Добірка наукової літератури з теми "Longitudinal vehicle dynamic"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Longitudinal vehicle dynamic".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Longitudinal vehicle dynamic"

1

Noei, Shirin, Mohammadreza Parvizimosaed, and Mohammadreza Noei. "Longitudinal Control for Connected and Automated Vehicles in Contested Environments." Electronics 10, no. 16 (August 18, 2021): 1994. http://dx.doi.org/10.3390/electronics10161994.

Повний текст джерела
Анотація:
The Society of Automotive Engineers (SAE) defines six levels of driving automation, ranging from Level 0 to Level 5. Automated driving systems perform entire dynamic driving tasks for Levels 3–5 automated vehicles. Delegating dynamic driving tasks from driver to automated driving systems can eliminate crashes attributed to driver errors. Sharing status, sharing intent, seeking agreement, or sharing prescriptive information between road users and vehicles dedicated to automated driving systems can further enhance dynamic driving task performance, safety, and traffic operations. Extensive simulation is required to reduce operating costs and achieve an acceptable risk level before testing cooperative automated driving systems in laboratory environments, test tracks, or public roads. Cooperative automated driving systems can be simulated using a vehicle dynamics simulation tool (e.g., CarMaker and CarSim) or a traffic microsimulation tool (e.g., Vissim and Aimsun). Vehicle dynamics simulation tools are mainly used for verification and validation purposes on a small scale, while traffic microsimulation tools are mainly used for verification purposes on a large scale. Vehicle dynamics simulation tools can simulate longitudinal, lateral, and vertical dynamics for only a few vehicles in each scenario (e.g., up to ten vehicles in CarMaker and up to twenty vehicles in CarSim). Conventional traffic microsimulation tools can simulate vehicle-following, lane-changing, and gap-acceptance behaviors for many vehicles in each scenario without simulating vehicle powertrain. Vehicle dynamics simulation tools are more compute-intensive but more accurate than traffic microsimulation tools. Due to software architecture or computing power limitations, simplifying assumptions underlying convectional traffic microsimulation tools may have been a necessary compromise long ago. There is, therefore, a need for a simulation tool to optimize computational complexity and accuracy to simulate many vehicles in each scenario with reasonable accuracy. This research proposes a traffic microsimulation tool that employs a simplified vehicle powertrain model and a model-based fault detection method to simulate many vehicles with reasonable accuracy at each simulation time step under noise and unknown inputs. Our traffic microsimulation tool considers driver characteristics, vehicle model, grade, pavement conditions, operating mode, vehicle-to-vehicle communication vulnerabilities, and traffic conditions to estimate longitudinal control variables with reasonable accuracy at each simulation time step for many conventional vehicles, vehicles dedicated to automated driving systems, and vehicles equipped with cooperative automated driving systems. Proposed vehicle-following model and longitudinal control functions are verified for fourteen vehicle models, operating in manual, automated, and cooperative automated modes over two driving schedules under three malicious fault magnitudes on transmitted accelerations.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

CORNELIU, LAZAR, and TIGANASU ALEXANDRU. "Control-Oriented Models for vehicle longitudinal motion." Journal of Engineering Sciences and Innovation 3, no. 3 (September 16, 2018): 251–64. http://dx.doi.org/10.56958/jesi.2018.3.3.251.

Повний текст джерела
Анотація:
The use of mathematical models is widespread both in simulating the dynamic behavior of vehicle longitudinal motion and in designing related controllers. This paper focuses on control-oriented models for longitudinal motion which better captured the plant dynamics for vehicles with internal combustion engines. Firstly, a review of some simplified models is presented and secondly, two more complex control-oriented models which take into account the powertrain dynamics are proposed.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Dai, Wei, Yongjun Pan, Chuan Min, Sheng-Peng Zhang, and Jian Zhao. "Real-Time Modeling of Vehicle’s Longitudinal-Vertical Dynamics in ADAS Applications." Actuators 11, no. 12 (December 16, 2022): 378. http://dx.doi.org/10.3390/act11120378.

Повний текст джерела
Анотація:
The selection of an appropriate method for modeling vehicle dynamics heavily depends on the application. Due to the absence of human intervention, the demand for an accurate and real-time model of vehicle dynamics for intelligent control increases for autonomous vehicles. This paper develops a multibody vehicle model for longitudinal-vertical dynamics applicable to advanced driver assistance (ADAS) applications. The dynamic properties of the chassis, suspension, and tires are considered and modeled, which results in accurate vehicle dynamics and states. Unlike the vehicle dynamics models built into commercial software packages, such as ADAMS and CarSim, the proposed nonlinear dynamics model poses the equations of motion using a subset of relative coordinates. Therefore, the real-time simulation is conducted to improve riding performance and transportation safety. First, a vehicle system is modeled using a semi-recursive multibody dynamics formulation, and the vehicle kinematics and dynamics are accurately calculated using the system tree-topology. Second, a fork-arm removal technique based on the rod-removal technique is proposed to reduce the number of bodies, relative coordinates, and equations constrained by loop-closure. This increase the computational efficiency even further. Third, the dynamic simulations of the vehicle are performed on bumpy and sloping roads. The accuracy and efficiency of the numerical results are compared to the reference data. The comparative results demonstrate that the proposed vehicle model is effective. This efficient model can be utilized for the intelligent control of vehicle ADAS applications, such as forward collision avoidance, adaptive cruise control, and platooning.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Feng, Xingkai, Yuhui Wang, Qingxian Wu, and Xiaohui Zhang. "Longitudinal coordination control of hypersonic vehicle based on dynamic equation." Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 233, no. 14 (May 3, 2019): 5205–16. http://dx.doi.org/10.1177/0954410019844432.

Повний текст джерела
Анотація:
The complex nonlinearities of hypersonic vehicles can lead to strong couplings between variables, which will bring great challenges to flight control. For this purpose, this paper proposes a novel coupling analysis method for the longitudinal dynamics of a hypersonic vehicle, based on which a coordination controller is designed to reduce the negative effects of the couplings. Initially, according to the coupling characteristics of the hypersonic vehicle, a novel coupling analysis method based on the dynamic equations is proposed to describe the dynamic coupling relationships between variables. Then, a coordination control scheme is designed by combining sliding mode control and the dynamic coupling matrix obtained. Subsequently, the asymptotic stability of the closed-loop system is proved by using Lyapunov theory, and the simulation results are given to verify the effectiveness of the proposed dynamic coupling matrix-based coordination control.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Li, Wenfei, Huiyun Li, Kun Xu, Zhejun Huang, Ke Li, and Haiping Du. "Estimation of Vehicle Dynamic Parameters Based on the Two-Stage Estimation Method." Sensors 21, no. 11 (May 26, 2021): 3711. http://dx.doi.org/10.3390/s21113711.

Повний текст джерела
Анотація:
Vehicle dynamic parameters are of vital importance to establish feasible vehicle models which are used to provide active controls and automated driving control. However, most vehicle dynamics parameters are difficult to obtain directly. In this paper, a new method, which requires only conventional sensors, is proposed to estimate vehicle dynamic parameters. The influence of vehicle dynamic parameters on vehicle dynamics often involves coupling. To solve the problem of coupling, a two-stage estimation method, consisting of multiple-models and the Unscented Kalman Filter, is proposed in this paper. During the first stage, the longitudinal vehicle dynamics model is used. Through vehicle acceleration/deceleration, this model can be used to estimate the distance between the vehicle centroid and vehicle front, the height of vehicle centroid and tire longitudinal stiffness. The estimated parameter can be used in the second stage. During the second stage, a single-track with roll dynamics vehicle model is adopted. By making vehicle continuous steering, this vehicle model can be used to estimate tire cornering stiffness, the vehicle moment of inertia around the yaw axis and the moment of inertia around the longitudinal axis. The simulation results show that the proposed method is effective and vehicle dynamic parameters can be well estimated.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Cheng, Shuo, Ming-ming Mei, Shi-yong Guo, Liang Li, Cong-zhi Liu, Xiang Chen, and Xiu-heng Wu. "A novel coupling strategy for automated vehicle’s longitudinal dynamic stability." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 235, no. 10-11 (April 5, 2021): 2753–63. http://dx.doi.org/10.1177/09544070211006530.

Повний текст джерела
Анотація:
The autonomous vehicle has been developed widely, and attracted much attention of global automotive industry. Wherein, longitudinal dynamics control is one of the most crucial issues of autonomous vehicles. The throttle-by-wire (TBW) control could implement the acceleration command through adjusting the throttle opening, thus control the driving torque of the fuel autonomous vehicle. However, an automated vehicle controlled by traditional TBW in low-friction road conditions could reach large slip ratio region, which could adversely cause the loss of vehicle longitudinal dynamic stability. To tackle the mentioned issues, this paper proposes an adaptive sliding-mode control (SMC) algorithm to optimize tire slip speed of the automated vehicle. When the intervention conditions of active acceleration are satisfied, the TBW can take over the throttle opening control instead of the driver. Firstly, the SMC can calculate an intervention of the effective torque input based on tire torque balance dynamics. Moreover, a traction control system (TCS) and TBW coupling strategy based on the logic threshold method is put forward to response the optimum slip speed curve. Thus, during the vehicle starting process, a three-layer control strategy consisting of TBW, torque control, and pressure control of TCS is involved. Finally, real-car snow and ice road tests are carried out, and experimental results demonstrate great performance of the proposed strategy in complicated low-friction road.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Fauzi, Ahmad, Saiful Amri Mazlan, and Hairi Zamzuri. "Modeling and Validation of Quarter Vehicle Traction Model." Applied Mechanics and Materials 554 (June 2014): 489–93. http://dx.doi.org/10.4028/www.scientific.net/amm.554.489.

Повний текст джерела
Анотація:
This manuscript provides modeling and validation of a quarter car vehicle model to study the wheel dynamics behavior in longitudinal direction. The model is consists of a longitudinal slip model subsystem, a quarter body dynamic and tire subsystems. The quarter vehicle model was then validated using an instrumented experimental vehicle based on the driver input from brake and throttle pedals. Vehicle transient handling dynamic tests known as sudden braking test was performed for the purpose of validation. Several behaviors of the vehicle dynamics were observed during braking maneuvers such as body longitudinal velocity, wheel linear velocity and tire longitudinal slip at a quarter of the vehicle. Comparisons of the experimental results and model responses with sudden braking imposed motions were made. Consequently, the trends between simulation results and experimental data were found almost similar with an acceptable level of error for the application at hand.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Lu, Yongjie, Tongtong Wang, and Hangxing Zhang. "Multiobjective Synchronous Control of Heavy-Duty Vehicles Based on Longitudinal and Lateral Coupling Dynamics." Shock and Vibration 2022 (July 21, 2022): 1–19. http://dx.doi.org/10.1155/2022/6987474.

Повний текст джерела
Анотація:
The steering system, suspension system, and braking system of the vehicle are interrelated, so the ride comfort and handling stability of the vehicle are also closely related. But the vertical and lateral dynamics equations and controls system of the vehicle are always independent of each other, and the multiobjective control is generally achieved through the coordination of control algorithms. In this paper, taking the dynamic load of the tire as a link, the vertical dynamic model and the lateral dynamic model of heavy-duty vehicle are coupled. When the heavy-duty vehicle is turning, the proposed coupling model not only reflects the influence of the front wheel angle on the vertical motion and the vertical tire load, but also reflects the unevenness of the road surface on vehicle lateral motion. In order to improve the handling stability and transient safety of the vehicle, a synchronous control system combining six-wheel steering and front wheel active steering is proposed. It solves the problem that it is difficult to effectively track the desired yaw rate for the three-axle all-wheel steering vehicle with the middle rear wheel angle as the control input. Under the framework of the vehicle vertical/lateral unified coupling dynamics model, the semiactive suspension system controlled by fuzzy PID and the six-wheel active steering system combined with fuzzy control and fuzzy PID control are integrated. It is verified that the synchronous control method effectively optimizes the vertical and lateral motion characteristics of heavy-duty vehicles during steering and, at the same time, improves the ride comfort and steering stability.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Dai, L., L. Xu, and B. Setiawan. "A new non-linear approach to analysing the dynamic behaviour of tank vehicles subjected to liquid sloshing." Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics 219, no. 1 (March 1, 2005): 75–86. http://dx.doi.org/10.1243/146441905x9944.

Повний текст джерела
Анотація:
This research presents a new approach to investigating the non-linear dynamic behaviour of partially filled tank vehicles under large-amplitude liquid sloshing. A non-linear impact model for liquid sloshing in partially filled liquid tank vehicles is established for investigating the longitudinal dynamic characteristics of tank vehicles under typical driving conditions. The dynamic fluid motion within the tank is modelled by utilizing an analogy system together with an impact subsystem for longitudinal oscillations. The forces on the fifth wheel and the axles of the vehicle are determined in considering the effects of the liquid sloshing in the tank. The non-linear dynamic behaviours of the tank vehicle subjected to liquid sloshing and the excitations generated by rough roads are analysed and compared with those of linear models. Numerical simulation of the tank vehicle under typical rough road conditions is performed.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Nie, Xiaobo, Chuan Min, Yongjun Pan, Ke Li, and Zhixiong Li. "Deep-Neural-Network-Based Modelling of Longitudinal-Lateral Dynamics to Predict the Vehicle States for Autonomous Driving." Sensors 22, no. 5 (March 4, 2022): 2013. http://dx.doi.org/10.3390/s22052013.

Повний текст джерела
Анотація:
Multibody models built in commercial software packages, e.g., ADAMS, can be used for accurate vehicle dynamics, but computational efficiency and numerical stability are very challenging in complex driving environments. These issues can be addressed by using data-driven models, owing to their robust generalization and computational speed. In this study, we develop a deep neural network (DNN) based model to predict longitudinal-lateral dynamics of an autonomous vehicle. Dynamic simulations of the autonomous vehicle are performed based on a semirecursive multibody method for data acquisition. The data are used to train and test the DNN model. The DNN inputs include the torque applied on wheels and the vehicle’s initial speed that imitates a double lane change maneuver. The DNN outputs include the longitudinal driving distance, the lateral driving distance, the final longitudinal velocities, the final lateral velocities, and the yaw angle. The predicted vehicle states based on the DNN model are compared with the multibody model results. The accuracy of the DNN model is investigated in detail in terms of error functions. The DNN model is verified within the framework of a commercial software package CarSim. The results demonstrate that the DNN model predicts accurate vehicle states in real time. It can be used for real-time simulation and preview control in autonomous vehicles for enhanced transportation safety.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Longitudinal vehicle dynamic"

1

Geamanu, Marcel-Stefan. "Estimation and dynamic longitudinal control of an electric vehicle with in-wheel electric motors." Phd thesis, Université Paris Sud - Paris XI, 2013. http://tel.archives-ouvertes.fr/tel-00871231.

Повний текст джерела
Анотація:
The main objective of the present thesis focuses on the integration of the in-wheel electric motors into the conception and control of road vehicles. The present thesis is the subject of the grant 186-654 (2010-2013) between the Laboratory of Signals and Systems (L2S-CNRS) and the French Institute of Petrol and New Energies (IFPEN). The thesis work has originally started from a vehicular electrification project, equipped with in-wheel electric motors at the rear axle, to obtain a full electric urban use and a standard extra-urban use with energy recovery at the rear axle in braking phases. The standard internal combustion engines have the disadvantage that complex estimation techniques are necessary to compute the instantaneous engine torque. At the same time, the actuators that control the braking system have some delays due to the hydraulic and mechanical circuits. These aspects represent the primary motivation for the introduction and study of the integration of the electric motor as unique propelling source for the vehicle. The advantages brought by the use of the electric motor are revealed and new techniques of control are set up to maximize its novelty. Control laws are constructed starting from the key feature of the electric motor, which is the fact that the torque transmitted at the wheel can be measured, depending on the current that passes through the motor. Another important feature of the electric motor is its response time, the independent control, as well as the fact that it can produce negative torques, in generator mode, to help decelerate the vehicle and store energy at the same time. Therefore, the novelty of the present work is that the in-wheel electric motor is considered to be the only control actuator signal in acceleration and deceleration phases, simplifying the architecture of the design of the vehicle and of the control laws. The control laws are focused on simplicity and rapidity in order to generate the torques which are transmitted at the wheels. To compute the adequate torques, estimation strategies are set up to produce reliable maximum friction estimation. Function of this maximum adherence available at the contact between the road and the tires, an adequate torque will be computed in order to achieve a stable wheel behavior in acceleration as well as in deceleration phases. The critical issue that was studied in this work was the non-linearity of the tire-road interaction characteristics and its complexity to estimate when it varies. The estimation strategy will have to detect all changes in the road-surface adherence and the computed control law should maintain the stability of the wheel even when the maximum friction changes. Perturbations and noise are also treated in order to test the robustness of the proposed estimation and control approaches.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lopes, Juliana. "Estratégias de gerenciamento de potência em ônibus de transporte urbano elétrico híbrido série." Universidade de São Paulo, 2008. http://www.teses.usp.br/teses/disponiveis/18/18149/tde-19012011-110222/.

Повний текст джерела
Анотація:
Unidades propulsoras híbrido elétricas são uma alternativa em potencial para a redução do consumo de combustível e emissões de poluentes, quando empregadas em veículos de transporte público. A configuração híbrido elétrica de interesse é a série, na qual as fontes de potência, para o motor elétrico de tração, são compostas por um banco de baterias e uma unidade formada pela junção entre um motor à combustão interna e um gerador. Na presente Dissertação foi realizada a modelagem de um veículo elétrico híbrido série na qual diferentes estratégias de gerenciamento de potência foram investigadas. Dentre as estratégias de interesse, duas são fundamentadas em regras e a terceira em sistemas fuzzy. Resultados obtidos comprovaram que a fundamentada em sistemas fuzzy possibilita maior economia de combustível, permitindo que o motor à combustão interna forneça menos potência, face o emprego das baseadas em regras. Dessa forma, a utilização de sistemas fuzzy no gerenciamento de potência do veículo, permite o emprego de um motor à combustão menos potente, de menor custo, sem o comprometimento do desempenho do veículo. As simulações do presente modelo de veículo híbrido foram realizadas no ambiente Matlab/Simulink® 7.3.0.
Hybrid electric propulsion units are a potential alternative to the reduction of fuel consumption and pollutant emissions, when used in public transport vehicles. The electric hybrid configuration of interest is the series, in which the energy supplies to the traction electric motor are composed of batteries and a unit represented by the connection of an internal combustion engine and a generator. This Dissertation presents the modeling of a series hybrid electric vehicle in which different energy management strategies were investigated. Among the strategies of interest, two are based on rules and one on fuzzy systems. The obtained results proved that the strategy based on fuzzy systems improved the fuel economy, allowing the internal combustion engine to supply less power than the use of the strategies based on rules. Therefore, the use of fuzzy systems in the energy management of the vehicle allows for the adoption of a less potent and cheaper internal combustion engine, without compromising the vehicles performance. The simulations of the present model of the hybrid electric vehicle were performed in the Matlab/Simulink® 7.3.0 environment.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Tesař, Michal. "Dynamické parametry sportovního a konvenčního vozidla." Master's thesis, Vysoké učení technické v Brně. Ústav soudního inženýrství, 2018. http://www.nusl.cz/ntk/nusl-382225.

Повний текст джерела
Анотація:
This master´s thesis is focused on chosen dynamic parameters of a sport vehicle represented by student formula Dragon 7 and comparison of these parameters with conventional vehicles represented by two exemplars of ŠKODA Superb III. Driving tests used for the comparison are simulating the real driving situations from the roads in order to possibly use those for the road accident analysis in the future. All the measurements were taken under lower adhesion conditions which might help solving of the road accidents under such conditions in the future. There is also a description of vehicle driving systems and components which have an influence on the vehicle´s driving dynamics incorporated in the thesis.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hamersma, H. A. (Herman Adendorff). "Longitudinal vehicle dynamics control for improved vehicle safety." Diss., University of Pretoria, 2013. http://hdl.handle.net/2263/40829.

Повний текст джерела
Анотація:
An autonomous vehicle is a vehicle that is capable of navigating and driving with no human intervention whatsoever through the utilization of various sensors and positioning systems. The possible applications of autonomous vehicles are widespread, ranging from the aerospace industry to the mining and military sectors where the exposure of human operators to the operating conditions is hazardous to their health and safety. Automobile accidents have become the leading cause of death in certain segments of the world population. Removing the human driver from the decision-making process through automation may result in significantly safer highways. Although full autonomy may be the ultimate goal, there is huge scope for systems that aid the driver in decision making or systems that take over from the driver under conditions where the human driver fails. The aim of the longitudinal control system to be implemented on the Land Rover test vehicle in this study is to improve the vehicle’s safety by controlling the vehicle’s longitudinal behaviour. A common problem with sports-utility-vehicles is the low rollover threshold, due to a high centre of gravity. Rather than modifying the vehicle to increase the rollover threshold, the aim of the control system presented here is to prevent the vehicle from exceeding speeds that would cause the vehicle to reach its rollover threshold. In order to develop a control system that autonomously controls the longitudinal degree of freedom, a model of the test vehicle (a 1997 Land Rover Defender 110 Wagon) was developed in MSC.ADAMS/View and validated experimentally. The model accurately captures the response of the test vehicle to supply forces as generated by the engine and demand forces applied through drag, braking and engine braking. Furthermore, the model has been validated experimentally to provide reliable simulation results for lateral and vertical dynamics. The control system was developed by generating a reference speed that the vehicle must track. This reference speed was formulated by taking into account the vehicle’s limits due to lateral acceleration, combined lateral and longitudinal acceleration and the vehicle’s performance capabilities. The control system generates the desired throttle pedal position, hydraulic pressure in the brake lines, clutch position and gear selection as output. The MSC.ADAMS\View model of the test vehicle was used to evaluate the performance of the control system on various racetracks of which the GPS coordinates were available. The simulation results indicate that the control system performs as expected. Finally, the control system was implemented on the test vehicle and the performance was evaluated by conducting field tests in the form of a severe double lane change manoeuvre. The results of the field tests indicated that the control system limited the acceleration vector of the vehicle’s centre of gravity to prescribed limits, as predicted by the simulation results.
Dissertation (MEng)--University of Pretoria, 2013.
gm2014
Mechanical and Aeronautical Engineering
unrestricted
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Chambers, John R. "Longitudinal dynamic modeling and control of powered parachute aircraft /." Online version of thesis, 2007. http://hdl.handle.net/1850/3928.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Heffernan, Matthew Evan Bevly David M. "Simulation, estimation, and experimentation of vehicle longitudinal dynamics that effect fuel economy." Auburn, Ala., 2006. http://repo.lib.auburn.edu/2006%20Summer/Theses/HEFFERNAN_MATTHEW_41.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Richier, Mathieu. "Conception de dispositifs actifs de maintien de stabilité pour les véhicules évoluant en milieux naturels." Phd thesis, Université Blaise Pascal - Clermont-Ferrand II, 2013. http://tel.archives-ouvertes.fr/tel-01066614.

Повний текст джерела
Анотація:
La problématique de cette thèse réside dans la caractérisation et le maintien de la stabilité des Véhicules Légers Tout Terrain (VLTT). Elle se concentre plus particulièrement sur le développement de systèmes de sécurité actifs capables à la fois de prévenir le conducteur des risques encourus mais aussi de les limiter afin d'assurer l'évolution du véhicule dans une zone de stabilité prédéfinie. Comme le cadre expérimental privilégié est l'application à la stabilité des quadricycles légers à moteurs, plus connus sous le terme anglophone "quad", une des contraintes du projet a été de se limiter à un système sensoriel bas-coût afin d'être en mesure d'industrialiser un tel système. En premier lieu, les métriques de stabilité (Transfert de Charge Latéral et Longitudinal : TCLa et TCLo) ont été choisies grâce à une étude préliminaire sur la stabilité des VLTT. Par la suite, une modélisation 2D en roulis et en tangage avec la prise en compte des déplacements du pilote sur le véhicule sont présentées, ce qui permet d'estimer respectivement le TCLa et le TCLo uniquement à partir de la mesure de l'accélération latérale et longitudinale. Étant donné que pour la suite des travaux, l'anticipation du risque de renversement latéral est nécessaire, un modèle 2D en lacet du véhicule est proposé afin d'obtenir un modèle analytique décrivant la dynamique latérale du véhicule. La suite du mémoire présente les différentes techniques d'observation proposées pour l'estimation des variables et paramètres non-directement mesurables du modèle en lacet du véhicule et qui influencent sa stabilité latérale : les glissements, les conditions d'adhérence et les inclinaisons du véhicule. Plusieurs observateurs ont été proposés, dont le dernier permet de considérer des conditions d'adhérence différentes entre les essieux avant et arrière en utilisant plus largement les accélérations mesurées. Cela permet d'intégrer les passages de sous- à sur-vireur qu'il est essentiel de considérer quand on étudie la stabilité de ce type de véhicule. Ainsi, l'estimation des glissements est toujours pertinente, ce qui permet d'obtenir par la suite une meilleure prédiction de la métrique de stabilité latérale (TCLa) quel que soit le comportement du véhicule. Puis en s'appuyant sur les estimations des observateurs couplées aux modèles dynamiques du véhicule et sur l'extrapolation des commandes du conducteur sur un horizon de prédiction, il est possible de prédire les évolutions du TCLa. Cette valeur prédite ainsi que les estimations en ligne des métriques de stabilité constituent alors le point d'entrée pour la synthétisation d'un système de sécurité actif dédié aux VLTT. Celui-ci est basé sur la génération d'un retour d'effort au niveau de la gâchette des gaz permettant soit d'informer le pilote du risque encouru par la création d'une sensation de dureté, soit d'imposer le retour complet de la gâchette des gaz, ce qui implique une diminution de la vitesse et donc la réduction du risque. Finalement, dans le cas où il est possible de maîtriser la vitesse du véhicule par l'installation d'un système de rétroaction sur les freins (Quad haut de gamme ou robot mobile), les derniers travaux présentés s'intéressent aux techniques de commande prédictive à modèle afin de calculer en temps-réel la vitesse maximale admissible, qui assure l'évolution du critère de stabilité choisi dans un domaine de stabilité. Les modèles, les observateurs, la prédiction du TCLa et les 2 systèmes de prévention présentés dans ce mémoire ont été validés et testés au travers de simulations avancées et d'essais expérimentaux réalisés sur un quad agricole et un robot autonome. Il apparaît alors qu'en plus d'être efficace pour la prévention des risques de renversement à hautes dynamiques, le système de sécurité est industriellement viable. Cela a été rendu possible grâce à une conception reposant uniquement sur des actionneurs et un système sensoriel, dont les coûts sont en adéquation avec le prix d'un VLTT.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Narmack, Kirilll. "Dynamic Speed Adaptation for Curves using Machine Learning." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-233545.

Повний текст джерела
Анотація:
The vehicles of tomorrow will be more sophisticated, intelligent and safe than the vehicles of today. The future is leaning towards fully autonomous vehicles. This degree project provides a data driven solution for a speed adaptation system that can be used to compute a vehicle speed for curves, suitable for the underlying driving style of the driver, road properties and weather conditions. A speed adaptation system for curves aims to compute a vehicle speed suitable for curves that can be used in Advanced Driver Assistance Systems (ADAS) or in Autonomous Driving (AD) applications. This degree project was carried out at Volvo Car Corporation. Literature in the field of speed adaptation systems and factors affecting the vehicle speed in curves was reviewed. Naturalistic driving data was both collected by driving and extracted from Volvo's data base and further processed. A novel speed adaptation system for curves was invented, implemented and evaluated. This speed adaptation system is able to compute a vehicle speed suitable for the underlying driving style of the driver, road properties and weather conditions. Two different artificial neural networks and two mathematical models were used to compute the desired vehicle speed in curves. These methods were compared and evaluated.
Morgondagens fordon kommer att vara mer sofistikerade, intelligenta och säkra än dagens fordon. Framtiden lutar mot fullständigt autonoma fordon. Detta examensarbete tillhandahåller en datadriven lösning för ett hastighetsanpassningssystem som kan beräkna ett fordons hastighet i kurvor som är lämpligt för förarens körstil, vägens egenskaper och rådande väder. Ett hastighetsanpassningssystem för kurvor har som mål att beräkna en fordonshastighet för kurvor som kan användas i Advanced Driver Assistance Systems (ADAS) eller Autonomous Driving (AD) applikationer. Detta examensarbete utfördes på Volvo Car Corporation. Litteratur kring hastighetsanpassningssystem samt faktorer som påverkar ett fordons hastighet i kurvor studerades. Naturalistisk bilkörningsdata samlades genom att köra bil samt extraherades från Volvos databas och bearbetades. Ett nytt hastighetsanpassningssystem uppfanns, implementerades samt utvärderades. Hastighetsanpassningssystemet visade sig vara kapabelt till att beräkna en lämplig fordonshastighet för förarens körstil under rådande väderförhållanden och vägens egenskaper. Två olika artificiella neuronnätverk samt två matematiska modeller användes för att beräkna fordonets hastighet. Dessa metoder jämfördes och utvärderades.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Eckert, Jony Javorski 1988. "Análise comparativa entre os métodos de cálculo da dinâmica longitudinal em veículos." [s.n.], 2013. http://repositorio.unicamp.br/jspui/handle/REPOSIP/264392.

Повний текст джерела
Анотація:
Orientador: Franco Giuseppe Dedini
Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica
Made available in DSpace on 2018-08-22T04:27:38Z (GMT). No. of bitstreams: 1 Eckert_JonyJavorski_M.pdf: 14458146 bytes, checksum: b2eb0f5d4618d1873858f49c66965bec (MD5) Previous issue date: 2013
Resumo: Dinâmica veicular é o estudo das interações entre o veículo, condutor e o ambiente bem como as reações de carga, sendo esta dividida em 3 grandes áreas: dinâmica longitudinal, vertical e lateral. Existem variações entre os métodos propostos pela literatura para o cálculo da dinâmica longitudinal do veículo, sendo que o objetivo deste trabalho é, por meio de simulações, compararem os resultados obtidos pelas diversas metodologias. Por meio de um modelo gerado com auxílio do programa de análise dinâmica de multicorpos Adams®, juntamente com o Simulink Matlab®, foram implementados os métodos de cálculo propostos pela literatura de forma a simular o comportamento de um veículo em função de uma demanda de potência gerada por meio do padrão de velocidades imposto pelos ciclos das normas brasileiras NBR6601 e NBR7024. Os resultados encontrados foram comparados por meio da correlação linear entre as curvas de torque resultantes do modelo dinâmico, possibilitando uma avaliação entre os resultados encontrados pelos diferentes métodos. Também foram avaliados o consumo de combustível, a influência da variação da massa do veículo e da estratégia de condução no comportamento dinâmico do veículo, bem como modelos complementares referentes a veículos híbridos e o efeito da adição de um modelo de embreagem no conjunto simulado
Abstract: Vehicular dynamics is the study of interactions between vehicle, driver and load reactions. The vehicular dynamics is divided into three areas: longitudinal, vertical and lateral. There are variations between the methods proposed in the literature to calculate the longitudinal dynamics of the vehicle. The purpose of this study is, through simulations; compare the results obtained by different methods. By means of a model generated by Adams® (Software of Multibody Dynamics Analysis) together with Simulink Matlab® were implemented the calculation methods proposed by literature to simulate the behavior of a vehicle according to a power demand resulting from the default speeds cycles required by Brazilian Standards NBR6601 and NBR7024. The results were compared using linear correlation between the couple curves resulting from the dynamic model, allowing an evaluation of the results reported by different methods. Were also evaluated: the fuel consumption and the influence of the mass vehicle variation, the driving strategy in the vehicle dynamic behavior, some complementary models of hybrid vehicles and the effect of add a clutch model
Mestrado
Mecanica dos Sólidos e Projeto Mecanico
Mestre em Engenharia Mecânica
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Lu, Ming. "System Dynamics Model for Testing and Evaluating Automatic Headway Control Models for Trucks Operating on Rural Highways." Diss., This resource online, 1996. http://scholar.lib.vt.edu/theses/available/etd-01292008-113749/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Longitudinal vehicle dynamic"

1

Jüstel, Benjamin, and Ulrich Stöckmann. "Key component dynamic motion controller – longitudinal and lateral vehicle control for automated driving functions." In Fahrerassistenzsysteme 2016, 63–69. Wiesbaden: Springer Fachmedien Wiesbaden, 2018. http://dx.doi.org/10.1007/978-3-658-21444-9_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Popp, Karl, and Werner Schiehlen. "Longitudinal Motions." In Ground Vehicle Dynamics, 263–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-68553-1_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Rajamani, Rajesh. "Longitudinal Vehicle Dynamics." In Mechanical Engineering Series, 87–111. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-1-4614-1433-9_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Yu, Jingsheng, and Vladimir Vantsevich. "Vehicle Longitudinal Dynamics." In Control Applications of Vehicle Dynamics, 55–72. London: CRC Press, 2021. http://dx.doi.org/10.1201/9781003134305-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Savoskin, A. N., and A. P. Vasilev. "Influence of Various Types of the Bogie-Wheelsets Longitudinal Connections on the Dynamic Properties of the Vehicle." In Proceedings of the 8th International Conference on Industrial Engineering, 289–99. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-14125-6_29.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Guo, Zheng, Datong Qin, Ju Wu, Changzhao Liu, Yonggang Liu, Xin Wang, and Xiaotao Zhang. "Analysis of the Influence of Powertrain Mount System on the Longitudinal Dynamic Features of DCT Vehicle Under Typical Working Conditions." In Advances in Asian Mechanism and Machine Science, 179–91. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-91892-7_17.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Meijaard, Jaap P. "Modelling and Simulation of Longitudinal Tyre Behaviour." In Non-smooth Problems in Vehicle Systems Dynamics, 161–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01356-0_14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Wielitzka, M., S. Eicke, A. Busch, M. Dagen, and T. Ortmaier. "Unscented Kalman filter for combined longitudinal and lateral vehicle dynamics." In Advanced Vehicle Control AVEC’16, 515–20. CRC Press/Balkema, P.O. Box 11320, 2301 EH Leiden, The Netherlands, e-mail: Pub.NL@taylorandfrancis.com, www.crcpress.com – www.taylorandfrancis.com: Crc Press, 2016. http://dx.doi.org/10.1201/9781315265285-82.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ferrara, Antonella, and Gian Paolo Incremona. "Sliding Modes Control in Vehicle Longitudinal Dynamics Control." In Advances in Variable Structure Systems and Sliding Mode Control—Theory and Applications, 357–83. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62896-7_15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Klauser, P. E. "Advances in the Simulation of Long Train Longitudinal Dynamics." In The Dynamics of Vehicles on roads and on tracks, 210–14. London: CRC Press, 2021. http://dx.doi.org/10.1201/9781003210894-27.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Longitudinal vehicle dynamic"

1

Verma, Rajeev, Domitilla Del Vecchio, and Hosam K. Fathy. "Longitudinal Vehicle Dynamics Scaling and Implementation on a HIL Setup." In ASME 2008 Dynamic Systems and Control Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/dscc2008-2236.

Повний текст джерела
Анотація:
This paper presents the application of Buckingham’s π theorem to scale the powertrain of a High Mobility Multipurpose Wheeled Vehicle (HMMWV) by deriving non dimensional ratios called π parameters. A Hardware In the Loop (HIL) setup is constructed and the resulting longitudinal dynamics of the scaled vehicle are validated against those of a full scale vehicle model. This is performed with the ultimate goal of testing cooperative collision avoidance algorithms on a testbed comprising a number of these scaled vehicles. This paper is based on “Development of a scaled vehicle with Longitudinal dynamics of a HMMWV for ITS testbed”, by Verma, R., Domitilla Del Vecchio, and Hosam K. Fathy which appeared in IEEE/ASME Transactions on Mechatronics, February 2008 and is being reprinted with permission from IEEE.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Jeon, Woongsun, and Rajesh Rajamani. "Active Sensing on a Bicycle for Accurate Tracking of Rear Vehicle Maneuvers." In ASME 2016 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/dscc2016-9772.

Повний текст джерела
Анотація:
This paper focuses on development of an active sensing system for a bicycle to accurately track rear vehicles. Cost, size and power constraints highly limit the type of sensor that can be used on a bicycle for measurement of distances to vehicles. A single beam laser sensor mounted on a rotationally controlled platform is proposed for this sensing mission. The rotational orientation of the laser sensor needs to be controlled in real-time in order to focus on a target point on the vehicle, as the vehicle’s lateral and longitudinal distances change. This tracking problem involves two challenges: Controlling the real-time angular position of the laser sensor based on very limited information and tracking the vehicle’s position for different types of maneuvers. The first challenge is addressed by developing an algorithm to detect whether a reflection is from the front or side of the target vehicle and then controlling sensor orientation to alternately obtain both lateral and longitudinal distance measurements. The second challenge is addressed by using an interacting multiple model observer that incorporates straight and turning vehicle motion models. Simulation results are presented to show the advantages of the developed tracking control system compared to simpler alternatives.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Scacchioli, Annalisa, Panagiotis Tsiotras, and Jianbo Lu. "Nonlinear-Feedback Vehicle Traction Force Control With Load Transfer." In ASME 2009 Dynamic Systems and Control Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/dscc2009-2737.

Повний текст джерела
Анотація:
This article deals with the nonlinear feedback regulation of the longitudinal traction forces for high-speed vehicles, possibly over a low friction surface. Hybrid models of the longitudinal vehicle dynamics incorporating load transfer effects, a crucial element in advanced driving techniques, are derived. The designed hybrid regulator allows the tracking of a given friction force profile in the presence of known disturbances and unknown model uncertainties. Simulations show good performance of the proposed hybrid regulator under all operating conditions.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Zhang, Linjun, and Gábor Orosz. "Stability Analysis of Nonlinear Connected Vehicle Systems." In ASME 2014 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/dscc2014-6358.

Повний текст джерела
Анотація:
In this paper, we investigate the nonlinear dynamics of connected vehicle systems. Vehicle-to-vehicle (V2V) communication is exploited when controlling the longitudinal motion of a few vehicles in the traffic flow. In order to achieve the desired system-level behavior, the plant stability and the head-to-tail string stability are characterized at the nonlinear level using Lyapunov functions. A motif-based approach is utilized that allows modular design for large-scale vehicle networks. Stability analysis of motifs are summarized using stability diagrams, which are validated by numerical simulations.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Zheng, Zhibo, Jorge Estrela da Silva, Joa˜o B. de Sousa, and Anouck R. Girard. "Underwater Vehicle Autopilots With Adaptive Dynamic Surface Control." In ASME 2008 Dynamic Systems and Control Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/dscc2008-2198.

Повний текст джерела
Анотація:
This paper presents an overview of the state-of-the-art for underwater vehicle autopilots. We start by reviewing reference frames, vehicle states, typical control surfaces, equations of motion, the different coefficients and how they are obtained, and disturbance models as well. We then consider different possible configurations for the autopilot, including decoupled lateral and longitudinal loops, maneuver and waypoint control. Adaptive dynamic surface control of nonlinear tracking of a single underwater vehicle is designed with the corroboration with numerical simulations. Finally, we describe current hardware implementations for autonomous underwater vehicles.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Reschka, Andreas, Jurgen Rudiger Bohmer, Falko Saust, Bernd Lichte, and Markus Maurer. "Safe, dynamic and comfortable longitudinal control for an autonomous vehicle." In 2012 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2012. http://dx.doi.org/10.1109/ivs.2012.6232159.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Vantsevich, Vladimir V., Lyubomyr I. Demkiv, Sviatoslav R. Klos, Samuel R. Misko, and Lee Moradi. "An Experimental Study of Longitudinal Tire Relaxation Constants for Vehicle Traction Dynamics Modeling." In ASME 2019 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/dscc2019-8994.

Повний текст джерела
Анотація:
Abstract Existing literature on vehicle traction dynamics were reviewed for a variety of vehicle and tire dynamic models, some of which consider the pneumatic tires’ relaxation as a property of vehicle transient dynamics. In general, unlike the lateral relaxation counterpart, the longitudinal tire relaxation characteristics were mostly overlooked in tire transient dynamics modeling. As a continuation of the analytical study published in the 2018 DSCC Proceedings, the co-authors of this paper present an experimental study of the longitudinal tire relaxation characteristics of a Continental MPT 81 tire. Experimental results were obtained by conducting tests on an MTS Flat-Trac LTR tire testing machine. The experimental data is analyzed to investigate longitudinal tire relaxation characteristics as they relate to changes of tire conditions. The goal is to verify and refine the existing models suggested in the literature; as well as, discuss advantages and disadvantages of different test procedures and tire testing equipment. In particular, the paper investigates the longitudinal tire relaxation constant variation due to changes of wheel velocity, tire inflation pressure, and sine oscillations of tire slippage in the time and frequency domains. The paper concludes on the influence of the longitudinal tire relaxation constants on the tire/vehicle traction dynamics modeling.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Dollar, R. Austin, and Ardalan Vahidi. "Predictively Coordinated Vehicle Acceleration and Lane Selection Using Mixed Integer Programming." In ASME 2018 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/dscc2018-9177.

Повний текст джерела
Анотація:
Autonomous vehicle technology provides the means to optimize motion planning beyond human capacity. In particular, the problem of navigating multi-lane traffic optimally for trip time, energy efficiency, and collision avoidance presents challenges beyond those of single-lane roadways. For example, the host vehicle must simultaneously track multiple obstacles, the drivable region is non-convex, and automated vehicles must obey social expectations. Furthermore, reactive decision-making may result in becoming stuck in an undesirable traffic position. This paper presents a fundamental approach to these problems using model predictive control with a mixed integer quadratic program at its core. Lateral and longitudinal movements are coordinated to avoid collisions, track a velocity and lane, and minimize acceleration. Vehicle-to-vehicle connectivity provides a preview of surrounding vehicles’ motion. Simulation results show a 79% reduction in congestion-induced travel time and an 80% decrease in congestion-induced fuel consumption compared to a rule-based approach.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kim, Shinhoon, Nasser L. Azad, and John McPhee. "High-Fidelity Modelling of an Electric Vehicle." In ASME 2015 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/dscc2015-9743.

Повний текст джерела
Анотація:
The development and validation of a high-fidelity dynamics model of an electric vehicle is presented. The developed model is comprised of two subsystems: i) the vehicle dynamics model, and ii) the electrical powertrain subsystem consists of the alternating-current (AC) induction motor, the 3-phase pulse-width-modulation (PWM) inverter, and the motor controllers. At each stage of the development, the developed models are verified by studying their simulation results. Also, vehicle testing is performed using a reference electric vehicle and experimental powertrain data is measured from the vehicle’s electrical powertrain controller area network (CAN) bus. The experimental motor torque-speed curves are used to tune the AC electric motor model parameters. Once the individual components are developed and validated, the high-fidelity electric vehicle system model is created by assembling the MapleSim vehicle dynamics model and the electrical powertrain subsystem. The simulation results, such as the vehicle’s longitudinal speed and developed motor torque and currents, are presented and studied to verify that the electric vehicle system can operate under different driving scenarios. The high-fidelity electric vehicle model will be used in future work to test and validate new power management controllers.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kumbhani, Nikunj, and Saeid Bashash. "A Supervisory Lateral Slip Prevention Controller for Autonomous Vehicles." In ASME 2019 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/dscc2019-9166.

Повний текст джерела
Анотація:
Abstract This paper analyzes the behavior of autonomous vehicles in simulated environment and develops an integrated control system for maneuvering and slip prevention in curvy roads. First, a longitudinal and lateral control system is designed for the vehicle using the feedback linearization method. The longitudinal controller enforces tracking the desired velocity, while the lateral controller steers the vehicle toward, and maintains it on a desired lane. A two-level supervisory controller is then developed to prevent lateral slip while driving on curvy roads. On the lower level, the steering wheel angle is actively limited based on the vehicle speed to avoid oversteering. On the supervisory level, a predictive controller is integrated into the system to optimally slow down the vehicle ahead of a detected road curvature. Simulation results indicate the effectiveness of the proposed schemes in maintaining desirable maneuvering conditions and preventing lateral slips.
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Longitudinal vehicle dynamic"

1

She, Ruifeng, and Yanfeng Ouyang. Generalized Link-Cost Function and Network Design for Dedicated Truck-Platoon Lanes to Improve Energy, Pavement Sustainability, and Traffic Efficiency. Illinois Center for Transportation, November 2021. http://dx.doi.org/10.36501/0197-9191/21-037.

Повний текст джерела
Анотація:
Recent development of autonomous and connected trucks (ACT) has provided the freight industry with the option of using truck platooning to improve fuel efficiency, traffic throughput, and safety. However, closely spaced and longitudinally aligned trucks impose frequent and concentrated loading on pavements, which often accelerates pavement deterioration and increases the life cycle costs for the highway agency. Also, effectiveness of truck platooning can be maximized only in dedicated lanes; and its benefits and costs need to be properly balanced between stakeholders. This paper proposes a network-design model to optimize (i) placement of dedicated truck-platoon lanes and toll price in a highway network, (ii) pooling and routing of ACT traffic from multiple origins and destinations to utilize these lanes, and (iii) configuration of truck platoons within these lanes (e.g., lateral displacements and vehicle separations). The problem is formulated as an integrated bi-level optimization model. The upper level makes decisions on converting existing highway lanes into dedicated platoon lanes, as well as setting user fees. The lower-level decisions are made by independent shippers regarding the choice of routes and use of platoon lanes vs. regular lanes; and they collectively determine truck traffic in all lanes. Link-cost functions for platoon lanes are obtained by simultaneously optimizing, through dynamic programming, pavement-rehabilitation activities and platoon configuration in the pavement's life cycle. A numerical case study is used to demonstrate the applicability and performance of the proposed model framework over the Illinois freeway system. It is shown that the freight traffic is effectively channelized on a few corridors of platoon lanes and, by setting proper user fees to cover pavement-rehabilitation costs, systemwide improvements for both freight shippers and highway agencies can be achieved.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Event-Triggered Adaptive Robust Control for Lateral Stability of Steer-by-Wire Vehicles with Abrupt Nonlinear Faults. SAE International, July 2022. http://dx.doi.org/10.4271/2022-01-5056.

Повний текст джерела
Анотація:
Because autonomous vehicles (AVs) equipped with active front steering have the features of time varying, uncertainties, high rate of fault, and high burden on the in-vehicle networks, this article studies the adaptive robust control problem for improving lateral stability in steer-by-wire (SBW) vehicles in the presence of abrupt nonlinear faults. First, an upper-level robust H∞ controller is designed to obtain the desired front-wheel steering angle for driving both the yaw rate and the sideslip angle to reach their correct values. Takagi-Sugeno (T-S) fuzzy modeling method, which has shown the extraordinary ability in coping with the issue of nonlinear, is applied to deal with the challenge of the changing longitudinal velocity. The output of the upper controller can be calculated by a parallel distributed compensation (PDC) scheme. Then an event-triggered adaptive fault-tolerant lower controller (ET-AFTC) is proposed to drive the whole SBW system driving the desired steering angle offered by the upper controller with fewer communication resources and strong robustness. By employing a backstepping technique, the tracking performance is improved. The dynamic surface control (DSC) approach is used to avoid the problem of repeated differentiations, and Nussbaum function is adopted to overcome the difficulty of unknown nonlinear control gain. Both the stability of the upper and lower controllers can be guaranteed by Lyapunov functions. Finally, the simulations of Matlab/Simulink are given to show that the proposed control strategy is effectively able to deal with the abrupt nonlinear fault via less communication resources and perform better in ensuring the yaw stability of the vehicle.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії