Статті в журналах з теми "Localized damping"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Localized damping.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Localized damping".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Renardy, M. "On localized Kelvin-Voigt damping." ZAMM 84, no. 4 (April 1, 2004): 280–83. http://dx.doi.org/10.1002/zamm.200310100.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Short, R. W., and A. Simon. "Landau damping and transit-time damping of localized plasma waves in general geometries." Physics of Plasmas 5, no. 12 (December 1998): 4124–33. http://dx.doi.org/10.1063/1.873146.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Vasconcellos, Carlos F., and Patricia N. da Silva. "Stabilization of the Kawahara equation with localized damping." ESAIM: Control, Optimisation and Calculus of Variations 17, no. 1 (October 30, 2009): 102–16. http://dx.doi.org/10.1051/cocv/2009041.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Besse, Christophe, Rémi Carles, and Sylvain Ervedoza. "A conservation law with spatially localized sublinear damping." Annales de l'Institut Henri Poincaré C, Analyse non linéaire 37, no. 1 (January 2020): 13–50. http://dx.doi.org/10.1016/j.anihpc.2019.03.002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Micu, Sorin, and Ademir F. Pazoto. "Stabilization of a Boussinesq system with localized damping." Journal d'Analyse Mathématique 137, no. 1 (March 2019): 291–337. http://dx.doi.org/10.1007/s11854-018-0074-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Han, Xiaosen, and Mingxin Wang. "Asymptotic Behavior for Petrovsky Equation with Localized Damping." Acta Applicandae Mathematicae 110, no. 3 (March 19, 2009): 1057–76. http://dx.doi.org/10.1007/s10440-009-9493-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Schober, H. R. "Quasi-localized vibrations and phonon damping in glasses." Journal of Non-Crystalline Solids 357, no. 2 (January 2011): 501–5. http://dx.doi.org/10.1016/j.jnoncrysol.2010.07.036.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Santos, E. R. O., V. S. Pereira, J. R. F. Arruda, and J. M. C. Dos Santos. "Structural Damage Detection Using Energy Flow Models." Shock and Vibration 15, no. 3-4 (2008): 217–30. http://dx.doi.org/10.1155/2008/176954.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The presence of a crack in a structure modifies the energy dissipation pattern. As a consequence, damaged structures can present high localized damping. Experimental tests have revealed that crack nucleation and growth increase structural damping which makes this phenomenon useful as a damage locator. This paper examines the energy flow patterns caused by localized damping in rods, beams and plates using the Energy Finite Element Method (EFEM), the Spectral Element Method (SEM) and the Energy Spectral Element Method (ESEM) in order to detect and locate damage. The analyses are performed at high frequencies, where any localized structural change has a strong influence in the structural response. Simulated results for damage detection in rods, beams, and their couplings calculated by each method and using the element loss factor variation to model the damage, are presented and compared. Results for a simple thin plate calculated with EFEM are also discussed.
9

Riedl, J. M., C. A. Gilchrist-Millar, T. Van Doorsselaere, D. B. Jess, and S. D. T. Grant. "Finding the mechanism of wave energy flux damping in solar pores using numerical simulations." Astronomy & Astrophysics 648 (April 2021): A77. http://dx.doi.org/10.1051/0004-6361/202040163.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Context. Solar magnetic pores are, due to their concentrated magnetic fields, suitable guides for magnetoacoustic waves. Recent observations have shown that propagating energy flux in pores is subject to strong damping with height; however, the reason is still unclear. Aims. We investigate possible damping mechanisms numerically to explain the observations. Methods. We performed 2D numerical magnetohydrodynamic (MHD) simulations, starting from an equilibrium model of a single pore inspired by the observed properties. Energy was inserted into the bottom of the domain via different vertical drivers with a period of 30 s. Simulations were performed with both ideal MHD and non-ideal effects. Results. While the analysis of the energy flux for ideal and non-ideal MHD simulations with a plane driver cannot reproduce the observed damping, the numerically predicted damping for a localized driver closely corresponds with the observations. The strong damping in simulations with localized driver was caused by two geometric effects, geometric spreading due to diverging field lines and lateral wave leakage.
10

Ammari, Kaïs, and Taoufik Hmidi. "Ergodicity effects on transport-diffusion equations with localized damping." Dynamics of Partial Differential Equations 18, no. 1 (2021): 1–10. http://dx.doi.org/10.4310/dpde.2021.v18.n1.a1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Vasconcellos, Carlos F., and Patricia N. da Silva. "Stabilization of the linear Kawahara equation with localized damping." Asymptotic Analysis 58, no. 4 (2008): 229–52. http://dx.doi.org/10.3233/asy-2008-0895.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Vasconcellos, Carlos F., and Patricia N. da Silva. "Stabilization of the linear Kawahara equation with localized damping." Asymptotic Analysis 66, no. 2 (2010): 119–24. http://dx.doi.org/10.3233/asy-2010-0987.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Kolesnichenko, Ya I., V. S. Marchenko, and H. Wobig. "Damping of Alfvén eigenmodes on localized electrons in stellarators." Physics of Plasmas 11, no. 10 (October 2004): 4616–22. http://dx.doi.org/10.1063/1.1783879.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Tcheugoué Tébou, Louis Roder. "Stabilization of the Wave Equation with Localized Nonlinear Damping." Journal of Differential Equations 145, no. 2 (May 1998): 502–24. http://dx.doi.org/10.1006/jdeq.1998.3416.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Galmiche, D., J. P. Nicolle, and D. Pesme. "Electron acceleration by a localized electric field." Laser and Particle Beams 4, no. 3-4 (August 1986): 439–52. http://dx.doi.org/10.1017/s0263034600002123.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The acceleration of test electrons by a resonant, one—dimensional electric structure is studied in the convective regime with the Zakharov equations. Depending on the nonlinearity level the particle acceleration is due to diffusion or trapping by the plasma wave. Electron distributions are obtained and compared with 1-D particle code results. Influence of Landau damping formulation is discussed.
16

Moon, Seong Woo, Philippe Vuka Tsalu, and Ji Won Ha. "Single particle study: size and chemical effects on plasmon damping at the interface between adsorbate and anisotropic gold nanorods." Physical Chemistry Chemical Physics 20, no. 34 (2018): 22197–202. http://dx.doi.org/10.1039/c8cp03231a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Rosier, L. "On the Benjamin-Bona-Mahony Equation with a Localized Damping." Journal of Mathematical Study 49, no. 2 (June 2016): 195–204. http://dx.doi.org/10.4208/jms.v49n2.16.06.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Tebou, Louis. "Stabilization of some elastodynamic systems with localized Kelvin-Voigt damping." Discrete and Continuous Dynamical Systems 36, no. 12 (October 2016): 7117–36. http://dx.doi.org/10.3934/dcds.2016110.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Charles, Wenden, J. A. Soriano, Flávio A. Falcão Nascimento, and J. H. Rodrigues. "Decay rates for Bresse system with arbitrary nonlinear localized damping." Journal of Differential Equations 255, no. 8 (October 2013): 2267–90. http://dx.doi.org/10.1016/j.jde.2013.06.014.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Natali, Fábio. "Exponential Stabilization for the Nonlinear Schrödinger Equation with Localized Damping." Journal of Dynamical and Control Systems 21, no. 3 (March 11, 2015): 461–74. http://dx.doi.org/10.1007/s10883-015-9270-y.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Perla Menzala, G., C. F. Vasconcellos, and E. Zuazua. "Stabilization of the Korteweg-de Vries equation with localized damping." Quarterly of Applied Mathematics 60, no. 1 (March 1, 2002): 111–29. http://dx.doi.org/10.1090/qam/1878262.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Wang, Ming, and Deqin Zhou. "Exponential decay for the linear KdV with a rough localized damping." Applied Mathematics Letters 120 (October 2021): 107264. http://dx.doi.org/10.1016/j.aml.2021.107264.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Fu Ma, To, and Paulo Nicanor Seminario-Huertas. "Attractors for semilinear wave equations with localized damping and external forces." Communications on Pure & Applied Analysis 19, no. 4 (2020): 2219–33. http://dx.doi.org/10.3934/cpaa.2020097.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Rodríguez-Bernal, Aníbal, and Enrique Zuazua. "Parabolic singular limit of a wave equation with localized boundary damping." Discrete & Continuous Dynamical Systems - A 1, no. 3 (1995): 303–46. http://dx.doi.org/10.3934/dcds.1995.1.303.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Malomed, Boris A. "Damping and pumping of localized intrinsic modes in nonlinear dynamical lattices." Physical Review B 49, no. 9 (March 1, 1994): 5962–67. http://dx.doi.org/10.1103/physrevb.49.5962.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

RODRÍGUEZ-BERNAL, ANÍBAL, and ENRIQUE ZUAZUA. "PARABOLIC SINGULAR LIMIT OF A WAVE EQUATION WITH LOCALIZED INTERIOR DAMPING." Communications in Contemporary Mathematics 03, no. 02 (May 2001): 215–57. http://dx.doi.org/10.1142/s0219199701000330.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Hubenthal, F., C. Hendrich, and F. Träger. "Damping of the localized surface plasmon polariton resonance of gold nanoparticles." Applied Physics B 100, no. 1 (June 1, 2010): 225–30. http://dx.doi.org/10.1007/s00340-010-4064-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Simsek, Sema, and Azer Khanmamedov. "Exponential decay of solutions for the plate equation with localized damping." Mathematical Methods in the Applied Sciences 38, no. 9 (May 21, 2014): 1767–80. http://dx.doi.org/10.1002/mma.3185.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Halperin, B. "Relationship between phonon damping and pure dephasing of localized electronic excitations." Chemical Physics 93, no. 1 (February 1985): 39–48. http://dx.doi.org/10.1016/0301-0104(85)85047-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Gao, Hong-jun, and Yu-juan Zhao. "Asymptotic behaviour and exponential stability for thermoelastic problem with localized damping." Applied Mathematics and Mechanics 27, no. 11 (November 2006): 1557–68. http://dx.doi.org/10.1007/s10483-006-1114-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Sharma, Anuj, Wolfgang Mueller-Hirsch, Sven Herold, and Tobias Melz. "Localized Discrete Modelling of Contact Interfaces to Predict the Dynamic Behaviour of Assembled Structures under Random Excitation." Applied Mechanics and Materials 807 (November 2015): 13–22. http://dx.doi.org/10.4028/www.scientific.net/amm.807.13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Joints used to fasten different parts are the source of local non-linearity with predominance of contact damping in comparison to inherent material damping. The conventional numerical models can predict the dynamic behaviour to a good accuracy, but their implementation for the large system under real time dynamic excitations - like random vibration are encountered with problems of numerical convergence and high computational cost. This paper proposes an approach to model the contact interfaces using discrete elements, with a non-homogeneous definition for the equivalent contact stiffness and damping over the contact interface. The non-homogeneous definition captures the non-linear effects and the local linearisation provides the capability to perform the frequency domain analysis for non-deterministic excitations. The proposed model is validated with experimental results for a test structure excited with random white noise base excitation.
32

KHALILPOUR, H., and G. FOROUTAN. "Simulation study of collisional effects on the propagation of a hot electron beam and generation of Langmuir turbulence for application in type III radio bursts." Journal of Plasma Physics 79, no. 3 (October 9, 2012): 239–48. http://dx.doi.org/10.1017/s0022377812000876.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractThe propagation of a localized beam (cloud) of hot electrons and generation of Langmuir waves are investigated using numerical simulation of the quasi-linear equations in the presence of collisional effects for electrons and beam-driven Langmuir waves. It is found that inclusion of the collisional damping of Langmuir waves has remarkable effects on the evolution of the electron distribution function and the spectral density of Langmuir waves, while the effect of collision term for electrons is almost negligible. It is also found that in the presence of collisional damping of Langmuir waves, the relaxation of the beam distribution function in velocity space is retarded and the Langmuir waves are strongly suppressed. The average propagation velocity of the beam is not constant and is larger when collisional damping of Langmuir waves is considered. The collisional damping for electrons does not affect the upper boundary of the plateau but the collisional damping of Langmuir waves pushes it towards small velocities. It is also found that the local velocity of the beam and its width decrease when the collisional damping of Langmuir waves is included.
33

Freitas, M. M., R. Q. Caljaro, A. J. A. Ramos, and H. C. M. Rodrigues. "Long-time dynamics of ternary mixtures with localized dissipation." Journal of Mathematical Physics 63, no. 12 (December 1, 2022): 121508. http://dx.doi.org/10.1063/5.0098498.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this paper, we are considering a system modeling a mixture of three interacting continua with localized nonlinear damping acting in an arbitrary small region of the interval under consideration and external forces. The main goal is to construct a smooth global attractor with a finite fractal dimension using the recent quasi-stability theory. We also study the convergence of these attractors with respect to a parameter ϵ that multiplies the external forces. This study generalizes and improves the previous paper by Freitas et al. [Discrete Contin. Dyn. Syst. B 27, 3563 (2021)].
34

KUZEMSKY, A. L. "SPECTRAL PROPERTIES OF THE GENERALISED SPIN-FERMION MODELS." International Journal of Modern Physics B 13, no. 20 (August 10, 1999): 2573–605. http://dx.doi.org/10.1142/s0217979299002538.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In order to account for competition and interplay of localized and itinerant magnetic behaviour in correlated many body systems with complex spectra the various types of spin-fermion models have been considered in the context of the Irreducible Green's Functions (IGF) approach. Examples are generalised d–f model and Kondo–Heisenberg model. The calculations of the quasiparticle excitation spectra with damping for these models has been performed in the framework of the equation-of-motion method for two-time temperature Green's Functions within a non-perturbative approach. A unified scheme for the construction of Generalised Mean Fields (elastic scattering corrections) and self-energy (inelastic scattering) in terms of the Dyson equation has been generalised in order to include the presence of the two interacting subsystems of localised spins and itinerant electrons. A general procedure is given to obtain the quasiparticle damping in a self-consistent way. This approach gives the complete and compact description of quasiparticles and show the flexibility and richness of the generalised spin-fermion model concept.
35

Feodosyev, S. B., V. A. Sirenko, E. S. Syrkin, E. V. Manzhelii, I. S. Bondar, and K. A. Minakova. "Localized and quasi-localized energy levels in the electron spectrum of graphene with isolated boron and nitrogen substitutions." Low Temperature Physics 49, no. 1 (January 2023): 30–37. http://dx.doi.org/10.1063/10.0016473.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Based on the calculation and analysis of local Green’s functions of impurity atoms of low concentration in a two-dimensional graphene lattice, the conditions for the formation and characteristics of local discrete levels with energies lying outside the band of the quasi-continuous spectrum and quasi-localized states with energies near the Fermi one are determined. Specific calculations were performed for boron and nitrogen impurity atoms, which can actually replace carbon in graphite and graphene nanostructures. For a boron impurity that forms local discrete levels outside the band of the quasi-continuous spectrum, sufficiently simple analytical expressions for the conditions for their formation, energy, intensity at the impurity atom, and damping parameter are obtained. An analysis of the formation of states quasi-localized on nitrogen impurities with energy near the Fermi level in graphene nanostructures was carried out.
36

Shahzad, M., H. Rizvi, A. Panwar, C. M. Ryu, and T. Rhee. "Kinetic damping of radially localized kinetic toroidal Alfvén eigenmodes in tokamak plasmas." Physics of Plasmas 27, no. 7 (July 2020): 072504. http://dx.doi.org/10.1063/1.5116824.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Ahn, Jaewook, Jung-Il Choi, Kyungkeun Kang, and Jae-Myoung Kim. "Analysis of localized damping effects in channel flows with arbitrary rough boundary." Applicable Analysis 98, no. 13 (April 15, 2018): 2359–77. http://dx.doi.org/10.1080/00036811.2018.1460813.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Li, Yan-Fang, Zhong-Jie Han, and Gen-Qi Xu. "Explicit decay rate for coupled string-beam system with localized frictional damping." Applied Mathematics Letters 78 (April 2018): 51–58. http://dx.doi.org/10.1016/j.aml.2017.11.003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Zhang, Zhifei. "Periodic solutions for wave equations with variable coefficients with nonlinear localized damping." Journal of Mathematical Analysis and Applications 363, no. 2 (March 2010): 549–58. http://dx.doi.org/10.1016/j.jmaa.2009.09.031.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Vicente, A., and C. L. Frota. "Uniform stabilization of wave equation with localized damping and acoustic boundary condition." Journal of Mathematical Analysis and Applications 436, no. 2 (April 2016): 639–60. http://dx.doi.org/10.1016/j.jmaa.2015.12.039.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Bellassoued, Mourad. "Decay of solutions of the wave equation with arbitrary localized nonlinear damping." Journal of Differential Equations 211, no. 2 (April 2005): 303–32. http://dx.doi.org/10.1016/j.jde.2004.12.010.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Sigalotti, L. Di G., J. A. Guerra, and C. A. Mendoza-Briceño. "Propagation and Damping of a Localized Impulsive Longitudinal Perturbation in Coronal Loops." Solar Physics 254, no. 1 (November 4, 2008): 127–44. http://dx.doi.org/10.1007/s11207-008-9279-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Wu, Zhonglin. "Asymptotic behavior for a coupled Petrovsky and wave system with localized damping." Applied Mathematics and Computation 224 (November 2013): 442–49. http://dx.doi.org/10.1016/j.amc.2013.08.065.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Cavalcanti, M. M., V. N. Domingos Cavalcanti, V. H. Gonzalez Martinez, V. A. Peralta, and A. Vicente. "Stability for semilinear hyperbolic coupled system with frictional and viscoelastic localized damping." Journal of Differential Equations 269, no. 10 (November 2020): 8212–68. http://dx.doi.org/10.1016/j.jde.2020.06.013.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Druzhinin, O. A., L. A. Ostrovsky, and S. S. Zilitinkevich. "The study of the effect of small-scale turbulence on internal gravity waves propagation in a pycnocline." Nonlinear Processes in Geophysics 20, no. 6 (November 14, 2013): 977–86. http://dx.doi.org/10.5194/npg-20-977-2013.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract. This paper presents the results of modeling the interaction between internal waves (IWs) and turbulence using direct numerical simulation (DNS). Turbulence is excited and supported by a random forcing localized in a vertical layer separated from the pycnocline. The main attention is paid to the internal wave damping due to turbulence and comparison of the results with those obtained theoretically by using the semi-empirical approach. It is shown that the IW damping rate predicted by the theory agrees well with the DNS results when turbulence is sufficiently strong to be only weakly perturbed by the internal wave; however, the theory overestimates the damping rate of IWs for a weaker turbulence. The DNS parameters are matched to the parameters of the laboratory experiment, and an extrapolation to the oceanic scales is also provided.
46

Panayotaros, Panayotis, and Felipe Rivero. "Multi-peak breather stability in a dissipative discrete Nonlinear Schrödinger (NLS) equation." Journal of Nonlinear Optical Physics & Materials 23, no. 04 (December 2014): 1450044. http://dx.doi.org/10.1142/s0218863514500441.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We study the stability of breather solutions of a dissipative cubic discrete NLS with localized forcing. The breathers are similar to the ones found for the Hamiltonian limit of the system. In the case of linearly stable multi-peak breathers the combination of dissipation and localized forcing also leads to stability, and the apparent damping of internal modes that make the energy around multi-peak breathers nondefinite. This stabilizing effect is however accompanied by overdamping for relatively small values of the dissipation parameter, and the appearance of near-zero stable eigenvalues.
47

Ljung, Per, Axel Målqvist, and Anna Persson. "A generalized finite element method for the strongly damped wave equation with rapidly varying data." ESAIM: Mathematical Modelling and Numerical Analysis 55, no. 4 (July 2021): 1375–404. http://dx.doi.org/10.1051/m2an/2021023.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We propose a generalized finite element method for the strongly damped wave equation with highly varying coefficients. The proposed method is based on the localized orthogonal decomposition introduced in Målqvist and Peterseim [Math. Comp. 83 (2014) 2583–2603], and is designed to handle independent variations in both the damping and the wave propagation speed respectively. The method does so by automatically correcting for the damping in the transient phase and for the propagation speed in the steady state phase. Convergence of optimal order is proven in L2(H1)-norm, independent of the derivatives of the coefficients. We present numerical examples that confirm the theoretical findings.
48

HUANG, GUOXIANG, SEN-YUE LOU, and MANUEL G. VELARDE. "GAP SOLITONS, RESONANT KINKS, AND INTRINSIC LOCALIZED MODES IN PARAMETRICALLY EXCITED DIATOMIC LATTICES." International Journal of Bifurcation and Chaos 06, no. 10 (October 1996): 1775–87. http://dx.doi.org/10.1142/s0218127496001119.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The dynamics of localized nonlinear excitations of resonant frequencies ωj (j = 0, 1, 2, 3) and carrier wave frequency frequency ωe≈ωj in a damping and parametrically driven lattice system is considered. The excitations are created in a one-dimensional nonlinearly coupled diatomic pendulum lattice which is subjected to a vertical oscillation of frequency 2ωe. The recent experimental observation of gap solitons, resonant kinks, and intrinsic localized modes in the diatomic pendulum lattice system are explained by using an extended nonlinear Schrödinger theory after neglecting the nonuniformity of the pendulums and the small periodic modulations of the amplitudes of the excitations.
49

Hbaieb, Mariem, Najib Kacem, Mohamed Amine Ben Souf, Noureddine Bouhaddi, and Mohamed Haddar. "Optimization of vibration energy localization in quasi-periodic structures." MATEC Web of Conferences 241 (2018): 01013. http://dx.doi.org/10.1051/matecconf/201824101013.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A mechanical periodic structure in presence of component perturbations can be a seat of a localization of vibration energy. In fact, it is well known that mistuned components have larger response levels than those of perfect components. This results in a localized energy, which can be tapped via harvesting devices. In this study, the dynamic behavior of a quasi-periodic system consisting in weakly connected linear oscillators is investigated. The main objective is to optimize the mistuning parameter, the coupling stiffness and the damping coefficient in order to functionalize the imperfection, which leads to the maximization of the localized vibration energy.
50

Merah, Ahlem, and Fatiha Mesloub. "Elastic membrane equation with dynamic boundary conditions and infinite memory." Boletim da Sociedade Paranaense de Matemática 40 (January 30, 2022): 1–15. http://dx.doi.org/10.5269/bspm.47621.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this paper, we study the elastic membrane equation with dynamic boundary conditions, source term and a nonlinear weak damping localized on a part of the boundary and past history. Under some appropriate assumptions on the relaxation function the general decay for the energy have been established using the perturbed Lyapunov functionals and some properties of convex functions.

До бібліографії