Книги з теми "Low Dimensional Quantum Spin Systems"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Low Dimensional Quantum Spin Systems.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-46 книг для дослідження на тему "Low Dimensional Quantum Spin Systems".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте книги для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Hayward, Carol Ann. Quantum mechanics in low-dimensional spin systems. Birmingham: University of Birmingham, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Vanderstraeten, Laurens. Tensor Network States and Effective Particles for Low-Dimensional Quantum Spin Systems. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-64191-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Quantum theory of one-dimensional spin systems. Cambridge, UK: Cambridge Scientific Publishers, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Seki, Shinichiro. Magnetoelectric Response in Low-Dimensional Frustrated Spin Systems. Tokyo: Springer Japan, 2012. http://dx.doi.org/10.1007/978-4-431-54091-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

service), SpringerLink (Online, ed. Magnetoelectric Response in Low-Dimensional Frustrated Spin Systems. Tokyo: Springer Japan, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Bauer, Günther. Low-Dimensional Electronic Systems: New Concepts. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

NATO Advanced Research Workshop on Optical Switching in Low-Dimensional Systems (1988 Marbella, Spain). Optical switching in low-dimensional systems. New York: Plenum Press, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Morandi, Giuseppe. Field Theories for Low-Dimensional Condensed Matter Systems: Spin Systems and Strongly Correlated Electrons. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Giuseppe, Morandi, ed. Field theories for low-dimensional condensed matter systems: Spin systems and strongly correlated electrons. Berlin: Springer, 2000.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

1927-, Balkanski Minko, and Andreev Nikolai, eds. Advanced electronic technologies and systems based on low-dimensional quantum devices. Dordrecht: Kluwer Academic Publishers, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Balkanski, Minko, and Nikolai Andreev, eds. Advanced Electronic Technologies and Systems Based on Low-Dimensional Quantum Devices. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-015-8965-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

E, Brézin, and Wadia S. R, eds. The Large N expansion in quantum field theory and statistical physics: From spin systems to 2-dimensional gravity. Singapore: World Scientific, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

International Winter School on New Developments in Solid State Physics (13th 2004 Mauterndorf, Austria). Proceedings of the Thirteenth International Winterschool on New Developments in Solid State Physics: Low-dimensional systems : held in Mauterndorf, Austria, 15-20 February 2004. Edited by Bauer G. 1942-, Jantsch W. 1946-, and Kuchar F. 1941-. Amsterdam, The Netherlands: Elsevier, 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

International Winter School on New Developments in Solid State Physics (13th 2004 Mauterndorf, Austria). Proceedings of the Thirteenth International Winterschool on New Developments in Solid State Physics: Low-dimensional systems : held in Mauterndorf, Austria, 15-20 February 2004. Edited by Bauer G. 1942-, Jantsch W. 1946-, and Kuchar F. 1941-. Amsterdam, The Netherlands: Elsevier, 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Okiji, Ayao. Correlation Effects in Low-Dimensional Electron Systems: Proceedings of the 16th Taniguchi Symposium Kashikojima, Japan, October 25-29, 1993. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

ICONO '98 (1998 Moscow, Russia). ICONO '98: Quantum optics, interference phenomena in atomic systems, and high-precision measurements : 29 June-3 July 1998, Moscow, Russia. Edited by Andreev A. V, Scientific Council for Coherent and Nonlinear Optics (Rossiĭskai͡a akademii͡a nauk), and Russia (Federation). Ministerstvo nauki i tekhnologiĭ. Bellingham, Wash: SPIE--the International Society for Optical Engineering, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Vanderstraeten, Laurens. Tensor Network States and Effective Particles for Low-Dimensional Quantum Spin Systems. Springer, 2018.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Vanderstraeten, Laurens. Tensor Network States and Effective Particles for Low-Dimensional Quantum Spin Systems. Springer, 2017.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Glazov, M. M. Electron & Nuclear Spin Dynamics in Semiconductor Nanostructures. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198807308.001.0001.

Повний текст джерела
Анотація:
In recent years, the physics community has experienced a revival of interest in spin effects in solid state systems. On one hand, solid state systems, particularly semicon- ductors and semiconductor nanosystems, allow one to perform benchtop studies of quantum and relativistic phenomena. On the other hand, interest is supported by the prospects of realizing spin-based electronics where the electron or nuclear spins can play a role of quantum or classical information carriers. This book aims at rather detailed presentation of multifaceted physics of interacting electron and nuclear spins in semiconductors and, particularly, in semiconductor-based low-dimensional structures. The hyperfine interaction of the charge carrier and nuclear spins increases in nanosystems compared with bulk materials due to localization of electrons and holes and results in the spin exchange between these two systems. It gives rise to beautiful and complex physics occurring in the manybody and nonlinear system of electrons and nuclei in semiconductor nanosystems. As a result, an understanding of the intertwined spin systems of electrons and nuclei is crucial for in-depth studying and control of spin phenomena in semiconductors. The book addresses a number of the most prominent effects taking place in semiconductor nanosystems including hyperfine interaction, nuclear magnetic resonance, dynamical nuclear polarization, spin-Faraday and -Kerr effects, processes of electron spin decoherence and relaxation, effects of electron spin precession mode-locking and frequency focusing, as well as fluctuations of electron and nuclear spins.
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Seki, Shinichiro. Magnetoelectric Response in Low-Dimensional Frustrated Spin Systems. Springer, 2014.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Barnes, Crispin H. W. Quantum Transport Phenomena in Low-Dimensional Electron Systems. Cambridge University Press, 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Barnes, Crispin H. W. Quantum Transport Phenomena in Low-Dimensional Electron Systems. Cambridge University Press, 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Low-Dimensional Nanoscale Systems on Discrete Spaces. World Scientific Publishing Company, 2007.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Hüvonen, Dan. Terahertz spectroscopy of low-dimensional spin systems: Madalamõõduliste spinnsüsteemide terahertsspektroskoopia. Tallinn, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Mathey, Ludwig G. Quantum phases of low-dimensional ultra-cold atom systems. 2007.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Zabrodin, Anton. Quantum spin chains and classical integrable systems. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198797319.003.0013.

Повний текст джерела
Анотація:
This chapter is a review of the recently established quantum-classical correspondence for integrable systems based on the construction of the master T-operator. For integrable inhomogeneous quantum spin chains with gl(N)-invariant R-matrices in finite-dimensional representations, the master T-operator is a sort of generating function for the family of commuting quantum transfer matrices depending on an infinite number of parameters. Any eigenvalue of the master T-operator is the tau-function of the classical modified KP hierarchy. It is a polynomial in the spectral parameter which is identified with the 0th time of the hierarchy. This implies a remarkable relation between the quantum spin chains and classical many-body integrable systems of particles of the Ruijsenaars-Schneider type. As an outcome, a system of algebraic equations can be obtained for the spectrum of the spin chain Hamiltonians.
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Balkanski, M. Advanced Electronic Technologies and Systems Based on Low-Dimensional Quantum Devices. Springer, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Andreev, Nikolai, and M. Balkanski. Advanced Electronic Technologies and Systems Based on Low-Dimensional Quantum Devices. Springer, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

(Editor), Hartmut Haug, and L. Banyai (Editor), eds. Optical Switching in Low-Dimensional Systems (NATO Science Series: B:). Springer, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Londergan, J. Timothy, David P. Murdock, and John P. Carini. Binding and Scattering in Two-Dimensional Systems: Applications to Quantum Wires, Waveguides and Photonic Crystals. Springer London, Limited, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Londergan, J. Timothy, David P. Murdock, and John P. Carini. Binding and Scattering in Two-Dimensional Systems: Applications to Quantum Wires, Waveguides and Photonic Crystals. Springer, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Montangero, Simone. Introduction to Tensor Network Methods: Numerical simulations of low-dimensional many-body quantum systems. Springer, 2018.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Brezin, E. The Large N Expansion in Quantum Field Theory and Statistical Physics: From Spin Systems to 2-Dimensional Gravity. World Scientific Publishing Company, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Brezin, E. The Large N Expansion in Quantum Field Theory and Statistical Physics: From Spin Systems to 2-Dimensional Gravity. World Scientific Pub Co Inc, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Londergan, J. Timothy, David P. Murdock, and John P. Carini. Binding and Scattering in Two-Dimensional Systems: Applications to Quantum Wires, Waveguides and Photonic Crystals (Lecture Notes in Physics). Springer, 2000.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Low-dimensional electronic systems: New concepts : proceedings of the Seventh International Winter School, Mauterndorf, Austria, February 24-28, 1992. Berlin: Springer-Verlag, 1992.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Correlation effects in low-dimensional electron systems: Proceedings of the 16th Taniguchi symposium, Kashikojima, Japan, October 25-29, 1993. Berlin: Springer-Verlag, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Low-Dimensional Electronic Systems: New Concepts : Proceedings of the Seventh International Winter School, Mauterndorf, Austria, February 24-28, 1992 (Springer Series in Solid-State Sciences). Springer, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Tsaousidou, M. Thermopower of low-dimensional structures: The effect of electron–phonon coupling. Edited by A. V. Narlikar and Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533053.013.13.

Повний текст джерела
Анотація:
This article examines the effect of electron-phonon coupling on the thermopower of low-dimensional structures. It begins with a review of the theoretical approaches and the basic concepts regarding phonon drag under different transport regimes in two- and one-dimensional systems. It then considers the thermopower of two-dimensional semiconductor structures, focusing on phonon drag in semi-classical two-dimensional electron gases confined in semiconductor nanostructures. It also analyzes the influence of phonon drag on the thermopower of semiconductor quantum wires and describes the phonon-drag thermopower of doped single-wall carbon nanotubes. The article compares theory and experiment in order to demonstrate the role of phonon-drag and electron-phonon coupling in the thermopower in two and one dimensions.
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Eckle, Hans-Peter. Models of Quantum Matter. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780199678839.001.0001.

Повний текст джерела
Анотація:
This book focuses on the theory of quantum matter, strongly interacting systems of quantum many–particle physics, particularly on their study using exactly solvable and quantum integrable models with Bethe ansatz methods. Part 1 explores the fundamental methods of statistical physics and quantum many–particle physics required for an understanding of quantum matter. It also presents a selection of the most important model systems to describe quantum matter ranging from the Hubbard model of condensed matter physics to the Rabi model of quantum optics. The remaining five parts of the book examines appropriate special cases of these models with respect to their exact solutions using Bethe ansatz methods for the ground state, finite–size, and finite temperature properties. They also demonstrate the quantum integrability of an exemplary model, the Heisenberg quantum spin chain, within the framework of the quantum inverse scattering method and through the algebraic Bethe ansatz. Further models, whose Bethe ansatz solutions are derived and examined, include the Bose and Fermi gases in one dimension, the one–dimensional Hubbard model, the Kondo model, and the quantum Tavis–Cummings model, the latter a model descendent from the Rabi model.
Стилі APA, Harvard, Vancouver, ISO та ін.
41

(Editor), A. V. Andreev, Sergey N. Bagayev (Editor), Anatoliy S. Chirkin (Editor), and Vladimir I. Denisov (Editor), eds. Quantum Optics, Interference Phenomena in Atomic Systems, and High-Precision Measurements: 29 June-3 July 1998, Moscow, Russia (Icono '98). SPIE-International Society for Optical Engine, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Nikolic, Branislav K., Liviu P. Zarbo, and Satofumi Souma. Spin currents in semiconductor nanostructures: A non-equilibrium Green-function approach. Edited by A. V. Narlikar and Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533046.013.24.

Повний текст джерела
Анотація:
This article examines spin currents and spin densities in realistic open semiconductor nanostructures using different tools of quantum-transport theory based on the non-equilibrium Green function (NEGF) approach. It begins with an introduction to the essential theoretical formalism and practical computational techniques before explaining what pure spin current is and how pure spin currents can be generated and detected. It then considers the spin-Hall effect (SHE), and especially the mesoscopic SHE, along with spin-orbit couplings in low-dimensional semiconductors. It also describes spin-current operator, spindensity, and spin accumulation in the presence of intrinsic spin-orbit couplings, as well as the NEGF approach to spin transport in multiterminal spin-orbit-coupled nanostructures. The article concludes by reviewing formal developments with examples drawn from the field of the mesoscopic SHE in low-dimensional spin-orbit-coupled semiconductor nanostructures.
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Horing, Norman J. Morgenstern. Quantum Statistical Field Theory. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198791942.001.0001.

Повний текст джерела
Анотація:
The methods of coupled quantum field theory, which had great initial success in relativistic elementary particle physics and have subsequently played a major role in the extensive development of non-relativistic quantum many-particle theory and condensed matter physics, are at the core of this book. As an introduction to the subject, this presentation is intended to facilitate delivery of the material in an easily digestible form to students at a relatively early stage of their scientific development, specifically advanced undergraduates (rather than second or third year graduate students), who are mathematically strong physics majors. The mechanism to accomplish this is the early introduction of variational calculus with particle sources and the Schwinger Action Principle, accompanied by Green’s functions, and, in addition, a brief derivation of quantum mechanical ensemble theory introducing statistical thermodynamics. Important achievements of the theory in condensed matter and quantum statistical physics are reviewed in detail to help develop research capability. These include the derivation of coupled field Green’s function equations of motion for a model electron-hole-phonon system, extensive discussions of retarded, thermodynamic and non-equilibrium Green’s functions, and their associated spectral representations and approximation procedures. Phenomenology emerging in these discussions includes quantum plasma dynamic, nonlocal screening, plasmons, polaritons, linear electromagnetic response, excitons, polarons, phonons, magnetic Landau quantization, van der Waals interactions, chemisorption, etc. Considerable attention is also given to low-dimensional and nanostructured systems, including quantum wells, wires, dots and superlattices, as well as materials having exceptional conduction properties such as superconductors, superfluids and graphene.
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Blamire, M. G., and J. W. A. Robinson. Superconducting Spintronics and Devices. Edited by A. V. Narlikar. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780198738169.013.14.

Повний текст джерела
Анотація:
This article reviews the current status of superconducting spintronics and devices, with particular emphasis on the critical issues and developments needed for their application to low-power quantum computing. It first provides an overview of conventional spintronics before discussing the rationale for superconducting spintronics. It then considers the proximity effects and Josephson junctions in superconductor-ferromagnet heterostructures, along with spin transport in the superconducting state. It also examines the issue of memory in superconducting spintronics, especially with respect to reading and writing magnetic data via superconducting states, and how to generate memory logic in such devices. Finally, it evaluates the potential application of superconductor-ferromagnetic insulator devices as thermoelectric systems in low-temperature electronic circuits.
Стилі APA, Harvard, Vancouver, ISO та ін.
45

McDuff, Dusa, and Dietmar Salamon. Introduction. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198794899.003.0001.

Повний текст джерела
Анотація:
Symplectic topology has a long history. It has its roots in classical mechanics and geometric optics and in its modern guise has many connections to other fields of mathematics and theoretical physics ranging from dynamical systems, low-dimensional topology, algebraic and complex geometry, representation theory, and homological algebra, to classical and quantum mechanics, string theory, and mirror symmetry. One of the origins of the subject is the study of the equations of motion arising from the Euler–Lagrange equations of a one-dimensional variational problem. The Hamiltonian formalism arising from a Legendre transformation leads to the notion of a ...
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Narlikar, A. V., ed. The Oxford Handbook of Small Superconductors. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780198738169.001.0001.

Повний текст джерела
Анотація:
This handbook examines cutting-edge developments in research and applications of small or mesoscopic superconductors, offering a glimpse of what might emerge as a giga world of nano superconductors. Contributors, who are eminent frontrunners in the field, share their insights on the current status and great promise of small superconductors in the theoretical, experimental, and technological spheres. They discuss the novel and intriguing features and theoretical underpinnings of the phenomenon of mesoscopic superconductivity, the latest fabrication methods and characterization tools, and the opportunities and challenges associated with technological advances. The book is organized into three parts. Part I deals with developments in basic research of small superconductors, including local-scale spectroscopic studies of vortex organization in such materials, Andreev reflection and related studies in low-dimensional superconducting systems, and research on surface and interface superconductivity. Part II covers the materials aspects of small superconductors, including mesoscopic effects in superconductor–ferromagnet hybrids, micromagnetic measurements on electrochemically grown mesoscopic superconductors, and magnetic flux avalanches in superconducting films with mesoscopic artificial patterns. Part III reviews the current progress in the device technology of small superconductors, focusing on superconducting spintronics and devices, barriers in Josephson junctions, hybrid superconducting devices based on quantum wires, superconducting nanodevices, superconducting quantum bits of information, and the use of nanoSQUIDs in the investigation of small magnetic systems.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії