Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Long range interacting system.

Статті в журналах з теми "Long range interacting system"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Long range interacting system".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Tamarit, Francisco A., and Celia Anteneodo. "Relaxation and aging in a long-range interacting system." Europhysics News 36, no. 6 (November 2005): 194–97. http://dx.doi.org/10.1051/epn:2005605.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Yang, Zhen-Yu, and Ji-Xuan Hou. "Thermodynamic analysis of a long-range interacting spin system." Modern Physics Letters B 33, no. 07 (March 10, 2019): 1950072. http://dx.doi.org/10.1142/s0217984919500726.

Повний текст джерела
Анотація:
A long-range interacting Fermi chain placed in the uniform and the staggered magnetic field is studied via the micro-canonical approach. The relation between the entropy and the energy of the system is obtained by counting the number of microscopic states. We find that this system is non-ergodic and can exhibit first-order phase transition, second-order phase transition, or both. The microcanonical ensemble predicts negative specific heat regions and temperature jumps. Moreover, the global phase diagram of the system is constructed.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Joshi, M. K., F. Kranzl, A. Schuckert, I. Lovas, C. Maier, R. Blatt, M. Knap, and C. F. Roos. "Observing emergent hydrodynamics in a long-range quantum magnet." Science 376, no. 6594 (May 13, 2022): 720–24. http://dx.doi.org/10.1126/science.abk2400.

Повний текст джерела
Анотація:
Identifying universal properties of nonequilibrium quantum states is a major challenge in modern physics. A fascinating prediction is that classical hydrodynamics emerges universally in the evolution of any interacting quantum system. We experimentally probed the quantum dynamics of 51 individually controlled ions, realizing a long-range interacting spin chain. By measuring space-time–resolved correlation functions in an infinite temperature state, we observed a whole family of hydrodynamic universality classes, ranging from normal diffusion to anomalous superdiffusion, that are described by Lévy flights. We extracted the transport coefficients of the hydrodynamic theory, reflecting the microscopic properties of the system. Our observations demonstrate the potential for engineered quantum systems to provide key insights into universal properties of nonequilibrium states of quantum matter.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Yuan, Chen. "Dynamics of Non-interacting System with Long-Range Correlated Quenched Impurities." Communications in Theoretical Physics 39, no. 6 (June 15, 2003): 741–44. http://dx.doi.org/10.1088/0253-6102/39/6/741.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Gupta, Shamik, and David Mukamel. "Relaxation dynamics of stochastic long-range interacting systems." Journal of Statistical Mechanics: Theory and Experiment 2010, no. 08 (August 26, 2010): P08026. http://dx.doi.org/10.1088/1742-5468/2010/08/p08026.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Sasaki, Munetaka, and Fumitaka Matsubara. "Stochastic Cutoff Method for Long-Range Interacting Systems." Journal of the Physical Society of Japan 77, no. 2 (February 15, 2008): 024004. http://dx.doi.org/10.1143/jpsj.77.024004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Bernard, D., M. Gaudin, F. D. M. Haldane, and V. Pasquier. "Yang-Baxter equation in long-range interacting systems." Journal of Physics A: Mathematical and General 26, no. 20 (October 21, 1993): 5219–36. http://dx.doi.org/10.1088/0305-4470/26/20/010.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Defenu, Nicolò. "Metastability and discrete spectrum of long-range systems." Proceedings of the National Academy of Sciences 118, no. 30 (July 23, 2021): e2101785118. http://dx.doi.org/10.1073/pnas.2101785118.

Повний текст джерела
Анотація:
Long-lived quasi-stationary states (QSSs) are a signature characteristic of long-range interacting systems both in the classical and in the quantum realms. Often, they emerge after a sudden quench of the Hamiltonian internal parameters and present a macroscopic lifetime, which increases with the system size. Despite their ubiquity, the fundamental mechanism at their root remains unknown. Here, we show that the spectrum of systems with power-law decaying couplings remains discrete up to the thermodynamic limit. As a consequence, several traditional results on the chaotic nature of the spectrum in many-body quantum systems are not satisfied in the presence of long-range interactions. In particular, the existence of QSSs may be traced back to the finiteness of Poincaré recurrence times. This picture justifies and extends known results on the anomalous magnetization dynamics in the quantum Ising model with power-law decaying couplings. The comparison between the discrete spectrum of long-range systems and more conventional examples of pure point spectra in the disordered case is also discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

CANNAS, SERGIO A., CINTIA M. LAPILLI, and DANIEL A. STARIOLO. "TESTING BOUNDARY CONDITIONS EFFICIENCY IN SIMULATIONS OF LONG-RANGE INTERACTING MAGNETIC MODELS." International Journal of Modern Physics C 15, no. 01 (January 2004): 115–27. http://dx.doi.org/10.1142/s0129183104005553.

Повний текст джерела
Анотація:
Periodic boundary conditions have no unique implementation in magnetic systems where all spins interact with each other through a power law decaying interaction of the form 1/rα, r being the distance between spins. In this work we present a comparative study of the finite size effects oberved in numerical simulations by using first image and infinite image periodic boundary conditions in one- and two-dimensional spin systems with those interactions, including the ferromagnetic, anti-ferromagnetic and competitive interaction cases. Our results show no significative differences between the finite size effects produced by both boundary conditions when the low temperature phase has zero global magnetization, and it depends on the ratio α/d for systems with a low temperature ferromagnetic phase. In the last case the first image convention gives more stronger finite size effects than the other when the system enters into the classical regime α/d≤3/2.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Gupta, Shamik, and Stefano Ruffo. "The world of long-range interactions: A bird’s eye view." International Journal of Modern Physics A 32, no. 09 (March 23, 2017): 1741018. http://dx.doi.org/10.1142/s0217751x17410184.

Повний текст джерела
Анотація:
In recent years, studies of long-range interacting (LRI) systems have taken center stage in the arena of statistical mechanics and dynamical system studies, due to new theoretical developments involving tools from as diverse a field as kinetic theory, non-equilibrium statistical mechanics, and large deviation theory, but also due to new and exciting experimental realizations of LRI systems. In the first, introductory, Section 1, we discuss the general features of long-range interactions, emphasizing in particular the main physical phenomenon of non-additivity, which leads to a plethora of distinct effects, both thermodynamic and dynamic, that are not observed with short-range interactions: Ensemble inequivalence, slow relaxation, broken ergodicity. In Section 2, we discuss several physical systems with long-range interactions: mean-field spin systems, self-gravitating systems, Euler equations in two dimensions, Coulomb systems, one-component electron plasma, dipolar systems, free-electron lasers. In Section 3, we discuss the general scenario of dynamical evolution of generic LRI systems. In Section 4, we discuss an illustrative example of LRI systems, the Kardar–Nagel spin system, which involves discrete degrees of freedom, while in Section 5, we discuss a paradigmatic example involving continuous degrees of freedom, the so-called Hamiltonian mean-field (HMF) model. For the former, we demonstrate the effects of ensemble inequivalence and slow relaxation, while for the HMF model, we emphasize in particular the occurrence of the so-called quasistationary states (QSSs) during relaxation towards the Boltzmann–Gibbs equilibrium state. The QSSs are non-equilibrium states with lifetimes that diverge with the system size, so that in the thermodynamic limit, the systems remain trapped in the QSSs, thereby making the latter the effective stationary states. In Section 5, we also discuss an experimental system involving atoms trapped in optical cavities, which may be modelled by the HMF system. In Section 6, we address the issue of ubiquity of the quasistationary behavior by considering a variety of models and dynamics, discussing in each case the conditions to observe QSSs. In Section 7, we investigate the issue of what happens when a long-range system is driven out of thermal equilibrium. Conclusions are drawn in Section 8.
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Nota, Alessia, Juan Velázquez, and Raphael Winter. "Interacting particle systems with long-range interactions: scaling limits and kinetic equations." Rendiconti Lincei - Matematica e Applicazioni 32, no. 2 (July 14, 2021): 335–77. http://dx.doi.org/10.4171/rlm/939.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Zidan, Nour. "Entropic Uncertainty in Spin XY Model with Long-Range Interactions." Entropy 22, no. 8 (July 30, 2020): 837. http://dx.doi.org/10.3390/e22080837.

Повний текст джерела
Анотація:
The behavior of the uncertainty relations and their tightness for a system, consisting of two qubits interacting thermally with a magnetic field in the presence of Dzyaloshinskii–Moriya interaction, is discussed, where different types of interaction strengths are considered. It is shown that both coupling and the magnetic field parameters decay the degree of entanglement, and increasing the uncertainty relations and the degree of mixedness. The phenomena of the sudden changes in the investigated quantities are depicted at large values of the field and coupling parameters. Concerning the type of the coupling parameters, distance and the trigonometric coupling have a clear effect on the behavior of the studied physical quantities.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Endo, Eishin, Yuta Toga, and Munetaka Sasaki. "Parallelized Stochastic Cutoff Method for Long-Range Interacting Systems." Journal of the Physical Society of Japan 84, no. 7 (July 15, 2015): 074002. http://dx.doi.org/10.7566/jpsj.84.074002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Tatekawa, Takayuki. "Phase transition in d-dimensional long-range interacting systems." Computer Physics Communications 177, no. 1-2 (July 2007): 190. http://dx.doi.org/10.1016/j.cpc.2007.02.017.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Campa, Alessandro, Andrea Giansanti, and Daniele Moroni. "Canonical solution of a system of long-range interacting rotators on a lattice." Physical Review E 62, no. 1 (July 1, 2000): 303–6. http://dx.doi.org/10.1103/physreve.62.303.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Bouchet, Freddy, and Thierry Dauxois. "Kinetics of anomalous transport and algebraic correlations in a long-range interacting system." Journal of Physics: Conference Series 7 (January 1, 2005): 34–47. http://dx.doi.org/10.1088/1742-6596/7/1/003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Derzhko, Volodymyr, and Janusz Jȩdrzejewski. "From phase separation to long-range order in a system of interacting electrons." Physica A: Statistical Mechanics and its Applications 328, no. 3-4 (October 2003): 449–65. http://dx.doi.org/10.1016/s0378-4371(03)00548-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Yao, Zhenwei. "Dynamical effects of long-range interaction revealed in screened Coulomb interacting ring systems." EPL (Europhysics Letters) 133, no. 5 (March 1, 2021): 54002. http://dx.doi.org/10.1209/0295-5075/133/54002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Gupta, Shamik, Thierry Dauxois, and Stefano Ruffo. "Out-of-equilibrium fluctuations in stochastic long-range interacting systems." EPL (Europhysics Letters) 113, no. 6 (March 1, 2016): 60008. http://dx.doi.org/10.1209/0295-5075/113/60008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

BALLESTEROS, ANGEL. "SYMMETRY, INTEGRABILITY AND DEFORMATIONS OF LONG-RANGE INTERACTING HAMILTONIANS." International Journal of Modern Physics B 13, no. 24n25 (October 10, 1999): 2903–8. http://dx.doi.org/10.1142/s0217979299002721.

Повний текст джерела
Анотація:
The notion of coalgebra symmetry in Hamiltonian systems is analysed. It is shown how the complete integrability of some long-range interacting Hamiltonians can be extracted from their associated coalgebra structure with no use of a quantum R-matrix. Within this framework, integrable deformations can be considered as direct consequences of the introduction of coalgebra deformations (quantum algebras). As an example, the Gaudin magnet is derived from a sl(2) coalgebra, and a completely integrable deformation of this Hamiltonian is obtained through a twisted gl(2) quantum algebra.
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Plastino, Angel, and Roseli Wedemann. "Nonlinear Fokker–Planck Equation Approach to Systems of Interacting Particles: Thermostatistical Features Related to the Range of the Interactions." Entropy 22, no. 2 (January 31, 2020): 163. http://dx.doi.org/10.3390/e22020163.

Повний текст джерела
Анотація:
Nonlinear Fokker–Planck equations (NLFPEs) constitute useful effective descriptions of some interacting many-body systems. Important instances of these nonlinear evolution equations are closely related to the thermostatistics based on the S q power-law entropic functionals. Most applications of the connection between the NLFPE and the S q entropies have focused on systems interacting through short-range forces. In the present contribution we re-visit the NLFPE approach to interacting systems in order to clarify the role played by the range of the interactions, and to explore the possibility of developing similar treatments for systems with long-range interactions, such as those corresponding to Newtonian gravitation. In particular, we consider a system of particles interacting via forces following the inverse square law and performing overdamped motion, that is described by a density obeying an integro-differential evolution equation that admits exact time-dependent solutions of the q-Gaussian form. These q-Gaussian solutions, which constitute a signature of S q -thermostatistics, evolve in a similar but not identical way to the solutions of an appropriate nonlinear, power-law Fokker–Planck equation.
Стилі APA, Harvard, Vancouver, ISO та ін.
22

DI CINTIO, PIERFRANCESCO, and LUCA CIOTTI. "RELAXATION OF SPHERICAL SYSTEMS WITH LONG-RANGE INTERACTIONS: A NUMERICAL INVESTIGATION." International Journal of Bifurcation and Chaos 21, no. 08 (August 2011): 2279–83. http://dx.doi.org/10.1142/s021812741102977x.

Повний текст джерела
Анотація:
The process of relaxation of a system of particles interacting with long-range forces is relevant to many areas of physics. For obvious reasons, in Stellar Dynamics much attention has been paid to the case of r-2force law. However, recently the interest in alternative gravities has emerged, and significant differences with respect to Newtonian gravity have been found in relaxation phenomena. Here we begin to explore this matter further, by using a numerical model of spherical shells interacting with an r-αforce law obeying the superposition principle. We find that the virialization and phase-mixing times depend on the exponent α, with small values of α corresponding to longer relaxation times, similarly to what happens when comparing for N-body simulations in classical gravity and in Modified Newtonian Dynamics.
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Hou, Ji-Xuan, and Xu-Chen Yu. "Thermodynamic properties of a spin-1 model with long-range interactions." Modern Physics Letters B 32, no. 05 (February 20, 2018): 1850053. http://dx.doi.org/10.1142/s0217984918500537.

Повний текст джерела
Анотація:
The long-range interacting spin-1 chain placed in a staggered magnetic field is studied by means of microcanonical approach. Firstly, we study the microcanonical entropy of the system in the thermodynamic limit and find the system is non-ergodic and can exhibit either first-order phase transition or second-order phase transition by shifting the external magnetic field strength. Secondly, we construct the global phase diagram of the system and find a phase transition area in the phase diagram corresponding to the temperature jump of the first-order phase transition.
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Hennig, D. "Directed transient long-range transport in a slowly driven Hamiltonian system of interacting particles." Physics Letters A 372, no. 41 (October 2008): 6260–64. http://dx.doi.org/10.1016/j.physleta.2008.08.063.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

CURILEF, SERGIO. "NONEXTENSIVE MICROSCOPIC BEHAVIOR OF LONG-RANGE INTERACTING PARTICLES IN PERIODIC MEDIA." International Journal of Modern Physics C 11, no. 03 (May 2000): 629–34. http://dx.doi.org/10.1142/s0129183100000547.

Повний текст джерела
Анотація:
This work presents a possible way to study the long-range interacting particles in finite-infinite (mesoscopic-macroscopic) systems with periodic boundary conditions. A symmetric lattice and their contributions over all space are used in the problem. In the present model, we assume that at long distances, the two-body attractive potential decays as a 1/rα law. We verified that the potential in any particle converges (diverges) when the interactions are short(long)-ranged. On the other hand, forces in any particle converge rapidly in all cases. However, we adopt a nonextensive scaling and we guarantee that the potential converges anywhere.
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Medina, Pablo, Eric Goles, Roberto Zarama, and Sergio Rica. "Self-Organized Societies: On the Sakoda Model of Social Interactions." Complexity 2017 (2017): 1–16. http://dx.doi.org/10.1155/2017/3548591.

Повний текст джерела
Анотація:
We characterize the behavior and the social structures appearing from a model of general social interaction proposed by Sakoda. The model consists of two interacting populations in a two-dimensional periodic lattice with empty sites. It contemplates a set of simple rules that combine attitudes, ranges of interactions, and movement decisions. We analyze the evolution of the 45 different interaction rules via a Potts-like energy function which drives the system irreversibly to an equilibrium or a steady state. We discuss the robustness of the social structures, dynamical behaviors, and the existence of spatial long range order in terms of the social interactions and the equilibrium energy.
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Leaw, Jia Ning, Ho-Kin Tang, Maxim Trushin, Fakher F. Assaad, and Shaffique Adam. "Universal Fermi-surface anisotropy renormalization for interacting Dirac fermions with long-range interactions." Proceedings of the National Academy of Sciences 116, no. 52 (December 9, 2019): 26431–34. http://dx.doi.org/10.1073/pnas.1913096116.

Повний текст джерела
Анотація:
Recent experimental [I. Joet al.,Phys. Rev. Lett.119, 016402 (2017)] and numerical [M. Ippoliti, S. D. Geraedts, R. N. Bhatt,Phys. Rev. B95, 201104 (2017)] evidence suggests an intriguing universal relationship between the Fermi surface anisotropy of the noninteracting parent 2-dimensional (2D) electron gas and the strongly correlated composite Fermi liquid formed in a strong magnetic field close to half-filling. Inspired by these observations, we explore more generally the question of anisotropy renormalization in interacting 2D Fermi systems. Using a recently developed [H. -K. Tanget al.,Science361, 570 (2018)] nonperturbative and numerically exact projective quantum Monte Carlo simulation as well as other numerical and analytic techniques, only for Dirac fermions with long-range Coulomb interactions do we find a universal square-root decrease of the Fermi-surface anisotropy. For theν=1/2composite Fermi liquid, this result is surprising since a Dirac fermion ground state was only recently proposed as an alternative to the usual Halperin–Lee–Read state. Our proposed universality can be tested in several anisotropic Dirac materials including graphene, topological insulators, organic conductors, and magic-angle twisted bilayer graphene.
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Ishimura, Norikazu. "An Ising System with Axially Long Range Interaction." Journal of the Physical Society of Japan 60, no. 6 (June 15, 1991): 2051–56. http://dx.doi.org/10.1143/jpsj.60.2051.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Rocha Filho, Tarcísio M. "Molecular dynamics for long-range interacting systems on graphic processing units." Computer Physics Communications 185, no. 5 (May 2014): 1364–69. http://dx.doi.org/10.1016/j.cpc.2014.01.008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Campa, Alessandro, Lapo Casetti, Pierfrancesco Di Cintio, Ivan Latella, J. Miguel Rubi, and Stefano Ruffo. "Modified Thirring model beyond the excluded-volume approximation." Journal of Statistical Mechanics: Theory and Experiment 2022, no. 10 (October 1, 2022): 103202. http://dx.doi.org/10.1088/1742-5468/ac9464.

Повний текст джерела
Анотація:
Abstract Long-range interacting systems may exhibit ensemble inequivalence and can possibly attain equilibrium states under completely open conditions, for which energy, volume and number of particles simultaneously fluctuate. Here we consider a modified version of the Thirring model for self-gravitating systems with attractive and repulsive long-range interactions in which particles are treated as hard spheres in dimension d = 1, 2, 3. Equilibrium states of the model are studied under completely open conditions, in the unconstrained ensemble, by means of both Monte Carlo simulations and analytical methods and are compared with the corresponding states at fixed number of particles, in the isothermal-isobaric ensemble. Our theoretical description is performed for an arbitrary local equation of state, which allows us to examine the system beyond the excluded-volume approximation. The simulations confirm the theoretical prediction of the possible occurrence of first-order phase transitions in the unconstrained ensemble. This work contributes to the understanding of long-range interacting systems exchanging heat, work and matter with the environment.
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Bolandhemat, Najmeh, and Md Mahmudur Rahman. "Thermodynamics and Critical Behaviors of Long-Range Interacting Magnetic System Using Tsallis Non-Extensive Statistics." Journal of Computational and Theoretical Nanoscience 12, no. 3 (March 1, 2015): 464–67. http://dx.doi.org/10.1166/jctn.2015.3753.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Chen, Yuan, Xiuzhi Zhang, Wenan Li, and Jipei Chen. "Onsager reaction field theory applied to the phase diagram of Heisenberg chain with ferromagnetic long-range interaction and antiferromagnetic nearest-neighbor interaction." International Journal of Modern Physics B 35, no. 06 (February 19, 2021): 2150080. http://dx.doi.org/10.1142/s0217979221500806.

Повний текст джерела
Анотація:
Onsager reaction field theory is used to investigate the one-dimensional ferromagnetic long-range interacting spin chain with the antiferromagnetic nearest-neighbor interaction (NNI) [Formula: see text]. The ferromagnetic long-range interactions considered in this paper decay as [Formula: see text] with the distance [Formula: see text] between lattice sites. It is found that both the zero temperature and finite-temperature phase diagrams of the system are strongly affected by the interplay between ferromagnetic long-range and antiferromagnetic NNIs. The critical temperature and the uniform susceptibility are obtained as a function of [Formula: see text] and [Formula: see text]. At finite temperatures and in the region [Formula: see text] in which [Formula: see text] is dependent of [Formula: see text], the ferromagnetic-paramagnetic phase transition survives for [Formula: see text] and no phase transition exists for [Formula: see text]. At [Formula: see text], the ferromagnetic-antiferromagnetic phase transition happens at zero temperature for [Formula: see text]. The ground state of the system keeps ferromagnetic when [Formula: see text]. But for [Formula: see text], the system becomes antiferromagnetic at all temperatures.
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Rosenberg, Itamar, Dror Liran, Yotam Mazuz-Harpaz, Kenneth West, Loren Pfeiffer, and Ronen Rapaport. "Strongly interacting dipolar-polaritons." Science Advances 4, no. 10 (October 2018): eaat8880. http://dx.doi.org/10.1126/sciadv.aat8880.

Повний текст джерела
Анотація:
Exciton-polaritons are mutually interacting quantum hybridizations of confined photons and electronic excitations. Here, we demonstrate a system of optically guided, electrically polarized exciton-polaritons (“dipolaritons”) that displays up to 200-fold enhancement of the polariton-polariton interaction strength compared to unpolarized polaritons. The magnitude of the dipolar interaction enhancement can be turned on and off and can be easily tuned over a very wide range by varying the applied polarizing electric field. The large interaction strengths and the very long propagation distances of these fully guided dipolaritons open up new opportunities for realizing complex quantum circuitry and quantum simulators, as well as topological states based on exciton-polaritons, for which the interactions between polaritons need to be large and spatially or temporally controlled. The results also raise fundamental questions on the origin of these large enhancements.
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Newton, Paul K., and Houman Shokraneh. "Interacting dipole pairs on a rotating sphere." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 464, no. 2094 (March 4, 2008): 1525–41. http://dx.doi.org/10.1098/rspa.2007.0209.

Повний текст джерела
Анотація:
The evolution, interaction and scattering of 2 N point vortices grouped into equal and opposite pairs ( N -dipoles) on a rotating unit sphere are studied. A new coordinate system made up of centres of vorticity and centroids associated with each dipole is introduced. With these coordinates, the nonlinear equations for an isolated dipole diagonalize and one directly obtains the equation for geodesic motion on the sphere for the dipole centroid. When two or more dipoles interact, the equations are viewed as an interacting billiard system on the sphere—charged billiards—with long-range interactions causing the centroid trajectories to deviate from their geodesic paths. Canonical interactions are studied both with and without rotation. For two dipoles, the four basic interactions are described as exchange-scattering , non-exchange-scattering , loop-scattering (head on) and loop-scattering (chasing) interactions. For three or more dipoles, one obtains a richer variety of interactions, although the interactions identified in the two-dipole case remain fundamental.
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Uzelac, K., and Z. Glumac. "Finite-range scaling for a one-dimensional system with long-range interactions." Journal of Physics A: Mathematical and General 21, no. 7 (April 7, 1988): L421—L425. http://dx.doi.org/10.1088/0305-4470/21/7/011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

BALDOVIN, FULVIO, and ENZO ORLANDINI. "NOSÉ-HOOVER AND LANGEVIN THERMOSTATS DO NOT REPRODUCE THE NONEQUILIBRIUM BEHAVIOR OF LONG-RANGE HAMILTONIANS." International Journal of Modern Physics B 21, no. 23n24 (September 30, 2007): 4000–4006. http://dx.doi.org/10.1142/s0217979207045098.

Повний текст джерела
Анотація:
We compare simulations performed using the Nosé-Hoover and the Langevin thermostats with the Hamiltonian dynamics of a long-range interacting system in contact with a reservoir. We find that while the statistical mechanics equilibrium properties of the system are recovered by all the different methods, the Nosé-Hoover and the Langevin nonequilibrium results differ from the Hamiltonian ones.
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Borgonovi, F., G. L. Celardo, and R. Trasarti-Battistoni. "The topological non-connectivity threshold in quantum long-range interacting spin systems." European Physical Journal B 50, no. 1-2 (February 8, 2006): 27–31. http://dx.doi.org/10.1140/epjb/e2006-00035-y.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Nardini, Cesare, Shamik Gupta, Stefano Ruffo, Thierry Dauxois, and Freddy Bouchet. "Kinetic theory for non-equilibrium stationary states in long-range interacting systems." Journal of Statistical Mechanics: Theory and Experiment 2012, no. 01 (January 30, 2012): L01002. http://dx.doi.org/10.1088/1742-5468/2012/01/l01002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Gupta, Shamik, and Lapo Casetti. "Surprises from quenches in long-range-interacting systems: temperature inversion and cooling." New Journal of Physics 18, no. 10 (October 31, 2016): 103051. http://dx.doi.org/10.1088/1367-2630/18/10/103051.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Hou, Ji-Xuan, Xu-Chen Yu, and Jing-Min Hou. "Microcanonical Analysis on a System with Long-Range Interactions." International Journal of Theoretical Physics 55, no. 9 (April 23, 2016): 3923–26. http://dx.doi.org/10.1007/s10773-016-3021-z.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Sizhuk, A. S., and G. Dong. "Near Resonant Optical Absorption by a System Coupled with Two Laser Beams." Ukrainian Journal of Physics 65, no. 4 (April 17, 2020): 277. http://dx.doi.org/10.15407/ujpe65.4.277.

Повний текст джерела
Анотація:
The structure of a solution of the generalized Maxwell–Bloch system of equations describing the strongly pumped interacting two-level atoms is discussed. This structure is represented by means of the corresponding differential equations for each contributing process. The interaction between the processes is introduced through the interaction integral and is illustrated by the specific system of graphs. The method allows one to describe the quantum-field-induced long-range interaction prevailing over short-range collisions and causing the broadening, narrowing, and shifts of an absorption line shape. The description is given in terms of the interaction integrals which couple the collective atomic polarization and population inversion. The contributions from different effects are analyzed with the use of the additivity of the corresponding absorption/reemission rates.
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Li, Zhi-Xia, Yu-Chen Yao, Sheng Zhang, and Ji-Xuan Hou. "Violation of the Zeroth Law of Thermodynamics in a spin chain." Modern Physics Letters B 34, no. 29 (June 15, 2020): 2050318. http://dx.doi.org/10.1142/s0217984920503182.

Повний текст джерела
Анотація:
A long-range interacting spin chain can exhibit temperature jump at the transition energy under the microcanonical description. After two identical long-range interacting subsystems of the same size at the same temperatures are weakly coupled, they exchange energy and the total microcanonical entropy of the full system increases irreversibly, leading to a violation of the Zeroth Law of Thermodynamics. In addition, microcanonical Monte Carlo simulations are performed to verify our conclusion.
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Lapa, Matthew F., and Michael Levin. "Stability of ground state degeneracy to long-range interactions." Journal of Statistical Mechanics: Theory and Experiment 2023, no. 1 (January 1, 2023): 013102. http://dx.doi.org/10.1088/1742-5468/acaf84.

Повний текст джерела
Анотація:
Abstract We show that some gapped quantum many-body systems have a ground state degeneracy that is stable to long-range (e.g. power-law) perturbations, in the sense that any ground state energy splitting induced by such perturbations is exponentially small in the system size. More specifically, we consider an Ising symmetry-breaking Hamiltonian with several exactly degenerate ground states and an energy gap, and we then perturb the system with Ising symmetric long-range interactions. For these models we prove (a) the stability of the gap, and (b) that the residual splitting of the low-energy states below the gap is exponentially small in the system size. Our proof relies on a convergent polymer expansion that is adapted to handle the long-range interactions in our model. We also discuss applications of our result to several models of physical interest, including the Kitaev p-wave wire model perturbed by power-law density–density interactions with an exponent greater than 1.
Стилі APA, Harvard, Vancouver, ISO та ін.
44

SAHA, MIRABEAU, and TIMOLÉON C. KOFANÉ. "NONLINEAR DYNAMICS OF LONG-RANGE PROTEIN-HELICOIDAL DNA INTERACTIONS." International Journal of Modern Physics B 26, no. 19 (July 16, 2012): 1250101. http://dx.doi.org/10.1142/s0217979212501019.

Повний текст джерела
Анотація:
The effects of long-range interactions between peptides on the protein–DNA dynamics in the long-wave limit are studied. The investigation, done at the physiological temperature, is based on a coupled spin system of DNA molecule which includes the helicoidal geometry of DNA molecule and the Kac–Baker long-range interaction between the peptides of the protein molecule. By using the Holstein–Primakoff bosonic representation of the spin operators, we show that the original discrete equations for the protein–DNA interaction dynamics can be reduced to the nonlinear Schrödinger (NLS) equation of which the dispersive and the nonlinear coefficients depend among other things on the protein long-range interaction parameter and on the helicoidal coupling coefficient. Furthermore, we find that the amplitude and the width of the resulting breather solution, in the form of the bubble moving along the DNA molecule, are strongly influenced by the long-range and helicoidal interactions. This result shows a relevant length scale for real protein–DNA interaction.
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Zhang, Linfeng, Han Wang, Maria Carolina Muniz, Athanassios Z. Panagiotopoulos, Roberto Car, and Weinan E. "A deep potential model with long-range electrostatic interactions." Journal of Chemical Physics 156, no. 12 (March 28, 2022): 124107. http://dx.doi.org/10.1063/5.0083669.

Повний текст джерела
Анотація:
Machine learning models for the potential energy of multi-atomic systems, such as the deep potential (DP) model, make molecular simulations with the accuracy of quantum mechanical density functional theory possible at a cost only moderately higher than that of empirical force fields. However, the majority of these models lack explicit long-range interactions and fail to describe properties that derive from the Coulombic tail of the forces. To overcome this limitation, we extend the DP model by approximating the long-range electrostatic interaction between ions (nuclei + core electrons) and valence electrons with that of distributions of spherical Gaussian charges located at ionic and electronic sites. The latter are rigorously defined in terms of the centers of the maximally localized Wannier distributions, whose dependence on the local atomic environment is modeled accurately by a deep neural network. In the DP long-range (DPLR) model, the electrostatic energy of the Gaussian charge system is added to short-range interactions that are represented as in the standard DP model. The resulting potential energy surface is smooth and possesses analytical forces and virial. Missing effects in the standard DP scheme are recovered, improving on accuracy and predictive power. By including long-range electrostatics, DPLR correctly extrapolates to large systems the potential energy surface learned from quantum mechanical calculations on smaller systems. We illustrate the approach with three examples: the potential energy profile of the water dimer, the free energy of interaction of a water molecule with a liquid water slab, and the phonon dispersion curves of the NaCl crystal.
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Wang Chun-Yang and Kong Xiang-Mu. "Critical temperature of the Gauss system under long-range interactions." Acta Physica Sinica 54, no. 9 (2005): 4365. http://dx.doi.org/10.7498/aps.54.4365.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Soltani, M. R., S. Mahdavifar, and M. Mahmoudi. "Entanglement in a two-spin system with long-range interactions." Chinese Physics B 25, no. 8 (July 26, 2016): 087501. http://dx.doi.org/10.1088/1674-1056/25/8/087501.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Gouvêa, M. E., and A. S. T. Pires. "Planar rotator system in two dimensions with long-range interactions." Journal of Magnetism and Magnetic Materials 162, no. 2-3 (September 1996): 225–29. http://dx.doi.org/10.1016/s0304-8853(96)00287-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Bsaibes, Thomas, Luís Pires, David Czaplewski, Daniel López, and Ricardo S. Decca. "Toward a better system for short range precision force measurements." Modern Physics Letters A 35, no. 03 (January 16, 2020): 2040002. http://dx.doi.org/10.1142/s0217732320400027.

Повний текст джерела
Анотація:
Many precision experiments have been done in the Casimir regime and in short range gravity when the separation between the interacting bodies is in the sub-micron range. Experimental complexity is minimized when one of the bodies is a sphere and the other one is a plate, making the alignment between the two bodies ubiquitous. Our group has produced the most precise Casimir measurements, and the best limits on predicted Yukawa-like potentials by measuring a force between a [Formula: see text] sphere attached to a [Formula: see text] micro-mechanical oscillator and a planar source mass. By replacing the spherical surface with a fraction of a [Formula: see text] long cylinder with [Formula: see text]m, the force sensitivity can be greatly enhanced. Here, it is paramount to know the angular deviation between the long axis of the cylinder and both the axis of rotation of the oscillator and the plate. Tests between a cylinder and a structure etched into a silicon wafer show that deviations of [Formula: see text]rad are readily accessible. Additionally, a scaled up experiment is used to investigate if capacitance measurements can determine the orientation of the cylinder with respect to a plane with the required precision.
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Tanatar, B., and E. Demirel. "Many-body vertex corrections in a one-dimensional electron system interacting with a long-range Coulomb potential." Physical Review B 62, no. 3 (July 15, 2000): 1787–92. http://dx.doi.org/10.1103/physrevb.62.1787.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії