Las características que distinguen a nuestra aproximación son considerar las subsecalas como transitorias y mantener la división de escalas en todos los términos no lineales que aparecen en las ecuaciones de elementros finitos y en las del modelo de subescalas. La primera característica permite obtener mayor precisión y mejor estabilidad en la solución, la segunda característica permite obtener esquemas donde las propiedades se conservan globalmente, y mayor precisión del método. El hecho de mantener la división de escalas en todos los términos no lineales está intimamemte relacionado con el modelado de turbulencia en flujos térmicamente acoplados desde un punto de vista estrictamente numérico. La capacidad de simulación de flujo turbulento es una medida de la habilidad de modelar el efecto de las estructuras de escala fina sobre las estructuras de escala gruesa. Se muestra en esta tesis el desempeño del método para de predecir flujo turbulento. La ecuación de transporte de radiación también se aproxima numéricamente en el marco de multiscala variacional. El diseño y análisis de este método se presenta en detalle en esta tesis
Kierkegaard, Axel. "Numerical investigations of generation and propagation of sound waves in low mach number internal flows /." Stockholm : Department of Aeronautical and Vehicle Engineering, Royal Institute of Technology, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-9388.
Повний текст джерелаКниги з теми "Low-Mach number flows"
Jens, Lorenz, and United States. National Aeronautics and Space Administration., eds. Boundary conditions and the simulation of low Mach number flows. [Washington, DC]: National Aeronautics and Space Administration, 1993.
Знайти повний текст джерелаHicks, R. M. An evaluation of three two-dimensional computational fluid dynamics codes including low Reynolds numbers and transonic Mach numbers. [Moffett Field, Calif: Ames Research Center, 1991.
Знайти повний текст джерелаPletcher, R. H. On solving the compressible Navier-Stokes equations for unsteady flows at very low Mach numbers. [Washington, DC]: National Aeronautics and Space Administration, 1993.
Знайти повний текст джерелаHydro and Aeroacoustics of Low Mach Number Flows. Elsevier Science & Technology Books, 2023.
Знайти повний текст джерелаDevenport, William, and Stewart Glegg. Aeroacoustics of Low Mach Number Flows: Fundamentals, Analysis, and Measurement. Elsevier Science & Technology Books, 2017.
Знайти повний текст джерелаAeroacoustics of Low Mach Number Flows: Fundamentals, Analysis and Measurement. Elsevier Science & Technology Books, 2017.
Знайти повний текст джерелаAeroacoustics of Low Mach Number Flows: Fundamentals, Analysis and Measurement. Elsevier Science & Technology, 2023.
Знайти повний текст джерелаPreconditioning for numerical simulation of low Mach number three-dimensional viscous turbomachinery flows. [Cleveland, Ohio]: National Aeronautics and Space Administration, Lewis Research Center, 1997.
Знайти повний текст джерелаCowles, Lisa J. High Reynolds number, low Mach number, steady flow field calculations over a NACA 0012 airfoil using Navier-Stokes and Interactive Boundary Layer theory. 1987.
Знайти повний текст джерелаЧастини книг з теми "Low-Mach number flows"
Zeytounian, Radyadour Kh. "Incompressible Limit: Low Mach Number Asymptotics." In Theory and Applications of Viscous Fluid Flows, 165–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-10447-7_7.
Повний текст джерелаZeytounian, Radyadour Kh. "Low Mach Number Flow and Acoustics Equations." In Theory and Applications of Nonviscous Fluid Flows, 171–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-642-56215-0_7.
Повний текст джерелаAlmgren, Ann, John Bell, Andrew Nonaka, and Michael Zingale. "Low Mach Number Modeling of Stratified Flows." In Finite Volumes for Complex Applications VII-Methods and Theoretical Aspects, 3–15. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05684-5_1.
Повний текст джерелаCrighton, D. G. "Computational Aeroacoustics for Low Mach Number Flows." In ICASE/NASA LaRC Series, 50–68. New York, NY: Springer New York, 1993. http://dx.doi.org/10.1007/978-1-4613-8342-0_3.
Повний текст джерелаKh. Zeytounian, Radyadour. "Some Aspects of Low-Mach-Number External Flows." In Topics in Hyposonic Flow Theory, 77–113. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11414346_4.
Повний текст джерелаKh. Zeytounian, Radyadour. "Some Aspects of Low-Mach-Number Internal Flows." In Topics in Hyposonic Flow Theory, 115–62. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11414346_5.
Повний текст джерелаZeytounian, Radyadour. "Models Derived from the Theory of Low Mach Number Flows." In Asymptotic Modeling of Atmospheric Flows, 263–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-73800-5_12.
Повний текст джерелаIampietro, David, Frédéric Daude, Pascal Galon, and Jean-Marc Hérard. "A Weighted Splitting Approach for Low-Mach Number Flows." In Springer Proceedings in Mathematics & Statistics, 3–11. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57394-6_1.
Повний текст джерелаLayton, William, and Antonín Novotný. "On Lighthill’s Acoustic Analogy for Low Mach Number Flows." In New Directions in Mathematical Fluid Mechanics, 247–79. Basel: Birkhäuser Basel, 2009. http://dx.doi.org/10.1007/978-3-0346-0152-8_14.
Повний текст джерелаSteelant, J., E. Dick, and S. Pattijn. "Analysis of Multigrid Efficiency for Viscous Low Mach Number Flows." In Lecture Notes in Computational Science and Engineering, 289–305. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-58734-4_17.
Повний текст джерелаТези доповідей конференцій з теми "Low-Mach number flows"
Gardner, A. D., and K. Richter. "Boundary Layer Transition Determination for Periodic and Static Flows using Phase-Averaged Pressure Data." In Vertical Flight Society 71st Annual Forum & Technology Display, 1–12. The Vertical Flight Society, 2015. http://dx.doi.org/10.4050/f-0071-2015-10091.
Повний текст джерелаLapenna, Pasquale E., Rachele Lamioni, Pietro Paolo Ciottoli, and Francesco Creta. "Low-Mach number simulations of transcritical flows." In 2018 AIAA Aerospace Sciences Meeting. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2018. http://dx.doi.org/10.2514/6.2018-0346.
Повний текст джерелаDWYER, HARRY. "Calculation of low Mach number reacting flows." In 26th Aerospace Sciences Meeting. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1988. http://dx.doi.org/10.2514/6.1988-640.
Повний текст джерелаSachdev, Jai, Ashvin Hosangadi, and V. Sankaran. "Improved Flux Formulations for Unsteady Low Mach Number Flows." In 42nd AIAA Fluid Dynamics Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2012. http://dx.doi.org/10.2514/6.2012-3067.
Повний текст джерелаRoller, Sabine, and Claus-Dieter Munz. "The multiple pressure variables method for low Mach number flows." In 37th Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1999. http://dx.doi.org/10.2514/6.1999-174.
Повний текст джерелаLOHNER, RAINALD, and GOPAL PATNAIK. "BIC-FEM-FCT - An algorithm for low Mach-number flows." In 8th Computational Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1987. http://dx.doi.org/10.2514/6.1987-1146.
Повний текст джерелаIssa, Leila, and Issam Lakkis. "Reduced Order Models of Low Mach Number Isothermal Flows in Microchannels." In ASME 2013 11th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/icnmm2013-73150.
Повний текст джерелаKent, J. C., and A. Mikulec. "Visualization of low mach number gas flows using water analog simulation." In ICALEO® ‘88: Proceedings of the Optical Methods in Flow & Particle Diagnostics Conference. Laser Institute of America, 1988. http://dx.doi.org/10.2351/1.5057976.
Повний текст джерелаKierkegaard, Axel, and Gunilla Efraimsson. "Generation and Propagation of Sound Waves in Low Mach Number Flows." In 13th AIAA/CEAS Aeroacoustics Conference (28th AIAA Aeroacoustics Conference). Reston, Virigina: American Institute of Aeronautics and Astronautics, 2007. http://dx.doi.org/10.2514/6.2007-3485.
Повний текст джерелаCamussi, Roberto, Giulio Guj, Francesco Tomassi, Pengyuan Yao, Aldo Pieroni, and Renata Sisto. "Air Injection Through Microjets in Low Mach Number Turbulent Jet Flows." In 13th AIAA/CEAS Aeroacoustics Conference (28th AIAA Aeroacoustics Conference). Reston, Virigina: American Institute of Aeronautics and Astronautics, 2007. http://dx.doi.org/10.2514/6.2007-3644.
Повний текст джерелаЗвіти організацій з теми "Low-Mach number flows"
Pousin, Jerome G., Habib N. Najm, and Philippe Pierre Pebay. A half-explicit, non-split projection method for low Mach number flows. Office of Scientific and Technical Information (OSTI), February 2004. http://dx.doi.org/10.2172/919179.
Повний текст джерелаWinters, W. S., G. H. Evans, and C. D. Moen. CURRENT - A Computer Code for Modeling Two-Dimensional, Chemically Reaccting, Low Mach Number Flows. Office of Scientific and Technical Information (OSTI), October 1996. http://dx.doi.org/10.2172/459961.
Повний текст джерелаRamshaw, J. D., P. J. O'Rourke, and A. A. Amsden. Acoustic damping for explicit calculations of fluid flow at low Mach number. Office of Scientific and Technical Information (OSTI), January 1986. http://dx.doi.org/10.2172/6100813.
Повний текст джерелаHowe, M. S. Trailing Edge Noise Evaluated at Very Low Mach Number from Incompressible Flow Simulations. Fort Belvoir, VA: Defense Technical Information Center, March 1999. http://dx.doi.org/10.21236/ada361764.
Повний текст джерелаMcHugh, P. R. An investigation of Newton-Krylov algorithms for solving incompressible and low Mach number compressible fluid flow and heat transfer problems using finite volume discretization. Office of Scientific and Technical Information (OSTI), October 1995. http://dx.doi.org/10.2172/130602.
Повний текст джерела