Добірка наукової літератури з теми "Long range (LoRa)"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Long range (LoRa)".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Long range (LoRa)"

1

Roy, Amlan Jyoti, Bhargavjyoti Sharma, Avinab Das, Sajid-ul Haque, and Dr Runumi Sarma. "Long Range RF- Text based Communication System." International Journal for Research in Applied Science and Engineering Technology 11, no. 8 (August 31, 2023): 747–50. http://dx.doi.org/10.22214/ijraset.2023.55242.

Повний текст джерела
Анотація:
Abstract: With the growth of the Internet of Things (IoT) and other wireless applications in recent years the need for long-range and low-power communication systems has increased. This issue can be resolved by application of LoRa (Long Range) technology, which offers a long-range, low-power, and dependable communication system. LoRa is a wireless modulation technique derived from Chirp Spread Spectrum (CSS) technology. It encodes information on radio waves using chirp pulses in a way similar to the communication principles used naturally by dolphins and bats. LoRa modulated transmission is robust against disturbances and can be received across large distances. In this paper a study on long-range RF text-based communication utilizing LoRa module is presented
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Saletović, Enes, Nevzudin Buzađija, and Đulaga Hadžić. "Long-Range Remote Control Based on LoRa Transceivers." B&H Electrical Engineering 17, no. 2 (December 1, 2023): 42–48. http://dx.doi.org/10.2478/bhee-2023-0011.

Повний текст джерела
Анотація:
Abstract Within this paper, the possibility of using advanced LoRa technology in the field of long-range remote control was considered. For testing purposes, a one-way point-to-point LoRa remote control link was implemented based on the LoRa Ra-02 SX1278 transceiver and the corresponding 32-bit Cortex-M3 microcontroller. The remote control application software is developed in the Arduino development environment. The implemented link was tested experimentally to check the range, data transfer speed and link stability. Test results show that LoRa transceiver modules can be used in the field of long-range remote control.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Nga, Le Cong, Cuong Quoc Pham, and Tran Ngoc Thinh. "Energy-Efficiency Approach for Long Range Wireless Communication." Science & Technology Development Journal - Engineering and Technology 3, no. 3 (October 17, 2020): First. http://dx.doi.org/10.32508/stdjet.v3i3.532.

Повний текст джерела
Анотація:
According to recent researches, the wireless sensor networks (WSN) which consume low levels of energy become more and more popular nowadays, so the research trend of optimizing energy for WSNs is rapidly increasing. LoRa technology is a modulation technique that provides long-range transfer of information and low power consumes. Besides, LoRaWAN is a network protocol that optimized for battery-powered end devices. The LoRa and LoRaWAN can be considered a suitable candidate for WSNs, which can reduce power consumption and extend the communication range. In this paper, we studied adaptive mechanisms in the transmission parameters of the LoRa network and proposed an energy-optimized solution for the adaptive algorithm. This research not only introduced the reference hardware of a sensor node in WSNs but also conducted experiments on typical LoRa network infrastructure
Стилі APA, Harvard, Vancouver, ISO та ін.
4

A. Al-Shareeda, Mahmood, Abeer Abdullah Alsadhan, Hamzah H. Qasim, and Selvakumar Manickam. "Long range technology for internet of things: review, challenges, and future directions." Bulletin of Electrical Engineering and Informatics 12, no. 6 (December 1, 2023): 3758–67. http://dx.doi.org/10.11591/eei.v12i6.5214.

Повний текст джерела
Анотація:
New networking issues are presented by the increasing need for a wide variety of applications, which has spurred the creation of a new internet of things (IoT) paradigm, such as long range (LoRa). The LoRa protocol uses a patented kind of spread spectrum modulation to provide low-power, long-range communication. In this paper, we provide a comprehensive review of LoRa-IoT in terms of IoT applications, LoRa class, security and privacy requirements, and the evolution of LoRa technology. This review analysis and compares long range wide area network (LoRaWAN) to wireless technology (e.g., Bluetooth, LoRa, 5G, Sigfox, long term evolution-M (LTE-M), Wi-Fi, Z-wave, Zigbee) and provides a list of environment simulators (e.g., OMNeT++, MATLAB, ns-3, SimPy) to carry out experiment for LoRa-IoT. Finally, this review does not only review literature recently studied for LoRa-IoT but also discusses challenges and future directions.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Noor-A-Rahim, Md, M. Omar Khyam, Apel Mahmud, Xinde Li, Dirk Pesch, and H. Vincent Poor. "Hybrid Chirp Signal Design for Improved Long-Range (LoRa) Communications." Signals 3, no. 1 (January 5, 2022): 1–10. http://dx.doi.org/10.3390/signals3010001.

Повний текст джерела
Анотація:
Long-range (LoRa) communication has attracted much attention recently due to its utility for many Internet of Things applications. However, one of the key problems of LoRa technology is that it is vulnerable to noise/interference due to the use of only up-chirp signals during modulation. In this paper, to solve this problem, unlike the conventional LoRa modulation scheme, we propose a modulation scheme for LoRa communication based on joint up- and down-chirps. A fast Fourier transform (FFT)-based demodulation scheme is devised to detect modulated symbols. To further improve the demodulation performance, a hybrid demodulation scheme, comprised of FFT- and correlation-based demodulation, is also proposed. The performance of the proposed scheme is evaluated through extensive simulation results. Compared to the conventional LoRa modulation scheme, we show that the proposed scheme exhibits over 3 dB performance gain at a bit error rate of 10−4.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Diana, Mery, Refdinal Nazir, and Arief Rufiyanto. "Harvesting RF Ambient Energy dari End Device LoRa (Long Range Access)." JURNAL INFOTEL 9, no. 4 (November 7, 2017): 387. http://dx.doi.org/10.20895/infotel.v9i4.282.

Повний текст джерела
Анотація:
RF Energy Harvesting is a technology that harvest RF ambient energy from the wearable devices. One of wearable devices that can act as a source is LoRa end device. LoRa (Long Range Access) is part of Low Power Wide Area Network (LPWAN) which operate in unlicensed frequency (ISM). As a technology of wireless network, end devices of LoRa will be taken in remote area that hardly to access. End device LoRa acts as a transceiver that transmits and receives data from the gateway. As a transceiver, the LoRa end device requires energy availability. In remote area, RF ambient energy from the LoRa end device can be utilized as a source of RF energy that can be harvested and stored This paper discusses how to harvest the RF ambient energy emitted by the LoRa end device using the microstrip antenna as the receiver and the voltage multiplier as both a rectifier and a voltage multiplier. The energy harvested from one end device and stored temporarily in the capacitor is 163pJ with a distance 11 cm from the source. This harvested energy can be stored on battery or capasitor bank to be used in future
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Deeti, Akshitha, and B. Venkateshulu. "LoRa Based Smart City (Long Range)." ECS Transactions 107, no. 1 (April 24, 2022): 15733–43. http://dx.doi.org/10.1149/10701.15733ecst.

Повний текст джерела
Анотація:
The mission is to trace the placement of the women and children for the purpose of their safety in the vicinity with a help of a GPS module integrated on the carrying device. A panic button is deployed on the same device. Whenever an individual is in urgency, the panic button has to be enabled. The transmitter passes info to a gateway (pycom) via LoRa communication. From pycom, information is directed to the IBM cloud using Wi-Fi so that the organization can observe the intensely contaminated areas, temperature, humidity, working status of street light, geofence, filled status of dust bin, and take proper action. A web-application is developed using Nodered, one of the services provided by the IBM cloud through which admin can monitor the above parameters in pictorial form. The coding used for the transmitter is C, which is done in Arduino IDE. For the receiver, it is micro-python using Atom software.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Lim, Junyeong, Jaemin Lee, Donghyun Kim, and Jongdeok Kim. "Performance Analysis of LoRa(Long Range) according to the Distances in Indoor and Outdoor Spaces." Journal of KIISE 44, no. 7 (July 31, 2017): 733–41. http://dx.doi.org/10.5626/jok.2017.44.7.733.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Yahya, Muhammad Sani, Socheatra Soeung, Narinderjit Singh Sawaran Singh, Zainab Yunusa, Francis Emmanuel Chinda, Sharul Kamal Abdul Rahim, Umar Musa, Nursyarizal B. M. Nor, Cheab Sovuthy, and Ghulam E. Mustafa Abro. "Triple-Band Reconfigurable Monopole Antenna for Long-Range IoT Applications." Sensors 23, no. 12 (June 6, 2023): 5359. http://dx.doi.org/10.3390/s23125359.

Повний текст джерела
Анотація:
In this study, a novel reconfigurable triple-band monopole antenna for LoRa IoT applications is fabricated on an FR-4 substrate. The proposed antenna is designed to function at three distinct LoRa frequency bands: 433 MHz, 868 MHz, and 915 MHz covering the LoRa bands in Europe, America, and Asia. The antenna is reconfigurable by using a PIN diode switching mechanism, which allows for the selection of the desired operating frequency band based on the state of the diodes. The antenna is designed using CST MWS® software 2019 and optimized for maximum gain, good radiation pattern and efficiency. The antenna with a total dimension of 80 mm × 50 mm × 0.6 mm (0.12λ0×0.07λ0 × 0.001λ0 at 433 MHz) has a gain of 2 dBi, 1.9 dBi, and 1.9 dBi at 433 MHz, 868 MHz, and 915 MHz, respectively, with an omnidirectional H-plane radiation pattern and a radiation efficiency above 90% across the three frequency bands. The fabrication and measurement of the antenna have been carried out, and the results of simulation and measurements are compared. The agreement among the simulation and measurement results confirms the design’s accuracy and the antenna’s suitability for LoRa IoT applications, particularly in providing a compact, flexible, and energy efficient communication solution for different LoRa frequency bands.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Lavric, Alexandru. "LoRa (Long-Range) High-Density Sensors for Internet of Things." Journal of Sensors 2019 (February 24, 2019): 1–9. http://dx.doi.org/10.1155/2019/3502987.

Повний текст джерела
Анотація:
Over the past few years, there has been a growing awareness regarding the concept of Internet of Things (IoT), which involves connecting to the Internet various objects surrounding us in everyday life. The main purpose of this concept closely connected to the smart city issue is increasing the quality of life by contributing to streamlining resource consumption and protecting the environment. The LoRa communication mechanism is a physical layer of the LoRaWAN protocol, defined by the LoRa Alliance. Compared to other existing technologies, LoRa is a modulation technique enabling the transfer of information over a range of tens of kilometers. The main contribution this paper brings to the field is analyzing the scalability of the LoRa technology and determining the maximum number of sensors which can be integrated into this type of monitoring and control architecture. The sensor architecture is specific to the smart city concept that involves the integration of a large number of high-density sensors distributed on a large-scale geographic area. The reason behind this study is the need to assess the scalability of the LoRa technology, taking into consideration other factors, such as the packet payload size, the duty circle parameter, the spreading factor, and the number of nodes. The experimental results reveal that the maximum number of LoRa sensors that can communicate on the same channel is 1,500; furthermore, in order to obtain a high performance level, it is necessary to schedule and plan the network as carefully as possible. The spreading factor must be allocated according to the distance at which the sensor is placed from the gateway.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Long range (LoRa)"

1

Kihlberg, David, and Amir Ebrahimi. "Wireless Gas Sensor Nodes : With focus on Long Range (LoRa) communication." Thesis, Linköpings universitet, Elektroniska Kretsar och System, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-168669.

Повний текст джерела
Анотація:
Greenhouse gas emissions in indoor or outdoor areas are dangerous and can have short- or long-term effects on people’s health. There are several methods to monitor the air quality in such environments. This thesis project attempts to design and evaluate a wireless sensor network with two main characteristics such as long range and low power consumption. The sensor network is built upon Long Range Wide Area Network (LoRaWAN) protocol and is composed of sensor nodes and gateways. The sensor nodes are built upon a Raspberry Pi model 3B, a LoRa SX1276 transceiver and gas sensors. The sensors are intended to measure CO2, CH4, temperature, pressure and relative humidity. The collected data is then logged and sent to The Things Network (TTN) via a backhaul connection.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Oliv, Rasmus. "GPS-Tracking Device with Long Range and Bluetooth Low Energy Communication." Thesis, Linköpings universitet, Elektroniska Kretsar och System, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-157458.

Повний текст джерела
Анотація:
The thesis is about the construction of a GPS-tracker that can read NFC (Near Field Communication)-tags and communicate with LoRa (Long Range) and BLE (Bluetooth low energy) and investigate which of the components in the GPS-tracker that consumes most power. The usage area for the GPS-tracker is to make the work on disaster affected sites more efficient and secure by having an operation leader that can organizing the operation with help of the information provided by the GPS-trackers that are placed on the injured people and recuing personnel. The GPS-tracker is built around the sensor development kit Thingy:52 from Nordic Semiconductor. The Firmware (FW) for the Thingy:52 is developed by modifying the provided factory FW by Nordic Semiconductor. The GPS-module and the NFC-reader showed to be the most power consuming parts of the GPS-tracker. An energy optimization proposal for these parts are given in the report. A proposal to a circuit diagram for the GPS-tracker is also given in the report, that can be used for future miniaturization of the GPS-tracker.
Projektet har innefattat att ta fram en GPS-spårsändare som kan läsa NFC (Near Field Communication)-taggar, kommunicera med LoRa (Long Range) och BLE (Bluetooth low energy) samt undersöka vilka av GPS-spårsändarens olika delar som konsumerar mest energi. Användningsområdet för GPS-spårsändaren är att effektivisera räddningsinsatser på skadeplatser där det finns skadade människor exempelvis efter en översvämning eller terroristattack. Effektiviseringen är tänkt ska ske genom att en operationsledare styr räddningsinsatsen med hjälp av informationen som skickas från GPS-spårsändarna som kommer att bäras av skadade personer och räddningspersonalen på skadeplatsen. GPS-spårsändaren är utvecklad kring sensorutvecklings kittet Thingy:52 från Nordic Semiconductor och dess mjukvara har utvecklats genom att modifiera den mjukvara som Nordic Semiconductor har utvecklat för Thingy:52. De delar av GPS-spårsändaren som visade sig konsumera mest energi var GPS-modulen och NFC-läsaren. I rapporten finns energioptimerings förslag för dessa delar. Rapporten innehåller även ett förslag till ett kretsschema för GPS-spårsändaren som kan användas vid framtida miniatyrisering av GPS-spårsändaren.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Abboud, Samira. "Study and improvement of long range communication technologies for wireless sensor networks." Thesis, Université Clermont Auvergne‎ (2017-2020), 2020. http://www.theses.fr/2020CLFAC028.

Повний текст джерела
Анотація:
Les progrès des technologies de communication à faible consommation d’énergie et à faible cout ont révolutionne les applications de télédétection et de surveillance. L’Internet des objets (IoT) a promis la création d’un écosystème d’appareils connectes à travers un large éventail d’applications, telles que les villes intelligentes. A l’heure actuelle, de nombreuses normes et technologies concurrentes tentent de saisir l’IoT, en particulier dans le domaine des technologies de télédétection et de communication. LoRa (Long Range) est l’une de ces technologies qui gagne en popularité et en attraction dans les réseaux de capteurs sans fil (WSN). La possibilité d’établir des communications longue distance avec des nœuds relativement simples, une infrastructure minimale, des besoins en énergie réduits et l’utilisation de bandes ISM sans licence offre un avantage concurrentiel significatif. Bien que la portée de communication dans LoRa puisse dépasser 15 kilomètres en visibilité directe, le débit binaire maximal pouvant être atteint est limite à quelques kilobits par seconde. De plus, lorsqu’une collision se produit dans LoRa, le débit est encore réduit en raison de pertes de trames et de retransmissions. Les travaux de cette thèse traitent le problème des collisions dans LoRa qui peuvent survenir sous une charge importante et qui dégradent les performances du réseau.Premièrement, nous considérons le contexte des communications en liaison montante dans LoRaWAN. Nous étudions le contexte des signaux LoRa en collision synchronisée, ou chaque appareil terminal doit retransmettre toute sa trame en collision après qu’une collision se produit dans LoRa. Ce comportement diminue le débit global et augmente la consommation d’énergie des terminaux et le délai des trames. Pour cette raison, afin d’atténuer les effets néfastes des collisions, nous avons proposé un algorithme de décodage pour résoudre les signaux LoRa en collision synchronisée, dans un trafic réseau sature et confirme. Nous avons remplacé le modèle de retransmission conventionnel de LoRa en un modèle faisant en sorte que les dispositifs terminaux transmettent des bitmaps au lieu de retransmettre des trames entières pour déterminer les symboles corrects de chaque trame en collision. Notre algorithme a pu améliorer significativement le débit global de la couche LoRaWAN MAC à base de LoRa, et diminuer la consommation d’énergie des émetteurs et le délai des trames.Deuxièmement, nous considérons le contexte des communications en liaison descendante dans LoRaWAN. Nous avons remarqué que la liaison descendante dans LoRa est un goulot d’étranglements. Nous avons donc travaillé sur la sélection de la passerelle par le serveur de réseau et son impact sur le débit, la consommation d’énergie et le délai. Nous avons étudié trois types de déploiement de passerelle et nous avons montre que les performances du système dépendent de ce déploiement. Nous avons montré que l’équilibrage du nombre de terminaux par passerelle (également connu sous le nom de charge) améliore le débit par rapport au choix de la passerelle avec la meilleure qualité de signal. En outre, nous avons montré que la combinaison de la charge et de la qualité du signal n’améliore pas davantage le débit. De plus, nous avons montré que le choix de la passerelle avec la meilleure qualité de signal diminue le délai des trames et la consommation d’énergie des terminaux par rapport au choix de la passerelle avec la charge la plus faible
The progress in low-energy, low-cost communication technologies have revolutionized remote sensing and monitoring applications. Internet of Things (IoT) has promised an ecosystem of connected devices across a wide range of applications such as in smart cities.Currently, many competing standards and technologies are attempting to seize the IoT, particularly in the area of remote sensing and communication technologies. LoRa (Long Range) is one of those technologies that is gaining popularity and attraction in the Wireless Sensor Networks (WSN) applications. The ability to make long-distance communications with relatively simple nodes, minimal infrastructure, reduced power requirements, and the use of unlicensed ISM bands provides a significant competitive advantage. Although the communication range in LoRa can exceed 15 kilometers in line of sight, the maximum bit rate that can be achieved is limited to few kilobits per second. Additionally, when a collision occurs in LoRa, the throughput is further reduced due to frame losses and retransmissions. The work of this thesis deals with the problem of collisions in LoRa that may occur under heavy load, and which degrade the performance of the network.First, we consider the context for LoRaWAN uplink communications. We study the context of fully synchronized colliding LoRa signals, where each end-device has to retransmit its entire colliding frame after a collision occurs in LoRa. This behavior decreases the overall throughput, and increases the energy consumption of the end-devices, and the delay of the frames. Therefore, in order to mitigate the damaging effects of collisions, we proposed a decoding algorithm to resolve synchronized colliding LoRa signals, in a saturated and confirmed network traffic. We substituted the conventional retransmission model of LoRa by having end-devices transmitting bitmaps instead of retransmitting whole frames to determine the correct symbols of each colliding frame. Our algorithm was able to significantly improve the overall throughput of the LoRaWAN MAC layer based on LoRa, and to decrease the energy consumption of the transmitters and the delay of the frames.Second, we consider the context for LoRaWAN downlink communications. We noticed that the downlink in LoRa is a bottleneck. Hence, we worked on the gateway selection by the network server and its impact on the throughput, the energy consumption and the delay. We studied three types of gateway deployment and we show that the system performance depends on this deployment. We showed that balancing the number of end-devices per gateway (also known as load) improves the throughput compared to choosing the gateway with the highest signal quality. Moreover, we showed that combining load and signal quality does not further improve the throughput. In addition, we showed that choosing the gateway with the highest signal quality decreases the delay and energy consumption compared to choosing the gateway with the lowest load
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Oliveira, Rúben Pedrosa. "Sensor networks with multiple technologies: short and long range." Master's thesis, Universidade de Aveiro, 2016. http://hdl.handle.net/10773/22735.

Повний текст джерела
Анотація:
Mestrado em Engenharia Eletrónica e Telecomunicações
Low-Power Wide Area Networks (LPWANs) are one set of technologies that are growing in the eld of the Internet of Things (IoT). Due to the long range capabilities and low energy consumption, Low-Power Wide Area Networks (LPWANs) are the ideal technologies to send small data occasionally. With their unique characteristics, LPWANs can be used in many applications and in di erent environments such as urban, rural and even indoor. The work developed in this dissertation presents a study on the LPWAN LoRa technology, by testing and evaluate its range, signal quality properties and its performance in delivering data. For this, three distinct scenarios are proposed and tested. The inclusion of LoRa in a multi-technology data gathering platform is the key objective of this dissertation. For this it is proposed: (1) an organization based in clusters of sensor nodes; (2) a Media Access Control (MAC) protocol to provide e cient communications through the LoRa technology; and nally, (3) a Connection Manager that is capable of managing the di erent available technologies in the sensor nodes and that is able to adapt its actions according to the acquired data type is proposed. The performed tests aim to perceive which type of parameters can in uence the performance of the overall proposed solution, as well as the advantages of a multi-technology approach in a data gathering platform.
Low-Power Wide Area Networks (LPWANs) são um conjunto de tecnologias em crescimento na área da Internet of Things (IoT). Devido ás suas capacidades de comunicar a longo alcance e de baixo consumo energético, as LPWANs apresentam-se como a tecnologia ideal para o envio ocasional de pequenas porções de dados. Ao possuírem características únicas, as LPWANs podem ser usadas em diversas aplicações e em diferentes ambientes, sejam eles urbanos, rurais ou interiores. O trabalho desenvolvido nesta dissertação apresenta um estudo acerca da tecnologia Long Range (LoRa), uma LPWAN, testando e avaliando o seu alcance, a qualidade do sinal e o desempenho na entrega de dados. Para isso, três cenários distintos são propostos e testados. A inclusão de LoRa numa plataforma de aquisição de dados com múltiplas tecnologias e um dos objectivos chave desta dissertação. Para isso, são propostas: (1) uma organização baseada em clusters de sensores; (2) um protocolo de controlo de acesso ao meio (MAC) para permitir que as comunicações através de LoRa sejam eficientes; e finalmente, (3) um gestor de conectividade com capacidade de gerir as diferentes tecnologias disponíveis nos sensores e que seja capaz de agir consoante o tipo de dados adquiridos. Os testes efectuados tem como objectivo perceber que tipo de parâmetros podem influenciar o desempenho global da soluçao proposta, bem como as vantagens de usar uma abordagem baseada em múltiplas tecnologias numa plataforma de aquisição de dados.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Alrashid, Ivan. "Ljudhändelsedetektor med distribueradeLoRa-anslutna akustiska sensorer." Thesis, Linköpings universitet, Elektroniska Kretsar och System, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-174830.

Повний текст джерела
Анотація:
Att detektera ljudnivå ger mycket information i stadsområde såsom bullernivå, antal skottlossningar, antal kollisioner och detekterar plats på en ljudkälla. I detta projekt monteras en ljuddetektor som kommunicera via LoRa Long Range när ljudet överstiger ett tröskelvärde. Ljuddetektorn implementeras som en fristående modul bestående av tre befintliga moduler. Modulerna som används i projektet innefattar: Lopy4 med Expansionskort 3.1, GPS modul och Ljud sensor  Ljudnivån, batterinivå, koordinater, datum och tid överförs via LoRa-nät till en gateway och vidare till The Thing of Network, TTN websidan och samtidigt sparas data lokalt i ett SD minneskort när ljudet överstiger ett tröskelvärde. Tröskelvärdet kan modifieras efter användarens önskningar.
Detecting noise levels explains a lot in urban areas such as noise levels, number of shots, and number of collisions. In this project, a sound detector is installed that communicates via LoRa, Long Range when the sound exceeds a threshold value. The sound detector is implemented as a stand-alone module consisting of three existing modules. The modules used in the project include Lopy4 with Expansion Card 3.1, GPS module, and Sound sensor. The sound level, battery level, coordinates, date, and time are transferred via LoRa to a gateway and on to The Thing of Network, TTN website, and at the same time data is saved locally in an SD memory card when the sound exceeds a threshold. The threshold can be modified according to the user's wishes.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Gullipalli, Raashita, and Kiran Kumar Golla. "Arduino-Based Radio Technology System for Bird Protection : Wind Farm Application Approach." Thesis, Blekinge Tekniska Högskola, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-20056.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Benouakta, Amina. "Conception de systèmes antennaires pour applications de supervision et de localisation dans l'Internet des objets industriel." Electronic Thesis or Diss., Université Côte d'Azur, 2024. http://www.theses.fr/2024COAZ4011.

Повний текст джерела
Анотація:
Cette thèse s'inscrit dans le contexte de l'Internet des Objets (Internet of Things, IoT), de l'identification et de la traçabilité d'objets dans des environnements dits complexes, réalisées au moyen de la technologie ULB (Ultra-Large Bande) dite de haute précision temporelle. L'ambition est de contribuer à l'évolution des systèmes ULB de localisation en temps réel par la conception et l'optimisation d'antennes ULB qui soient reconfigurables, multistandards et multifonctionnelles. Ainsi, tout système de localisation intégrant des antennes optimisées sera doté d'une qualité de localisation meilleure et de fonctions nouvelles.Les contributions principales développées dans cette thèse ont consisté en l'apport d'améliorations aux systèmes de localisation en temps réel (RTLS) basé sur la technologie ULB : conception et fabrication d'antennes ULB reconfigurables en fréquence ; conception et fabrication d'une carte électronique de localisation multistandards (ULB et Long Range - LoRa) ; étude expérimentale des systèmes RTLS intégrant les antennes conçues et validation de l'évolution de la localisation en termes de portées supérieures, de détectabilité d'objets sans connaissance préalable de leurs orientations, et en précision améliorée par l'atténuation de signaux multi-trajets
This thesis is part of the concept of the Internet of Things (IoT), object identification, and traceability in so-called complex environments through Ultra-Wide Band (UWB) technology known for its high temporal precision. The objective is to contribute to the advancement of real-time UWB-based localization systems through the design and optimization of UWB antennas that are reconfigurable, multi-standards, and multi-functions. Therefore, any localization system integrating the optimized antennas will have improved localization quality and new functionalities.The main contributions developed in this thesis involve enhancements to real-time localization systems (RTLS) based on UWB technology: design and fabrication of frequency reconfigurable UWB antennas; design and fabrication of a multi-standard localization electronic board (UWB and Long Range - LoRa); experimental study of RTLS systems incorporating the designed antennas and validation of the evolution of the localization in terms of extended reading ranges, detectability of objects without prior knowledge of their orientations, and improved location accuracy through the attenuation of multi-path signals
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Laricchia, Luigi. "Monitoraggio ambientale tramite tecnologia LoRaWAN: misurazioni sperimentali e piattaforma di data analytics." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/17312/.

Повний текст джерела
Анотація:
I requisiti di molte applicazioni IoT necessitano di trasmettere dati su lunghe distanze, con basso data rate e con il minor impatto possibile sul consumo energetico. Le tecnologie LPWAN (Low Power Wide Area Network) sono state progettate per complementare ed in alcuni casi sostituire le soluzioni offerte dalla reti cellulari e dalle reti di sensori a corto/medio raggio. Nonostante la pletora di standards LPWAN disponibili sul mercato, la tecnologia LoRa/LoRaWAN sta riscuotendo notevole successo grazie alle performance che riesce a garantire. L’imponente mole di dati generata dalle applicazioni IoT richiede soluzioni in grado di poter archiviare e gestire in maniera efficiente il ciclo di vita delle informazioni. L’utilizzo di piattaforme di data analytics basate su sistemi NoSQL permettono una gestione più agile dei Big Data. In questa tesi è stata progettata ed implementata un’infrastruttura per il monitoraggio ambientale tramite LoRaWAN e la relativa piattaforma di data analytics adoperata per lo studio delle metriche relative alla trasmissione radio LoRa. I risultati ottenuti dalla sperimentazione possono essere usati per fare tuning delle configurazioni per il deploy in contesti reali.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Lad, Manish. "Characterization of Atmospheric Noise and Precipitation Static in the Long Range Navigation (Loran-C) Band for Aircraft." Ohio University / OhioLINK, 2004. http://www.ohiolink.edu/etd/view.cgi?ohiou1102702655.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kumar, Sujit. "Internet of Things Applications Using LoRa for Long Range Wireless Communication." Thesis, 2018. http://ethesis.nitrkl.ac.in/9931/1/2018_MT_216EC2202_SKumar_Internet.pdf.

Повний текст джерела
Анотація:
Nowadays there is a profusion of effort to analyses and finding new solutions related to multiple sensor networks used for IoT applications. Using LoRa (long range) transceiver it is easy to communicate with hundreds of sensors in the long range that is 2km for NLOS and 21km for LOS. And we can control these sensors using IoT technology in the smart way. Modulation techniques used in LoRa transceiver are OOK, FSK, GFSK, MSK, GMSK. It entitles the long-range transfer of information with a low power consumption. This project presents a review of the challenges and the obstacles of IoT concept with emphasis on the long-range wireless communication technology. LoRa uses license free Gigahertz radio frequency bands like 433 MHz, 868 MHz and 915MHz. LoRa enables very long-range transmission in village areas with low power consumption. The technology is presented in two layers, which are physical layer (LoRa) and upper layer (LoRaWAN). A LoRa WAN network (Long Range Network Protocol) is of the Low Power Wide Area Network (LPWAN) type and a battery powered device that ensure bidirectional communication. Communication with the LoRa transceiver module is done via SPI protocol, serial peripheral interfaces used to send data between microcontrollers for connecting with one or more peripheral devices. Using SPI connection, we control the peripheral devices such as shift registers, sensors.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Long range (LoRa)"

1

Anderson, Julie. RN2903 Low-Power Long Range Lora®Technology Transceiver Module Data Sheet. Microchip Technology Incorporated, 2019.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Takenaka, Norio. RN2903 Low-Power Long Range Lora(R) Technology Transceiver Module Data Sheet. Microchip Technology Incorporated, 2016.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Anderson, Julie. RN2483 Low-Power Long Range Lora® Technology Receiver Module Data Sheet. Microchip Technology Incorporated, 2019.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Nuccio, Aimee. RN2483 Low-Power Long Range Lora® Technology Transceiver Module Data Sheet. Microchip Technology Incorporated, 2020.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Seneviratne, Pradeeka. Beginning LoRa Radio Networks with Arduino: Build Long Range, Low Power Wireless IoT Networks. Apress, 2019.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Lozano, Grace. Low-Power Long Range (LoRa®) Technology Gateway Module for US (LG9271) and EU (LG8271) Data Sheet. Microchip Technology Incorporated, 2017.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

The Old Farmers Almanac 2011 Calculated On A New And Improved Plan For The Year Of Our Lord. Old Farmer's Almanac, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Stokes, Christopher. Romantic Prayer. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780198857808.001.0001.

Повний текст джерела
Анотація:
Whilst religion and the secular have been continually debated contexts for literature of the Romantic era, the dominant scholarly focus has always been on doctrines and denominations. In analysing the motif of devotion, this book shifts attention to the quintessential articulation of religion as lived experience, as practice, and as a performative rather than descriptive phenomenon. In an era when the tenability and rationality of prayer were much contested, poetry—a form with its own interlinked history with prayer, especially via lyric—was a unique place to register what prayer meant in modernity. This study illustrates how the discourse of prayer continually intervened in the way that poetic practices evolved and responded to the religious and secular questions of the eighteenth- and nineteenth-century moment. After laying out the details of prayer’s historical position in the Romantic era across a spread of religious traditions, it turns to a range of writers, from the identifiably religious to the staunchly sceptical. William Cowper and Anna Letitia Barbauld are shown to use poetry to reflect and reinvent the ideals of prayer inherited from their own Dissenting denominational histories. Samuel Taylor Coleridge’s work is analysed as part of a long engagement with the rationality of prayer in modernity, culminating in an explicit ‘philosophy’ of prayer; William Wordsworth—by contrast—keeps prayer at an aesthetic distance, continually alluding to prayerful language but rarely committing to a devotional voice itself. John Keats, Percy Bysshe Shelley, and Lord Byron are treated in the context of departing from Christianity, under the influence of Enlightenment, materialist and atheist critique—what happens to prayer in poetry when prayer as a language is becoming impossible to maintain?
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Long range (LoRa)"

1

Vangelista, Lorenzo, Andrea Zanella, and Michele Zorzi. "Long-Range IoT Technologies: The Dawn of LoRa™." In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 51–58. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-27072-2_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Parate, Mayur Rajaram, and Ankit A. Bhurane. "LoRa for Long-Range and Low-Cost IoT Applications." In Futuristic Research Trends and Applications of Internet of Things, 71–100. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003244714-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ong, C. H., W. M. Bukhari, M. N. Sukhaimie, M. A. Norasikin, A. F. A. Rasid, A. T. Izzudin, and N. F. Bazilah. "Study of Long Range (Lora) Network Coverage for Multi Areas." In Lecture Notes in Mechanical Engineering, 313–27. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8954-3_30.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Bhatter, Siddharth, Akash Verma, and Sayantan Sinha. "Application of IoT in Predictive Maintenance Using Long-Range Communication (LoRa)." In Lecture Notes in Electrical Engineering, 147–55. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2305-2_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Yin, Yuqing, Xiaojie Yu, Shouwan Gao, Xu Yang, Pengpeng Chen, and Qiang Niu. "MineSOS: Long-Range LoRa-Based Distress Gesture Sensing for Coal Mine Rescue." In Wireless Algorithms, Systems, and Applications, 105–16. Cham: Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-19214-2_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Frazào, Danilo, Diana Martins, and Edgard Silva. "Long-Range Network (LoRa) Behavior in the Amazon Region in a Fluvial Environment." In Proceedings of the 8th Brazilian Technology Symposium (BTSym’22), 391–98. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-31007-2_36.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Vijayakumaran, Thinesh. "Safety Helmet Head Impact Monitoring System Using Long Range (LoRa) Communication for Mining Industry." In Lecture Notes in Mechanical Engineering, 285–94. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8954-3_27.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Sasián, Félix, Diego Gachet, Miguel Suffo, and Ricardo Therón. "A Robust and Lightweight Protocol Over Long Range (LoRa) Technology for Applications in Smart Cities." In Smart Cities, 1–10. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-59513-9_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Sasián, Félix, Diego Gachet, Manuel de Buenaga, and Fernando Aparicio. "A Dictionary Based Protocol over LoRa (Long Range) Technology for Applications in Internet of Things." In Ubiquitous Computing and Ambient Intelligence, 140–48. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67585-5_15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Birajdar, Gajanand, Rajesh Singh, and Anita Gehlot. "Systematic Framework for Early Fire Detection and Smart Evacuation Using loRa—A Long-Range and Low-Power Communication Protocol." In Advances in Intelligent Systems and Computing, 351–58. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1510-8_34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Long range (LoRa)"

1

Ghodhbane, Raouia Masmoudi. "Maximization of Wireless Sensing Network’s Throughput Communicating with Long Range (LoRa) Modulation." In 2024 IEEE 7th International Conference on Advanced Technologies, Signal and Image Processing (ATSIP), 594–99. IEEE, 2024. http://dx.doi.org/10.1109/atsip62566.2024.10638955.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Marković, Dušan, Uroš Pešović, Slađana Đurašević, Mihailo Knežević, Dalibor Tomić, and Vladeta Stevović. "LORA (LONG-RANGE) TEHNOLOGIJA U PRECIZNOJ POLJOPRIVREDI." In XXVII savetovanje o biotehnologiji. University of Kragujevac, Faculty of Agronomy, 2022. http://dx.doi.org/10.46793/sbt27.129m.

Повний текст джерела
Анотація:
Precise agriculture, with the support of modern information and communication technologies, enables significant optimization of the agricultural production process. Thanks to the concept of the Internet of Things (IoT), the management of individual operations during the production process can be achieved remotely. The paper presents LoRa (Long Range) technology that enables wireless communication over long distances with low energy consumption, as well as the methodology of LoRa network design. The use of LoRa technology in the open is very important in order to collect data from agricultural fields that spread out on a larger area.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Xie, Binbin, and Jie Xiong. "Combating interference for long range LoRa sensing." In SenSys '20: The 18th ACM Conference on Embedded Networked Sensor Systems. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3384419.3430731.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Trüb, Roman, Reto Da Forno, Tonio Gsell, Jan Beutel, and Lothar Thiele. "A testbed for long-range LoRa communication." In IPSN '19: The 18th International Conference on Information Processing in Sensor Networks. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3302506.3312484.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Cappelli, Irene, Gabriele Di Renzone, Ada Fort, Marco Mugnaini, Alessandro Pozzebon, and Valerio Vignoli. "Long Range (LoRa) Transmission Through Ice: Preliminary Results." In 2021 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). IEEE, 2021. http://dx.doi.org/10.1109/i2mtc50364.2021.9459858.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Xie, Binbin, Minhao Cui, Deepak Ganesan, Xiangru Chen, and Jie Xiong. "Boosting the Long Range Sensing Potential of LoRa." In MobiSys '23: 21st Annual International Conference on Mobile Systems, Applications and Services. New York, NY, USA: ACM, 2023. http://dx.doi.org/10.1145/3581791.3596847.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Debdas, Subhra, Anwista Chakraborty, Harshit Kumar Verma, Arpita Kushwaha, D. Venkat Prasad Varma, and Arkajyoti Karmakar. "Long Range (LoRa) Fire Fighter In Dense Forest." In 2022 International Conference on Computer, Power and Communications (ICCPC). IEEE, 2022. http://dx.doi.org/10.1109/iccpc55978.2022.10072080.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Luo, Juan, Renjie Zhou, and Yue Cheng. "LoRa-based contactless long-range respiration classification system." In 2022 IEEE 28th International Conference on Parallel and Distributed Systems (ICPADS). IEEE, 2023. http://dx.doi.org/10.1109/icpads56603.2022.00023.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Jiang, Jinyan, Zhenqiang Xu, Fan Dang, and Jiliang Wang. "Long-range ambient LoRa backscatter with parallel decoding." In ACM MobiCom '21: The 27th Annual International Conference on Mobile Computing and Networking. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3447993.3483261.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Irfan bin Edi, Muhammad Eddie, Nur Emileen Abd Rashid, Nor Najwa Ismail, and Korhan Cengiz. "Low-Cost, Long-Range Unmanned Aerial Vehicle (UAV) Data Logger Using Long Range (LoRa) Module." In 2022 IEEE Symposium on Wireless Technology & Applications (ISWTA). IEEE, 2022. http://dx.doi.org/10.1109/iswta55313.2022.9942751.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії