Добірка наукової літератури з теми "Logical-linguistic model"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Logical-linguistic model".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Logical-linguistic model"
Phong, Pham Đinh. "A TIME SERIES FORECASTING MODEL BASED ON LINGUISTIC FORECASTING RULES." Journal of Computer Science and Cybernetics 37, no. 1 (March 29, 2021): 23–42. http://dx.doi.org/10.15625/1813-9663/37/1/15852.
Повний текст джерелаKhairova, Nina, Orken Mamyrbayev, Kuralay Mukhsina, Anastasiia Kolesnyk, and Saurabh Pratap. "Logical-linguistic model for multilingual Open Information Extraction." Cogent Engineering 7, no. 1 (January 1, 2020): 1714829. http://dx.doi.org/10.1080/23311916.2020.1714829.
Повний текст джерелаZhao, Aiwu, Junhong Gao, and Hongjun Guan. "Forecasting Model for Stock Market Based on Probabilistic Linguistic Logical Relationship and Distance Measurement." Symmetry 12, no. 6 (June 4, 2020): 954. http://dx.doi.org/10.3390/sym12060954.
Повний текст джерелаYerizon, Yerizon, and Atus Amadi Putra. "The Effect of Various Learning Approaches on Mathematical Learning Outcomes based on the Multiple Intelligences of Students." ATHENS JOURNAL OF SCIENCES 8, no. 3 (August 30, 2021): 213–28. http://dx.doi.org/10.30958/ajs.8-3-4.
Повний текст джерелаPolyakov, O. M. "Linguistic Data Model for Natural Languages and Artificial Intelligence. Part 7. Internal Logic 1." Discourse 8, no. 1 (February 25, 2022): 133–41. http://dx.doi.org/10.32603/2412-8562-2022-8-1-133-141.
Повний текст джерелаNikitin, Yury, Pavol Božek, and Jozef Peterka. "Logical–Linguistic Model of Diagnostics of Electric Drives with Sensors Support." Sensors 20, no. 16 (August 8, 2020): 4429. http://dx.doi.org/10.3390/s20164429.
Повний текст джерелаVavilenkova, Anastasiia. "Features of the Knowledge Base of the System of Automated Construction of Logic and Linguistic Models of Text Documents." Vìsnik Nacìonalʹnogo unìversitetu "Lʹvìvsʹka polìtehnìka". Serìâ Ìnformacìjnì sistemi ta merežì 9 (June 10, 2021): 75–83. http://dx.doi.org/10.23939/sisn2021.09.075.
Повний текст джерелаPopov, A., and D. Polyakov. "Fuzzy logical-linguistic model for assessing the qualitative composition of carbon nanomaterials." IOP Conference Series: Materials Science and Engineering 693 (November 28, 2019): 012010. http://dx.doi.org/10.1088/1757-899x/693/1/012010.
Повний текст джерелаPolyakov, O. M. "Linguistic Data Model for Natural Languages and Artificial Intelligence. Part 7. Internal logic 2 Oleg M. Polyakov." Discourse 8, no. 2 (April 26, 2022): 98–112. http://dx.doi.org/10.32603/2412-8562-2022-8-2-98-112.
Повний текст джерелаWANG, PAUL P., and CHIH HSUN HSIEH. "MODELING THE DEGREE OF TRUTHFULNESS." New Mathematics and Natural Computation 06, no. 02 (July 2010): 141–61. http://dx.doi.org/10.1142/s1793005710001712.
Повний текст джерелаДисертації з теми "Logical-linguistic model"
Петрасова, Світлана Валентинівна. "Інформаційна технологія ідентифікації знань у наукометричних системах на основі інтелектуального аналізу слабоформалізованих даних". Thesis, НТУ "ХПІ", 2016. http://repository.kpi.kharkov.ua/handle/KhPI-Press/28125.
Повний текст джерелаThesis for a candidate degree in technical sciences, speciality 05.13.06 – Information Technologies. – National Technical University "Kharkiv Polytechnic Institute". – Kharkiv, 2017. The objective of the thesis is to increase the effectiveness of knowledge identi-fication in scientometric systems by designing the models and methods of intelligent analysis of weakly formalized data. The main results are as follows. The current state of the knowledge identification problem in scientometric systems has been analysed. Existing methods for the intelligent analysis of weakly formalized data have been systematized. Thus the basic requirements for designing the information technology of knowledge identification have been formulated. Using the finite predicate algebra in the information and logical models of knowledge identification in Ukrainian and English abstract data of scientometric systems has been proved. The logical-linguistic model of semantically connected fragments identification in weakly formalized abstract information has been developed. The model is based on the use of algebraic-predicate operations that allows effectively extracting knowledge from abstract information. The method for the formalization of semantic relations between entities has been improved. The method is based on the use of the semantic similarity measure and intelligent analysis for the identification of equivalence and tolerance classes that allows defining implicit relations of similarity and relations of taxonomy. The method for comparator identification has got the further development. This method is used to classify abstract fragments in scientometric systems that allows determining common information spaces of scientific interaction by modelling intel-ligence functions of understanding and classification of sense. The information technology of knowledge identification in scientometric systems has been improved. The technology allows identifying common research fronts by defining dynamically implicit connections between abstracts of scientometric systems. The research results have been implemented in the systems of summaries and abstracts processing. Using the developed information technology improves the effectiveness of knowledge identification in weakly formalized data by increasing the average values of the precision and recall measures of semantic similarity of text information. The practical results can be used in information retrieval, expert, and information-analytical general-purpose systems for the formation of electronic catalogues of semantically connected texts in scientometric, library, and abstract systems.
Петрасова, Світлана Валентинівна. "Інформаційна технологія ідентифікації знань у наукометричних системах на основі інтелектуального аналізу слабоформалізованих даних". Thesis, НТУ "ХПІ", 2017. http://repository.kpi.kharkov.ua/handle/KhPI-Press/28123.
Повний текст джерелаThesis for a candidate degree in technical sciences, speciality 05.13.06 – Information Technologies. – National Technical University "Kharkiv Polytechnic Institute". – Kharkiv, 2017. The objective of the thesis is to increase the effectiveness of knowledge identi-fication in scientometric systems by designing the models and methods of intelligent analysis of weakly formalized data. The main results are as follows. The current state of the knowledge identification problem in scientometric systems has been analysed. Existing methods for the intelligent analysis of weakly formalized data have been systematized. Thus the basic requirements for designing the information technology of knowledge identification have been formulated. Using the finite predicate algebra in the information and logical models of knowledge identification in Ukrainian and English abstract data of scientometric systems has been proved. The logical-linguistic model of semantically connected fragments identification in weakly formalized abstract information has been developed. The model is based on the use of algebraic-predicate operations that allows effectively extracting knowledge from abstract information. The method for the formalization of semantic relations between entities has been improved. The method is based on the use of the semantic similarity measure and intelligent analysis for the identification of equivalence and tolerance classes that allows defining implicit relations of similarity and relations of taxonomy. The method for comparator identification has got the further development. This method is used to classify abstract fragments in scientometric systems that allows determining common information spaces of scientific interaction by modelling intel-ligence functions of understanding and classification of sense. The information technology of knowledge identification in scientometric systems has been improved. The technology allows identifying common research fronts by defining dynamically implicit connections between abstracts of scientometric systems. The research results have been implemented in the systems of summaries and abstracts processing. Using the developed information technology improves the effectiveness of knowledge identification in weakly formalized data by increasing the average values of the precision and recall measures of semantic similarity of text information. The practical results can be used in information retrieval, expert, and information-analytical general-purpose systems for the formation of electronic catalogues of semantically connected texts in scientometric, library, and abstract systems.
Книги з теми "Logical-linguistic model"
Moortgat, Michael. Categorial investigations: Logical and linguistic aspects of the Lambek calculus. Dordrecht, Holland: Foris Publications, 1988.
Знайти повний текст джерелаHuang, Yan. Neo-Gricean Pragmatics. Edited by Yan Huang. Oxford University Press, 2016. http://dx.doi.org/10.1093/oxfordhb/9780199697960.013.12.
Повний текст джерелаHolliday, Wesley H., and Thomas F. III Icard. Axiomatization in the Meaning Sciences. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198739548.003.0002.
Повний текст джерелаBaldwin, Thomas. Russell on Modality. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198786436.003.0007.
Повний текст джерелаЧастини книг з теми "Logical-linguistic model"
Igamberdiev, H. Z., A. N. Yusupbekov, D. A. Mirzaev, and N. A. Kabulov. "Logical-Linguistic Model of Functioning of Computer Systems’ Software." In 13th International Conference on Theory and Application of Fuzzy Systems and Soft Computing — ICAFS-2018, 880–85. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-04164-9_116.
Повний текст джерелаKhairova, Nina Feliksivna, Svetlana Petrasova, and Ajit Pratap Singh Gautam. "The Logical-Linguistic Model of Fact Extraction from English Texts." In Communications in Computer and Information Science, 625–35. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46254-7_51.
Повний текст джерелаKhairova, Nina, Włodzimierz Lewoniewski, and Krzysztof Węcel. "Estimating the Quality of Articles in Russian Wikipedia Using the Logical-Linguistic Model of Fact Extraction." In Business Information Systems, 28–40. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-59336-4_3.
Повний текст джерелаHammer, Eric, and Norman Danner. "Towards a Model Theory of Venn Diagrams." In Logical Reasoning with Diagrams. Oxford University Press, 1996. http://dx.doi.org/10.1093/oso/9780195104271.003.0010.
Повний текст джерелаStojnić, Una. "An Alleged Ambiguity and the Dynamics of Context-Change." In Context and Coherence, 33–39. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780198865469.003.0003.
Повний текст джерелаStojnić, Una. "The Model of a True Demonstrative: Extra-linguistic Effects on Situated Meaning." In Context and Coherence, 23–32. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780198865469.003.0002.
Повний текст джерелаSoames, Scott. "Methodology in Late Nineteenth- and Early Twentieth-Century Analytic Philosophy." In Analytic Philosophy in America. Princeton University Press, 2014. http://dx.doi.org/10.23943/princeton/9780691160726.003.0002.
Повний текст джерелаHigginbotham, James. "Tense, Indexicality, and Consequence." In The Arguments of Time. British Academy, 2006. http://dx.doi.org/10.5871/bacad/9780197263464.003.0008.
Повний текст джерелаMilnes, Tim. "The Conversable Intellect." In The Testimony of Sense, 109–44. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198812739.003.0003.
Повний текст джерелаHeletka, Marharyta, Iryna Cherkashchenko, and Valentyna Kravchuk. "BUSINESS MODEL AS A SUBJECT FOR LINGUAL AND COGNITIVE ANALYSIS." In Integration of traditional and innovative scientific researches: global trends and regional as. Publishing House “Baltija Publishing”, 2020. http://dx.doi.org/10.30525/978-9934-26-001-8-1-10.
Повний текст джерелаТези доповідей конференцій з теми "Logical-linguistic model"
Khairova, Nina, Svitlana Petrasova, Orken Mamyrbayev, and Kuralay Mukhsina. "Detecting Collocations Similarity via Logical-Linguistic Model." In RELATIONS - Workshop on meaning relations between phrases and sentences. Stroudsburg, PA, USA: Association for Computational Linguistics, 2019. http://dx.doi.org/10.18653/v1/w19-0802.
Повний текст джерелаBriukhanov, A. Yu, A. V. Trifanov, A. V. Spesivtsev, R. A. Uvarov, and V. A. Spesivtsev. "Logical-linguistic model of farm organic waste recycling." In 2017 XX IEEE International Conference on Soft Computing and Measurements (SCM). IEEE, 2017. http://dx.doi.org/10.1109/scm.2017.7970556.
Повний текст джерелаGorbunov, Alexey, Sari Farah Abbas, and Aleksey Loktev. "Logical-linguistic Model of Risks of the Cardiovascular System." In 2021 3rd International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency (SUMMA). IEEE, 2021. http://dx.doi.org/10.1109/summa53307.2021.9632088.
Повний текст джерелаLaishev, Kasim, Aleksandr Spesivtsev, Aleksandr Prokudin, and Nelya Domshenko. "Logical-linguistic model of anthrax epizootic monitoring in Far North." In 17th International Scientific Conference Engineering for Rural Development. Latvia University of Agriculture, 2018. http://dx.doi.org/10.22616/erdev2018.17.n250.
Повний текст джерелаKhristodulo, Olga, Vladimir Gvozdev, Oxana Bezhaeva, and Marat Shamsutdinov. "Assessment of the characteristics of the municipal solid waste management system based on the apparatus of the theory of reliability." In International Conference "Computing for Physics and Technology - CPT2020". Bryansk State Technical University, 2020. http://dx.doi.org/10.30987/conferencearticle_5fce277281cca9.86270786.
Повний текст джерелаKobets, Elizaveta, Arsenii Tretiakov, and Natalia Gorlushkina. "Creation of Logical Models for Conducting Forensic Linguistic Expertise." In IX International Scientific and Practical Conference “Current Problems of Social and Labour Relations" (ISPC-CPSLR 2021). Paris, France: Atlantis Press, 2022. http://dx.doi.org/10.2991/assehr.k.220208.033.
Повний текст джерелаPopov, V. D., A. V. Spesivtsev, A. I. Sukhoparov, and V. A. Spesivtsev. "Use of logical-linguistic models to predict the retained biological potential of grasses during their conservation." In 2016 XIX IEEE International Conference on Soft Computing and Measurements (SCM). IEEE, 2016. http://dx.doi.org/10.1109/scm.2016.7519741.
Повний текст джерелаЗвіти організацій з теми "Logical-linguistic model"
Makhachashvili, Rusudan K., Svetlana I. Kovpik, Anna O. Bakhtina, and Ekaterina O. Shmeltser. Technology of presentation of literature on the Emoji Maker platform: pedagogical function of graphic mimesis. [б. в.], July 2020. http://dx.doi.org/10.31812/123456789/3864.
Повний текст джерела